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Abstract In this paper, we look at the propagation of internal solitary waves over three

different types of slowly varying region, i.e. a slowly increasing slope, a smooth bump and

a parabolic mound in a two-layer fluid flow. The appropriate mathematical model for this

problem is the variable-coefficient extended Korteweg-de Vries equation. The governing

equation is then solved numerically using the method of lines. Our numerical simulations

show that the internal solitary waves deforms adiabatically on the slowly increasing slope.

At the same time, a trailing shelf is generated as the internal solitary wave propagates

over the slope, which would then decompose into secondary solitary waves or a wavetrain.

On the other hand, when internal solitary waves propagate over a smooth bump or a

parabolic mound, a trailing shelf of negative polarity would be generated as the results of

the interaction of the internal solitary wave with the decreasing slope of the bump or the

parabolic mound. The secondary solitary waves is observed to be climbing the negative

trailing shelf.

Keywords Internal solitary waves; extended KdV; the method of lines; two-layer fluid

flow; shoaling solitary waves
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1 Introduction

It is widely accepted that the propagation of internal waves in shallow seas is based on the
Korteweg-de Vries (KdV) equation. Benney [1] and Benjamin [2] were among the first who
derived it in the context of internal waves followed by many other authors [3] – [6]. However,
when the nonlinear coefficient of the KdV equation is close to zero, a cubic nonlinear term is
needed [7] – [8]. Thus, the appropriate model for this situation is the extended KdV (eKdV)
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equation. The canonical form of the eKdV equation, more commonly known as the Gardner
equation is given by

ut + 6αuux + 6βu2ux + γuxxx = 0. (1)

One of the most common applications of the eKdV equation is to describe the propagation of
the large-amplitude internal waves in stratified fluid flow (see [9] – [12] and references therein).
The coefficient β in (1) can be both positive and negative depending on the physical problems.
In the context of internal waves, it depends on the stratification of the fluid. When β = 0, then
(1) becomes the well-known KdV equation

ut + 6αuux + γuxxx = 0.

When the coefficients α, β, γ are constant, then (1) has a steady-state solitary wave solution

u(x, t) =
A

1 + B cosh K(x − V t)
,

where the parameters A, B, V and K are given by

V = αA = γK2, B2 = 1 +
βγK2

α2
.

The solitary wave solution (1) is characterised by a single parameter B. The wave amplitude is

a =
A

1 + B
.

When βγ < 0, then (1) has a single family of solitary waves such that 0 < B < 1. When the
amplitude is small, (1) transform into the KdV-type solitary waves (B → 1). However, when
B → 0, (1) describes the so-called “thick” solitary wave (also known as “table-top” soliton )
(refer to Figure 1). On the other hand, (1) has two families of solitary waves, both with B2 → 1
when βγ > 0. The first has 1 < B < ∞ and ranges from small KdV-type solitary waves when
B → 1, to large wave with a “sech” profile as B → ∞. The other family of solitary waves has
the opposite polarity with −∞ < B < −1 and ranges from large waves with a “sech” profile
to a limiting algebraic solitary wave of amplitude −2α/β (refer to Figure 1) [9], [10].

In real world problems, internal waves are often propagating through a nonuniform environ-
ment. These internal waves have been observed in coastal regions near Malayisa, e.g. Andaman
Sea [13], [14], Sulu Sea [15] and South China Sea [16] – [19]. In Sect. 2, we shall describe our
problem formulation. Then in Sect. 3, we shall explain our numerical method used to solve
our mathematical model. Then in Sect. 4, we shall present our numerical simulations.

2 Problem formulation

Internal waves in two-layer fluids is a common phenomenon near coastal areas. In order to
reduce the impact from the waves, different types of coastal structures have been constructed
near coastal area. The interaction between the waves in two-layer fluids and coastal structures
have been studied by many researchers [20] – [25] .
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Figure 1: The Shape of Solitary Wave when Left: α > 0, β < 0, γ > 0, Right: α > 0, β > 0, γ > 0

In this paper, we consider the propagation of internal solitary waves in a two-layer fluid
flow over a varying topography region. Hence, the appropriate mathematical model for this
problem is the variable coefficient extended Korteweg-de Vries (veKdV) equation [see the review
by Grimshaw [4], Grimshaw et al. [9], [10]]

At + cAx −
cQx

Q
A + µ(x)AAx + µ1(x)A2Ax + δ(x)Axxx = 0. (2)

Here, A(x, t) is the amplitude of the wave, and x, t are the spatial and temporal variables
respectively. The coefficient c(x) is the relevant linear long wave speed and Q(x) is the linear
modification factor, defined so that Q−2A2 is the wave action flux for linear long waves. The
coefficients of the nonlinear and dispersive terms, i.e. µ(x), µ1(x) and δ(x) are determined by
the properties of the basic state of the fluid. All these coefficients are slowly-varying functions
of x.

Let the densities of the fluid in the upper layer and lower layer be constants denoted by
ρ1 and ρ2 respectively. Also, consider H1 is the depth of the fluid in the upper layer and
H2 = H −H1 is the depth of the fluid in the lower layer where H is the total depth. Hence, all
the coefficients in (2) are given by

µ =
3c(ρ2H

2
1 − ρ1H

2
2 )

2H1H2(ρ2H1 + ρ1H2)
,

δ =
cH1H2(ρ2H2 + ρ1H1)

6(ρ2H1 + ρ1H2)
,

µ1 = −
3c

8H2
1H2

2 (ρ1H2 + ρ2H1)2

[

(ρ1H
2

2 − ρ2H
2

1 )2 + 8ρ1ρ2H1H2(H1 + H2)
2
]

,

where

c2 =
g(ρ2 − ρ1)H1H2

ρ1H2 + ρ1H2

, and Q2 =
1

2g(ρ2 − ρ1)c
.

By following the usual oceanic condition, we let ρ2 > ρ1 and ρ2−ρ1 � ρ2. When the interface is
closer to the free surface than the bottom surface, i.e. when H1 < H2, the nonlinear coefficient
µ is negative and is positive in the opposite case.
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Figure 2: Schematic Illustration for the Internal Solitary WavePropagation over a Decreasing
Depth Region

We shall suppose that the depth of the lower layer of the fluid flow varies according to

H2(x) = h0 = 1 for x < x0, and H2(x) = h1 for x > x1,

where h0, h1 are constants and varies monotonically in the region x0 ≤ x ≤ x1. We assume that
x1 − x0 � 1. Then we shall suppose that the initial condition for (2) is imposed for x � x0.
Thus, initially we generate a solution of the constant coefficient eKdV equation and the aim is
to see how it evolves for x > x0. In this paper we study the propagation of an internal solitary
wave over a decreasing-depth region, i.e. h1 < 1. The schematic of our problem is illiustrated
in Figure 2.

The first two terms in (2) are the dominant terms. Thus, we can make the transformation
by introducing new variables [10]

A = QU, T =

∫ x dx

c
, X = c(T − t).

On substitution into (2) gives, to the same leading order of approximation where (2) holds

UT + αUUX + βU2UX + λUXXX = 0, (3)

where
α = Qµ, β = Q2µ1, λ = δ.

In terms of the new variables U(X, T ), we will consider that H1(T ) is a constant for all T and
H2(T ) = 1 for 0 < T < T0 and varies monotonically in the interval T0 < T < T1 to H2(T ) = h1

when T > T1.

3 Numerical Method

In this paper, we apply the method of lines (MOL) to solve the veKdV equation (3). It involves
in making an approximation to the spatial derivatives. Thus, the partial differential equation
is reduced into a system of ordinary differential equations which can be solved by using time
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integrator. The MOL is a powerful method to solve partial differential equations. It has been
used to solve the KdV equation [26], [27], constant coefficient eKdV equation [28], [29], forced
KdV equation [30] and forced KdV-Burgers equation [31].

First, we discretise the spatial derivative using central finite difference formulae as follows:

UX =
Uj+1 − Uj−1

2∆X
,

UXXX =
Uj+2 − 2Uj+1 + 2Uj−1 − Uj−2

2(∆X)3
.

Here, j is the index that indicate the position along spatial axis and ∆X is the increment value
of spatial axis. Therefore, the MOL approximation of the veKdV equation (3) is given by

dUj

dT
= −

α

2∆X
Uj (Uj+1 − Uj−1) −

β

2∆X
U2

j (Uj+1 − Uj−1)

−
δ

2(∆X)3
(Uj+2 − 2Uj+1 + 2Uj−1 − Uj−2)

≡ f(Uj). (4)

For the time integration, we will use a fourth-order Runge-Kutta method. The initial condition
is taken as

U(X, 0) =
α

β

B2 − 1

1 + B cosh(KX)
,

where

K =

√

α2

6βλ
(B2 − 1).

Here we consider two values for B, i.e. B = 0.1 and B = 0.001.

4 Numerical Results

Here, we present the numerical for the propagation of internal solitary waves over three types of
varying depth region, i.e. a slowly increasing slope, a smooth bump, and a parabolic mound [32].

4.1 Internal Solitary Wave Propagating over a Slowly Increasing Slope

For numerical simulations, we consider the depths for both layers of the fluid as follows

H1(T ) = 1.5, for all T

H2(T ) =







1.0 : 0 ≤ T < 100,
−0.00006T + 1.006 : 100 ≤ T < 5100,
0.7 : T > 5100.

(5)

In Figure 3, we present the numerical simulation of a KdV-type internal solitary wave (B = 0.1)
propagating over a slowly increasing slope for the veKdV equation (3). As the internal solitary
wave propagates over the slope, the solitary wave deforms adiabatically. At the same time, there



M. H. Hooi et al. / MATEMATIKA 34:2 (2018) 333–350 338

is a non-adiabatic response in the form of an extended small-amplitude secondary structure or
a shelf behind the solitary wave (refer to Figure 4). On a very long time-scale, the trailing shelf
leads to the generation of an undular bore. This is due to the nonlinear effects which eventually
will lead to steepening and thus the dispersive effects will be invoked. The leading wave of the
trailing shelf undular bore can be interpreted as a secondary solitary wave. After the slope, the
transformed internal solitary wave continues to propagate with constant velocity.

Figure 3: 3D-plot of the Propagation of a KdV-type Internal Solitary Wave Propagating over
a Slowly Increasing Depth Region

Figure 5 shows the contour plot of the propagation of the internal solitary wave. It clearly
shows the generation of the secondary solitary wave behind the transformed internal solitary
wave.

Figure 6 shows the amplitude variation of the internal solitary wave as it propagates over
the varying depth region. The amplitude of the internal solitary wave increases as it propagates
over the increasing slope. After the slope, its amplitude remains constant.

When B = 0.001, we have an initial table-top solitary wave before it enters the increasing
slope region. The limiting amplitude for the table-top solitary wave before the slope is given
by

a0 =
−α

β
≈ 0.1033. (6)

Figure 7 presents the numerical simulation of an internal table-top solitary wave propagating
over a slowly increasing slope for the veKdV equation (3). Similar to the previous case where
B = 0.1, the table-top solitary wave deforms adiabatically as it evolves on the increasing slope
region. The non-adiabatic response to the interaction of the solitary wave with the varying
depth region is the generation of a trailing shelf. However in this case, the mass of the shelf
generated is bigger compared to previous case. As such, a wavetrain is formed behind the
transformed table-top solitary wave instead of a secondary solitary wave at larger time. This
is clearly shown in the 2D-plots and the contour plot (refer to Figures 8 and 9). After the
slope, the initial table-top solitary wave is transformed into another table-top solitary wave
with different limiting amplitude and travels with constant velocity.
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Figure 4: 2D Plots of a KdV-type Internal Solitary Wave Propagating over a Slowly Increasing
Depth Region

Figure 5: Contour Plot of a KdV-type Internal Solitary Wave Propagating over a Slowly In-
creasing Depth Region



M. H. Hooi et al. / MATEMATIKA 34:2 (2018) 333–350 340

Figure 6: Amplitude Variation of Adiabatically Changing for Table-top Solitary Wave and
KdV-type Wave

Figure 7: 3D-plot of the Propagation of a Table-top Solitary Wave Propagating over a Slowly
Increasing Depth Region



M. H. Hooi et al. / MATEMATIKA 34:2 (2018) 333–350 341

Figure 8: 2D Plots of a Table-top Solitary Wave Propagating over a Slowly Increasing Depth
Region

Figure 9: Contour Plot of a Table-top Solitary Wave Propagating over a Slowly Increasing
Depth Region

The new limiting amplitude after the slope is given by

a1 ≈ 0.1560. (7)

This is shown clearly in Figure 6. Therefore, the transformed solitary wave after the slope is a
table-top solitary wave as well. Again, the amplitude of the solitary wave increases as it evolves
on the slope. Once it reaches another constant depth region, its amplitude remains unchanged.
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4.2 Internal Solitary Wave Propagating over a Smooth Bump

In this subsection, we consider internal solitary wave propagating over a smooth bump. The
depth profile for both layers is given by:

H1(T ) = 1.5, for all T ,

H2(T ) =























1.0 : 0 ≤ T < 100,
−0.00006T + 1.006 : 100 ≤ T < 5100,
0.7 : 5100 ≤ T < 5600,
0.00006T + 0.364 : 5600 ≤ T < 10600,
1.0 : T > 10600.

(8)

As mentioned in the previous subsection, the internal wave deform adiabatically as it prop-
agates over the slowly increasing slope region and producing a trailing shelf at the same time,
which would then generate secondary solitary waves as time increases. When it propagates over
the slowly decreasing slope region, similarly the internal solitary wave deforms adiabatically.
However a trailing shelf of negative polarity is generated in this case. The results are shown in
Figures 10 – 11 for both B = 0.1 and B = 0.001. The trailing shelf of negative polarity acts
as an pedestal for the secondary solitary wavetrain to climb as it enter the new constant depth
region after the bump. Again, we observed a train of secondary solitary waves is generated
behind the transformed solitary waves after the bump. The 3D-plots are shown in Figures 12
and 13.

Figure 10: 2D Plots of a KdV-type Internal Solitary Wave Propagating over a Smooth Bump
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Figure 11: 2D Plots of a Table-top Solitary Wave Propagating over a Smooth Bump

Figure 12: 3D-plot of the Propagation of a KdV-type Internal Solitary Wave Propagating over
a Smooth Bump
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Figure 13: 3D-plot of the Propagation of a Table-top Solitary Wave Propagating over a Smooth
Bump

Figure 14: Contour Plot of a KdV-type Internal Solitary Wave Propagating over a Smooth
Bump

Figure 15: Contour Plot of a Table-top Solitary Wave Propagating over a Smooth Bump

The generation of trailing shelf of negative polarity is clearer in the contour plots (see
Figures 14 and 15). The amplitude of the internal solitary wave decreases when it propagates
over the decreasing slope region of the bump. This is shown in Figures 16. The amplitude of
the internal solitary wave increases while it is on the increasing slope and reduces when it enters
the decreasing slope region. Its amplitude remains constant after the slope. The amplitude of
the transformed solitary waves after the slope is slightly less than the amplitude of the initial
internal solitary waves.
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Figure 16: Amplitude Variation of Internal Solitary Waves Propagating over a Smooth Bump

4.3 Internal Solitary Wave Propagating Over a Parabolic Mound

In this subsection, we consider the case where internal solitary wave is propagating over a
parabolic mound, which is described by

H1(T ) = 1.5, for all T

H2(T ) =







1.0 : 0 ≤ T < 300,
(1/27075000)T 2 + (−21/90250)T + (385/361) : 300 ≤ T < 6000,
1.0 : T > 6000.

(9)

In this case, the numerical results are similar to the propagation of internal waves over a
smooth bump. When the internal solitary wave propagates over an increasing slope of the
mound, the internal solitary wave deforms adiabatically on the increasing slope region and
generating a trailing shelf of positive polarity behind the solitary wave. When the internal
solitary wave enters the decreasing slope region, again it deforms adiabatically and generating
a trailing shelf of negative polarity. The results for both KdV-type and table-top solitary waves
propagating over the parabolic mound are shown in Figures 17 – 20.

Figure 17: 3D-plot of a KdV-type Internal Solitary Wave Propagating over a Parabolic Mound
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Figure 18: 2D Plots of a KdV-type Internal Solitary Wave Propagating over a Parabolic Mound

Figure 19: 3D-plot of a Table-top Solitary Wave Propagating over a Parabolic Mound
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Figure 20: 2D Plots of a Table-top Solitary Wave Propagating over a Parabolic Mound

The contour plots of the KdV-type solitary wave and table-top solitary wave propagating
over a parabolic mound is shown in Figures 21 and 22. Similar to the smooth bump, a train of
secondary solitary waves is generated and propagating behind the transformed internal wave
after the parabolic mound.

Figure 21: Contour Plot of a KdV-type Internal Solitary Wave Propagating over a Parabolic
Mound
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Figure 22: Contour Plot of a Table-top Solitary Wave Propagating over a Parabolic Mound

Figure 23: Amplitude Variation of Internal Solitary Waves Propagating over a Parabolic Mound

The amplitude variation of the internal solitary wave as it propagates over a parabolic
mound for both cases are shown in Figure 23. Similar to the previous case of internal solitary
wave propagating over a smooth bump, the amplitude of wave increases when it propagates
over the increasing slope region and decreases after it propagates over the decreasing slope
region.

5 Conclusion

In this paper, we have looked into internal solitary wave propagation over a variable topography.
We have considered the configuration where the water depth decreases slowly. As the result of
the interaction of increasing slope region on the evolution of the internal solitary wave, a trailing
shelf is formed behind the solitary wave. The trailing shelf will decompose into secondary
solitons or a wavetrain depending on the mass of the shelf. This is similar to the soliton fission
scenario, albeit on a much larger temporal scale. Thus, the propagation of the solitary wave
over slowly varying topography leads to a non-adiabatic response regardless of the smallness of
the bottom slope variation. When the internal solitary waves propagates over the decreasing
slope region of the bump and parabolic mound, the internal waves deform adiabatically. Its
amplitude decreases when it evolves over the decreasing slope. The non-adiabatic response is
the generation of the trailing shelf of negative polarity.
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