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Abstract Markov map is one example of interval maps where it is a piecewise expanding
map and obeys the Markov property. One well-known example of Markov map is the
doubling map, a map which has two subintervals with equal partitions. In this paper, we
are interested to investigate another type of Markov map, the so-called skewed doubling
map. This map is a more generalized map than the doubling map. Thus, the aims of this
paper are to find the fixed points as well as the periodic points for the skewed doubling
map and to investigate the sensitive dependence on initial conditions of this map. The
method considered here is the cobweb diagram. Numerical results suggest that there exist
dense of periodic orbits for this map. The sensitivity of this map to initial conditions is
also verified where small differences in initial conditions give different behaviour of the
orbits in the map.
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1 Introduction

Markov map can be used to study the long-term behavior of a discrete-time process such as in
finance, economics and population processes. One example of the well-known Markov map is
the doubling map. This map is a representation of the real-world problems that deals for two
events with equal probabilities considering this map has two equal partitions. This paper will
look at a more generalized case than the doubling map where there are also cases where two
events do not necessarily happen with equal probabilities. The objectives of this paper are to
find the fixed points as well as periodic points for the skewed doubling map and to show the
existence of the sensitive dependence on initial conditions in the skewed doubling map.

This paper is organized as follows. In this section, we review some basic definitions in
dynamical systems such as orbit, fixed point and periodic point. The Markov map with its
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properties is also discussed here. In Section 2, we explain briefly about the doubling map as
our motivation for this research. The cobweb method and the generalized map (the skewed
doubling map) is described in Section 3. We elaborate our numerical results in Section 4.

In this paper, we consider a dynamical system in the form of the discrete time map

xn+1 = T (xn),

where x ∈ Rn and T : Rn → Rn. This map is generated by iteration of map T .

Definition 1 (Orbit, Fixed Point and Periodic Point [1]) Let T : Rn → Rn. The orbit
of a point x0 ∈ Rn is

{T n(x0)}∞n=0 = {x0, T (x0), T (T (x0)), . . . , T
n(x0), . . .},

where T n denotes the nth iterate of T , i.e.,

T n(x0) = T (T (T (. . . T (T (x0)) . . . ))), n ≥ 0.

The point x0 ∈ Rn is a fixed point for T : Rn → Rn if:

T (x0) = x0.

The point x0 ∈ Rn is a periodic point of period n for T : Rn → Rn if:

T n(x0) = x0,

for some n > 0. Therefore we say n is the period of x0 and {x0, T (x0), T
2(x0), . . . , T

n−1(x0)}
is a period-n orbit of T .

1.1 Markov Maps

A Markov map consists of finite partitions of subintervals; is a very useful tool in the theory of
dynamical systems, where it allows one to use the methods of symbolic dynamics. We follow
the notations from Pollicott and Yuri [2] and Jenkinson and Pollicott [3]. In here we discuss the
Markov map’s properties for both doubling and skewed doubling maps followed by discussion
of the invariant measures for both maps.

Let I = [0, 1] be an interval. Let also I = {Ii}k
i=1 be a partition of the interval I into a

finite number of closed sub-intervals Ii = [xi−1, xi] for i = 1, . . . , k, with endpoints 0 = x0 <
x1 < · · · < xk = 1.

Definition 2 (Markov Map [2]) We consider a map T : I → I which are continuously
differentiable functions C1 and monotone for each open intervals int(Ii) = (xi−1, xi) and in
order for T to be a Markov map, therefore it must satisfy the following properties:

1. Piecewise expanding: There exists |T ′(x)| > λ > 1 for all x ∈ [0, 1].

2. Markov property: If T (int(Ii)) ∩ int(Ij) 6= ∅, then T (int(Ii)) ⊃ int(Ij) for i, j = 1, . . . , k.

For this piecewise expanding Markov interval map, we can define a k × k matrix A with
entries either 0 or 1 as in the following definition.
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Figure 1: The Doubling Map T with Equal Partition

Definition 3 (Transition Matrix [2]) A transition matrix A is defined by

A(i, j) =

{
1 if T (int(Ii)) ∩ int(Ij) 6= ∅,
0 if T (int(Ii)) ∩ int(Ij) = ∅.

(1)

The first condition in (1) can also be written as T (int(Ii)) =
⋃

j:A(i,j)=1 Ij. In this case, we
call I the Markov partition for T , and this Markov partition is not unique since any refinement∨n−1

i=0 T−iI is also a Markov partition [3]. Note that if I,J are partitions, then I
∨
J =

{Ii ∩ Jj : Ii ∈ I, Jj ∈ J }.

2 Background Motivation: The Doubling Map

Doubling map is an example of Markov map which is also a discrete dynamical system. The
explanation in this section is referred to Pollicott and Yuri’s book [2]. We consider the one-
dimensional doubling map T : [0, 1) → [0, 1] defined by

T (x) = 2x (mod 1), (2)

with the associated partitions {I1, I2} where I1 = [0, 1/2) and I2 = [1/2, 1]. Note that we can
also write (2) as follows:

T (x) =

{
2x if 0 ≤ x < 1/2,

2x− 1 if 1/2 ≤ x ≤ 1.
(3)

We show the graph of doubling map in Figure 1.
Note that this map satisfies property (i) in Definition 2 where it is piecewise expanding

since the slope for every partition is 2, i.e. T ′(x) = 2 > 1. This map also satisfies the
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I1 I 2

Figure 2: The Transition Graph for Doubling Map T .

Markov property since the images of I1 and I2 is equal to the union of the two partitions, i.e.
T (0, 1/2) = T (1/2, 1) = (0, 1) ⊃ (0, 1/2) ∪ (1/2, 1). For this map, the symbolic dynamics is
captured by the transition graph given schematically in Figure 2. Hence, the transition matrix
for this map is

A =

(
1 1
1 1

)
. (4)

3 Methodology

To verify the sensitiveness of dependence on initial conditions in a Markov map, we may use the
cobweb plot method. In this section, we discuss the construction of the cobweb diagram and
explain how this diagram can be used to show the sensitive dependence on initial condition.

3.1 Cobweb Plot to Show Sensitive Dependence on Initial Conditions

To plot the cobweb diagram, first we sketch the graph of the function T together with the
diagonal line T (x) = x. Then we represent the orbits under map f by a cobweb or staircase
diagram as follows [4]:

1. Draw vertical line T (x) = x at the initial condition.

2. Draw horizontal line from here back to T (x) = x.

3. Repeat.

Cobweb plot is particularly useful to study the behaviour of orbits of initial conditions of
the discrete map. In this paper, we choose some nearby initial conditions to show that the
map is sensitive to the initial conditions. In dynamical systems, especially in the subject of
chaos, small perturbations in initial conditions may lead to major changes of the behaviour of
the orbits.

Definition 4 (Alligood et al. [1]) Let T be a map on R. A point x0 has sensitive dependence
on initial conditions if there is a nonzero distance d such that some points arbitrarily near x0

are eventually mapped at least d units from the corresponding image of x0. More precisely, there
exists d > 0 such that any neighbourhood N of x0 contains a point x such that |T k(x)−T k(x0)| ≥
d for some nonnegative integer k.

3.2 Generalized Model: Skewed Doubling Map

In this section, we consider the generalization of the doubling map (3) to a skewed doubling
map. It is named such due to the division of the interval into [0, s) and [s, 1] which is not
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Figure 3: The Skewed Doubling Map Ts in (5) with Unequal Partition, for s = 0.45.

necessarily symmetric; and the usual doubling map is the special case for s = 1/2. This skewed
doubling map has been studied by some authors including Georgiou et al. [5]. In 2016, Roslan
and Ashwin [6] have considered this map as the base map for their skew product dynamical
system where this map is also called as piecewise expanding linear map.

We consider the one-dimensional map Ts : [0, 1] → [0, 1]

Ts(x) =


x

s
if 0 ≤ x < s,

x− s

1− s
if s ≤ x ≤ 1,

(5)

where we assume that s ∈ [0, 1] and the corresponding partition is {[0, s), [s, 1]}. This map is
also a piecewise expanding map since its derivatives are bounded away from 1, i.e. T ′

s(x) =
1/s > 1 for interval [0, s) and T ′

s(x) = 1/(1 − s) > 1 for interval [s, 1]. It also satisfies the
Markov property such that T (intIi) ⊃ I1 ∪ I2 for i = 1, 2. In addition, this map shares the
same symbolic dynamics as T and therefore has the same transition matrix as in (4) and graph
as in Figure 2.

However, this map has different behaviour compared to T in terms of the orbit’s visiting
in certain interval. For the map T , the proportion of the orbit in T that lies in each interval
is the same, i.e. (1/2, 1/2), whereas in Ts the proportion of the orbit lies in [0, s) is s and the
proportion of the orbit lies in [s, 1] is 1− s where s 6= 1/2. The skewed doubling map is shown
in Figure 4. We will use this map to show that the sensitiveness to initial conditions exists.
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4 Main Results: Cobweb Plot for the Skewed Doubling Map

In this section, we discuss our numerical results obtained using Maple. From previous section,
we have applied the cobweb method on the skewed doubling map. We recall that in Section
3.1, a line T (x) = x is drawn on the map. In fact, from the intersection of the line with map,
we obtain two fixed points, which are at x = 0 and x = 1. We show this intersection in Figure
4(a). Meanwhile Figures 4(b)-(f) show the behaviour of orbits for different initial conditions
chosen for the skewed doubling map.

Besides fixed points, this map also has periodic points. From Definition 1, we have T n(x0) =
x0. This means that after certain number of period n, the values of the orbit are equal to the
values of its initial conditions. There are in fact infinitely many periodic orbits for this map.
We can also say that this map has dense periodic orbits. For instances, the periodic orbits for
skewed doubling map are shown in Figure 4(c) and Figure 4(f). For the evolution of orbits that
do not return to the original initial conditions, the orbits may lead to chaotic behaviour. Some
examples of this kind of orbits are shown in Figures 4(b),(d) and (e).

To show the sensitive dependence on initial conditions, some initial conditions x0 are chosen
and the orbits T n(x) are computed for successive values of k. For examples for this map, we
choose x0 = 0.1 and x0 = 0.10255. Although these two points are close to each other, the
behaviour of the orbits of the two points are totally different. The orbit for x0 = 0.1 is chaotic
while for x0 = 0.10255 the orbit is periodic. The results of the orbits for these points are shown
in Table 4. This table shows the beginning of two separate orbits whose initial conditions
differ by 0.00255. We can see that the two points begin as close together, will eventually move
apart. We also show the sensitive dependence on initial conditions for x0 = 0.2, x0 = 0.26 and
x0 = 0.269 in Table 4.

Table 1: The Comparison of the Orbits of Nearly Equal Initial Conditions x0 = 0.1 and
x0 = 0.10255 Under the Skewed Doubling Map for the First 10 Iterates which Correspond to
Figures 4(b) and (c). x0 = 0.10255 Generates Periodic Orbit of Period-3.

n xn xn

0 x0 = 0.1 x0 = 0.10255
1 0.2222 0.22788
2 0.4938 0.50640
3 0.0797 0.10255
4 0.1771 0.22788
5 0.3935 0.50640
6 0.8745 0.10255
7 0.7718 0.22788
8 0.5850 0.50640
9 0.2455 0.10255
10 0.5455 0.22788
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) The Intersection of the Skewed Doubling Map (i.e. the Two Right Skewed Lines)
with the Diagonal Line which Indicates that There are Two Fixed Points of Period One; at 0
and 1. (b) Chaotic Orbit for Initial Condition x0 = 0.1. (c) Periodic Orbit for Initial Condition
x0 = 0.10255 with Period 3. (d) Chaotic Orbit for Initial Condition x0 = 0.2. (e) Chaotic
Orbit for Initial Condition x0 = 0.26. (f) Periodic Orbit for Initial Condition x0 = 0.269 with
Period 2.
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Table 2: The Comparison of the Orbits of Nearly Equal Initial Conditions x0 = 0.2, x0 = 0.26
and x0 = 0.269 Under the Skewed Doubling Map for the First 10 Iterates which Correspond to
Figures 4(d), (e) and (f). x0 = 0.269 Generates Periodic Orbit of Period-2.

n xn xn xn

0 x0 = 0.2 x0 = 0.26 x0 = 0.269
1 0.4444 0.5778 0.598
2 0.9877 0.2323 0.269
3 0.9776 0.5163 0.598
4 0.9592 0.1205 0.269
5 0.9258 0.2678 0.598
6 0.8651 0.5951 0.269
7 0.7547 0.2637 0.598
8 0.5540 0.5861 0.269
9 0.1891 0.2474 0.598
10 0.4202 0.5498 0.269

5 Conclusion

In this paper, we have studied a type of Markov map which is the skewed doubling map. It has
been shown that this map contains fixed points as well as periodic points. In addition, from
Definition 4, our numerical results suggest that the skewed doubling map has sensitive depen-
dence on initial conditions since the nearby initial conditions chosen lead to major differences
in the journey of the orbits. In fact, this sensitivity may lead to the route of chaos.
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