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Abstract In this paper, a limited modified BFGS method for solving large-
scale unconstrained optimization problems is proposed. The proposed algorithm
generates quasi-Newton directions using a modified BFGS method suggested by
Biggs (1973). The modified BFGS method is then extended to the limited
memory version. In order to use only minimum storage for the modification,
the modification is only applied to the last BFGS corrections. Numerical results
indicate that an improvement is achieved.
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Abstrak Dalam kertas ini, suatu kaedah BFGS terubahsuai terhad untuk
masalah pengoptimuman tak berkekangan yang berskala besar telah
dicadangkan. Algoritma yang dicadangkan itu menjanakan arah kuasi-Newton
dengan menggunakan kaedah BFGS terubahsuai oleh Biggs (1973). Kaedah
BFGS terubahsuai tersebut kemudian dilanjutkan kepada versi ingatan terhad.
Pengubahsuaian tersebut hanya dilakukan kepada pembetulan BFGS yang ter-
akhir supaya hanya ruang storan yang minimum bagi pengubahsuaian diper-
lukan. Keputusan berangka menunjukkan kemajuan telah dicapai.

Katakunci Kaedah BFGS terubahsuai terhad, pengoptimuman tak
berkekangan berskala besar.

1 Introduction

Quasi-Newton (QN) methods for unconstrained optimization are a class of numerical tech-
niques for solving the following problem
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min
x

f(x) (1.1)

where f(x) is a nonlinear real-valued function and x is an n-dimensional real vector. At
the kth iteration, an approximation point xk and an n × n matrix Hk are available. The
methods proceed by generating a sequence of approximation points via the equation

xk+1 = xk + λkdk (1.2)

where λk is calculated to satisfy certain line search conditions and dk is a descent direction.
One important feature of QN methods is the choice of the matrix Hk. The methods

require Hk to be positive definite and satisfy the QN equation

Hk+1yk = αksk, αk > 0 (1.3)

where sk = xk+1 − xk and yk = gk+1 − gk with g the gradient of f . One of the best
known QN methods is the BFGS method that was proposed independently by Broyden [2],
Fletcher [4], Goldfarb [6] and Shanno [9]. The BFGS update is defined by the equation

Hk+1 = Hk + 1
sT

k
yk

(
(1 + yT

k Hkyk

sT
k

yk
)sksT

k − skyT
k Hk − HkyksT

k

)
. (1.4)

with αk = 1 .
The BFGS update has been used successfully in many production codes for solving

unconstrained optimization problems. In practice, we observe from numerical results of
many other papers (see Luksan [7] for instance) that the BFGS out-performed many QN
updates in solving practical problems.

Our interest here is the limited memory extension to the QN methods, which will suit
for the solution of large-scale optimization problems. Limited memory QN methods has
been considered by Nocedal [8], where it is called the SQN method. The user specifies
the number m of QN (BFGS, for instance) corrections that are to be kept, and provides a
sparse symmetric and positive definite matrix H0, which approximates the inverse Hessian
of f . During the first m iterations the method is identical to the QN method. For k > m,
Hk is obtained by applying m QN updates to H0 using information from the m previous
iterations. The limited memory BFGS method (L-BFGS) by Nocedal uses the inverse BFGS
formula in the form

Hk+1 = V T
k HkVk + ρksksT

k , (1.5)

where

ρk = 1/yT
k sk, Vk = I − ρkyksT

k . (1.6)

(see Dennis and Schnabel [3].)
In this paper, we try to improve the performance of the BFGS and apply the modified

BFGS update to large-scale optimization problems. A description of the technique is pre-
sented in Section 2. Section 3 presents implementation of the modified BFGS method to
limited memory procedure. Numerical results also included in Section 4. For comparison
purposes, numerical results obtained by using L-BFGS method is also given. Discussions
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and conclusions are given in Section 5.

2 A modified BFGS algorithm

To improve the performance of the BFGS updates, Biggs [1] first suggested a self-adjustable
value for the parameter αk . Based upon non-quadratic models, he derived the parameter,
αk as

αk = 1
tk

(2.1)

where

tk = 6
sT

k
yk

(
f(xk) − f(xk+1) + sT

k gk+1

)
− 2. (2.2)

Hence, a modified BFGS update can be defined by

Hk+1 = Hk + 1
sT

k
yk

((
αk + yT

k Hkyk

sT
k

yk

)
sksT

k − skyT
k Hk − HkyksT

k

)
. (2.3)

A more useful form of (2.3) when apply to large-scale problems can be written as follows:

Hk+1 = V T
k HkVk + αkρksksT

k . (2.4)

Therefore, given any initial approximate inverse Hessian H0, a recursive formula for
(2.4) at any iteration k can be expressed as follows:

Hk+1 =
(
V T

k · · ·V T
0

)
H0 (V0 · · ·Vk)

+α0ρ0

(
V T

k · · ·V T
1

)
s0s

T
0 (V1 · · ·Vk)

+α1ρ1

(
V T

k · · ·V T
2

)
s1s

T
1 (V2 · · ·Vk)

...
+αkρksksT

k . (2.5)

3 Limited modified BFGS method

Based upon the recursive formula (2.5) and limited memory updating procedures developed
by Nocedal [8], we can now state a limited memory modified BFGS algorithm with inexact
line searches as follows.

Algorithm 3.1. LmBFGS method

Step 1. Choose x0, 0 < β′ < 1
2 , β′ < β < 1,and initial matrix H0 = I . Set k = 0.

Step 2. Compute
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dk = −Hkgk

and

xk+1 = xk + λkdk

where λk satisfies

f(xk + λkdk) ≤ f(xk) + β′λkgT
k dk , (3.1)

g(xk + λkdk)T dk ≥ βgT
k dk (3.2)

(the steplength λ = 1 is tried first).

Step 3. Let m̂ = min{k, m − 1}. Update H0 for m̂ + 1 times by using the pairs
{yj , sj}k

j=k−m̂, i.e. let

Hk+1 =
(
V T

k · · ·V T
k−m̂

)
H0 (Vk−m̂ · · ·Vk)

+αk−m̂ρk−m̂

(
V T

k · · ·V T
k−m̂+1

)
sk−m̂sT

k−m̂ (V1 · · ·Vk)
+αk−m̂+1ρk−m̂+1

(
V T

k · · ·V T
k−m̂+2

)
sk−m̂+1s

T
k−m̂+1 (Vk−m̂+2 · · ·Vk)

...
+αkρksksT

k . (3.3)

with αk calculated by (2.1)-(2.2), and

if αk ≤ 0.01 then set αk = 0.01,

if αk ≥ 100 then set αk = 100.

However, in order to calculate the approximation inverse Hessian, H using (3.3), we need
additional m̂ storage for α . We try to avoid this by introducing new updating formula in
Step 3 of Algorithm 3.1 as follows:

Hk+1 =
(
V T

k · · ·V T
k−m̂

)
H0 (Vk−m̂ · · ·Vk)

+ρk−m̂

(
V T

k · · ·V T
k−m̂+1

)
sk−m̂sT

k−m̂ (Vk−m̂+1 · · ·Vk)
+ρk−m̂+1

(
V T

k · · ·V T
k−m̂+2

)
sk−m̂+1s

T
k−m̂+1 (Vk−m̂+2 · · ·Vk)

...
+αkρksksT

k . (3.4)

By doing so, we only need to calculate αk instead of αk−m̂, αk−m̂+1, · · · , αk. Therefore
formula (3.4) is preferred.

Step 4. Set k := k + 1, and go to Step 2.



Limited Modified BFGS Method for Large-Scale Optimization 19

Table 1: Comparison of LmBFGS and LBFGS with m = 5

Test Problems LmBFGS(m = 5) LBFGS(m = 5)

nI nf nI nf

Penalty I

n = 8 42 55 55 66

n = 200 61 71 60 73

n = 1000 62 75 64 79

Trigonometric

n = 8 25 32 24 31

n = 200 47 53 40 45

n = 1000 46 54 48 45

Rosenbrook

n = 8 36 44 38 49

n = 200 36 45 36 45

n = 1000 38 52 37 48

Powell

n = 8 36 47 46 54

n = 200 36 45 37 46

n = 1000 45 57 67 78

Beale

n = 8 13 15 15 17

n = 200 14 17 15 16

n = 1000 14 18 15 16

Wood

n = 8 107 140 91 118

n = 200 90 120 91 121

n = 1000 96 126 99 128
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Table 2: Comparison of LmBFGS and LBFGS with m = 10

Test Problems LmBFGS(m = 10) LBFGS(m = 10)

nI nf nI nf

Penalty I

n = 8 43 57 45 55

n = 200 61 73 58 70

n = 1000 60 73 63 75

Trigonometric

n = 8 20 26 24 29

n = 200 47 55 48 55

n = 1000 49 56 50 61

Rosenbrook

n = 8 36 43 37 44

n = 200 37 50 37 49

n = 1000 38 49 35 44

Powell

n = 8 41 43 38 43

n = 200 43 48 31 33

n = 1000 43 50 51 58

Beale

n = 8 14 16 14 16

n = 200 14 17 16 17

n = 1000 15 20 15 16

Wood

n = 8 83 113 89 118

n = 200 82 113 89 118

n = 1000 80 110 86 117
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Table 3. Comparison of LmBFGS and LBFGS with m = 30

Test Problems LmBFGS(m = 30) LBFGS(m = 30)

nI nf nI nf

Penalty I

n = 8 43 57 45 55

n = 200 61 73 58 70

n = 1000 60 73 63 75

Trigonometric

n = 8 19 26 23 28

n = 200 46 55 46 55

n = 1000 45 57 45 53

Rosenbrook

n = 8 36 44 37 44

n = 200 37 50 37 49

n = 1000 37 48 35 44

Powell

n = 8 40 45 36 39

n = 200 38 41 45 46

n = 1000 40 44 36 41

Beale

n = 8 14 16 14 16

n = 200 14 17 16 17

n = 1000 15 20 15 16

Wood

n = 8 84 113 87 113

n = 200 83 114 87 115

n = 1000 80 100 85 114
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4 Numerical Results

All routines are written in FORTRAN 77 and computational results are obtained on a
Pentium II machine. The required accuracy is set as 10−5. That is, convergence is assumed
if the following criterion is satisfied at the point xk

‖gk‖ < 10−5 × max {1, ‖xk‖} (4.1)

where ‖ · ‖ is the l2 (Euclidean) norm.
A total of 6 standard functions have been chosen for evaluation purposes. Several of

these functions are given by Gill and Murray [5]. Each function is tested with dimensions
varied from 8 to 1000 variables. For the purpose of comparison, the LBFGS methods
are also evaluated over the same set of test problems with m = 5, 10 and 30. Numerical
results obtained by LmBFGS and LBFGS algorithms are summarized in Table 1-3. In these
tables nI denotes the number of iteration and nf denotes the number of function/gradient
evaluations.

As can be seen from Table 1-3 for most of the problems especially problems with large
number of variables, the number of iterations and function/gradient evaluations required
by LmBFGS is less than the corresponding numbers required by LBFGS. This indicates
that LmBFGS is a better choice for solving large-scale optimization problems.

5 Conclusions

We have presented a limited modified BFGS method for solving unconstrained large-scale
optimization problems. The proposed algorithm generates quasi-Newton directions using
a modified BFGS method suggested by Biggs [1]. This modified BFGS method is then
extended to the limited memory version. In order to save storage, the modification is only
applied to the last corrections. Numerical results indicate an overall improvement on the
number of iteration and function/gradient evaluation.
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