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Abstract Real life phenomena found in various fields such as engineering, physics,
biology and communication theory can be modeled as nonlinear higher order ordinary
differential equations, particularly the Duffing oscillator. Analytical solutions for these
differential equations can be time consuming whereas, conventional numerical solutions
may lack accuracy. This research propose a block multistep method integrated with a
variable order step size (VOS) algorithm for solving these Duffing oscillators directly.
The proposed VOS Block method provides an alternative numerical solution by re-
ducing computational cost (time) but without loss of accuracy. Numerical simulations
are compared with known exact solutions for proof of accuracy and against current
numerical methods for proof of efficiency (steps taken).
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1 Introduction

Solving higher order ordinary differential equations (ODEs) directly via multistep method
have been researched by authors many authors [1–6]. In [7], Suleiman proposed a divided
difference formulation with variable order stepsize (VOS) capability. Techniques and strate-
gies suggested in [7] allows for order and stepsize change subjected to certain criteria. Based
on ideas in [7], a two-point explicit and implicit block divided difference formulation was es-
tablished in [8] and then implemented into a fully implicit backward difference formulation
by Majid [4]. Ibrahim in [5] then derived a block backward differentiation formulae for solv-
ing stiff ODEs. In the current research, a predictor-corrector VOS algorithm is established
in backward difference form for solving nonlinear duffing differential equations.

The backward difference formulation established, requires calculating the integration
coefficients only once in contrast to the divided difference formulation which calculates the
integration coefficients at every step size change. A recurrence relationship between explicit
and implicit integration coefficients and coefficients of different orders is obtained and coded
to reduce the amount of programming lines.

Systems of nonlinear higher order ordinary differential equations are found in phenom-
ena in various fields such as physics, engineering and communication theory ranging from
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electrical circuits to modern telecommunications. The limitless applications of nonlinear
higher order ordinary differential equations has made it the subject of interest of many
researchers, particularly the Duffing oscillator.

The general form of the Duffing oscillator a second order non-linear initial value ordinary
differential equation (ODE)

y′′(t) + δy′(t) + αy(t) + βy3(t) = γ sin ωt, (1)

with the constants δ, α, β, γ and ω as a parameter.
Higher order ODEs such as the Duffing oscillator were previously reduced to a system of

differential equations and solved using conventional numerical methods. The current work
proposes to solve the Duffing differential equation directly using a variable order variable
step multistep method, a two point block predictor-corrector (PeCe) formulation.

2 Predict-evaluate correct-evaluate backward difference mode with

variable order variable step size

To formulate a two point PeCe block variable order stepsize backward difference algorithm,
elements such as explicit-implicit integration coefficients and order-stepsize strategy are
necessary.

2.1 Deriving the explicit-implicit integration coefficients

Consider a higher order ordinary differential equation

y(d) = f(x, Ỹ ), (2)

with the dth order ODE and the initial value condition given by Ỹ (α) = η̃ where

Ỹ (x) = (y, y′, . . . , y(d−1)),

η̃ = (η, η
′

, . . . , η(d−1)),

in the interval α ≤ x ≤ β.
Integrating y(d) by 1, 2, 3, . . . , d number of times and interpolating (y, y′, . . . , y(d−1)) by

the Newton-Gregory backwards difference polynomial

Pn(x) =

k∑

i=0

(−1)i

(
−s

i

)
∇ifn, s =

x − xn

h
,

for the predictor whereas

Pn+r(x) =

k∑

i=0

(−1)i

(
−s

i

)
∇ifn+r , s =

x − xn+r

h
, r = 1, 2,

for the corrector where j = 0, 1, . . . , d. Let r denote the number of blocks, thus providing
Predictor:

y(d−j)(xn+r) =

j−1∑

i=0

(rh)i

i!
y(d−j+i)(xn)+

∫ xn+r

xn

(xn+r − x)d−1

(d − 1)!

k∑

i=0

(−1)i

(
−s

i

)
∇ifndx, (3)
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Corrector:

y(d−j)(xn+r) =

j−1∑

i=0

(rh)i

i!
y(d−j+i)(xn)

+

∫ xn+r

xn

(xn+r − x)d−1

(d − 1)!

k∑

i=0

(−1)i

(
−s

i

)
∇ifn+r dx, (4)

which can be rewritten as

Predictor:

y(d−j)(xn+r) =

j−1∑

i=0

(rh)i

i!
y(d−j+i)(xn) +

∫ r

0

(r − s)d−1

(d − 1)!

k∑

i=0

(−1)i

(
−s

i

)
∇ifnds,

Corrector:

y(d−j)(xn+r) =

j−1∑

i=0

(rh)i

i!
y(d−j+i)(xn) +

∫ 0

−r

(−s)d−1

(d − 1)!

k∑

i=0

(−1)i

(
−s

i

)
∇ifn+r ds,

with coefficients denoted by the following integrals

Explicit:

γr,j,i = (−1)i

∫ r

0

(r − s)d−1

(d − 1)!

(
−s

i

)
ds,

Implicit:

γ∗

r,j,i = (−1)i

∫ 0

−r

(−s)d−1

(d − 1)!

(
−s

i

)
ds.

Finally, the variable order stepsize predictor-corrector backward difference algorithm has
the following form

Predictor:

y(d−j)(xn+r) =

j−1∑

i=0

(rh)i

i!
y(d−j+i)(xn) + hj

k−1∑

i=0

γr,j,i∇
ifn,

Corrector:

y(d−j)(xn+r) =

j−1∑

i=0

(rh)i

i!
y(d−j+i)(xn) + hj

k−1∑

i=0

γ∗

r,j,i∇
ifn+r.

By mathematical induction, the relationship between integration coefficients of different
orders is obtained as follows
Explicit coefficients:

γr,d,0 = γr,d−1,1 , γr,d,k = γr,d−1,k+1 −

k−1∑

i=0

(
γr,d,i

k − i + 1

)
, k = 1, 2, . . . .
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Implicit coefficients:

γ∗

r,d,0 = γ∗

1,d−1,1, γ∗

r,d,k = γ∗

r,d−1,k+1 −

k−1∑

i=0

(
γ∗

r,d,i

k − i + 1

)
, k = 1, 2, . . . .

In similar manner to [9], the following recursive relationship between the explicit and implicit
integration coefficients is obtained.

∞∑

i=0

γ∗

r,j,it
i = (1 − t)r

∞∑

i=0

γr,j,it
i.

The next section details the order and step size strategy.

3 Order and step size

When implementing a variable order stepsize algorithm, the order and stepsize selection is
crucial. In a VOS algorithm, the reliability of the method relies on the acceptance criteria
where as the efficiency of the algorithm relies order and step size strategy. This is because
a VOS multistep method depends on the back values stored. The order of a VOS algorithm
can be increased depending on the previous back values stored and decreased by discarding
the necessary amount of back values. An unbiased order strategy proposed by [7] adopted
the selection criteria as suggested in [10].

Because of issues involving the stability and convergence of VOS techniques, Shampine
and Gordon [10] recommends the restrictions on the ratio of successive steps. This is
to ensure stability. Consider the current step size as h and the final step size as hend.
By multiplying a safety factor of R with h for a conventional estimate of hend such that
hend = Rh reduces the number of rejected steps.

In this research, a modified doubling and halving step change techniques is implemented
based on the step size change algorithm introduced in [11] for Adam-Bashforth and Adams-
Moulton based method in backward difference form (see Algorithm 1). Finally, the next
section proceeds with the error estimate.

4 Error estimation

In this section, an estimation for the local error of each integration step is obtained similar
to the approach suggested in [12]. Our estimation begins by denoting the predictor as
follows

pry
(d−j)
n+r =

j−1∑

i=0

(rh)i

i!
y(d−j+i)

n + hj

k−1∑

i=0

γr,j,i∇
ifn. (5)

By applying a PkECk+1E algorithm, the corrector is denoted as follows

cry
(d−j)
n+r =

j−1∑

i=0

(rh)i

i!
y(d−j+i)

n + hj

k−1∑

i=0

γ∗

r,j,i∇
ifn+r (6)

For computational purposes, the corrector is written in term of the predictor as follows

cry
(d−j)
n+r =pr y

(d−j)
n+r + γ∗

r,j,i∇
i
prfn+r
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Algorithm 1 Integration coefficients
1: Begin

2: Block := 2;
3: Temp := Temp1 := 1;
4: Forb := 0, to Block step 1
5: Begin

6: Forj := 1, to 12 step 1
7: Begin

8: If(j = 0)
9: Begin

10: γb,0,j := Temp1;
11: End

12: Else

13: Begin

14: Temp1 = Temp1 ×
(j−1)∗B

J
;

15: γb,0,j := Temp1;
16: End

17: End

18: Form := 1, to D[I] step 1
19: Begin

20: Forj := 0, to 15 − m step 1
21: Begin

22: If(m = 1)
23: Begin

24: Temp:= 1;
25: End

26: Else

27: Begin

28: Temp:= γb,m−1,j+1 ;
29: End

30: Fort := 0, to j − 1 step 1
31: Begin

32: Temp:=Temp−
γb,m,t

j+1−t
;

33: End

34: γb,m,j :=Temp;
35: If(j = 0)
36: Begin

37: γ∗

b,m,0 := γb,m,0;

38: End

39: Else

40: Begin

41: γ∗

b,m,j := γb,m,j − γb,m,j−1;

42: End

43: End

44: End

45: End

46: End
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with ∇i
pr, as the i-th backward difference of the predictor where j = 0, 1, . . . , d and i =

0, 1, . . . , k.
By Milne error estimate, the local truncation error (LTE) can be written as the following

formulation
Ẽ

(j)
n+r,k = hjγ∗

r,j,i∇
k
prfn+r.

Selection of a suitable p for Ẽ
(d−p)
k to control order and step size can be found in [13]. The

asymptotic validity can be established using

Ẽ
(d−p)
n+r, k+1 = hd−pγ∗

r, d−p, k+1∇
k+1fn+r , r = 1, 2.

5 Numerical results

Current simulation with numerical approximation for the Duffing oscillator can be obtained
from works such as [14–17] and many others. The 2-Point Block Variable Order Stepsize
(2PBVOS) was tested with numerous nonlinear Duffing oscillators of different orders and
parameters. Results were then compared with current and conventional numerical methods.
Problem 1 and 2 are non homogeneous second order differential equations where as Problem
3 is a Duffing Oscillator without any known solution. And finally, Problem 4 is a fourth
order nonlinear differential equation which was intended to add a certain level of difficulty.

STEPS: total steps,
MAXE: the overall maximum error,
AVER: the average error,
MTD: the method used
2PBVOS: 2-Point Block Variable Order
Stepsize

DI: direct integration,
VOSBD: VOS backward difference,
SHPM: standard homotopy perturbation,
SNM: standard numerical.

Problem 1 The equation y′′(x) + 2y′(x) + y(x) + 8y3(x) = e−3t for 0 ≤ x ≤ 100 was
obtained from [18] with initial value conditions y(0) = 1

2
, y′(0) = −1

2
and y(x) = 1

2
e−t as

the exact solution.

Problem 2 The equation y′′(x)+y(x)+y′ (x)+y2(x)y′(x) = 2 cosx−cos3 x for 0 ≤ x ≤ 100
was obtained from [19] with initial value conditions y(0) = 0, y′(0) = 1 and y(x) = sin x

as the exact solution.

Problem 3 The equation y′′(x) + y(x) + y3(x) = 0 for 0 ≤ x ≤ 5 was obtained from [20]
with initial value conditions y(0) = 1, y′(0) = 0 and without any known exact solution.

Problem 4 The equation y′′′′(x) + 5y′′(x) + 4y(x) − 1
6
y3(x) = 0 for 0 ≤ x ≤ 14 was

obtained from [21] with initial value conditions y(0) = 0, y′(0) = 1.91103, y′′(0) =
0, y′′′(0) = −1.15874 and y(x) = 2.1906 sin0.9x − 0.02247 sin2.7x + 0.000045 sin4.5x as
the exact solution.
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Table 1: Comparison of total steps and accuracy for Problems 1 and 2

Problem 1 Problem 2

TOL MTD STEPS MAXE AVER STEPS MAXE AVER

10−2 DI 156 4.54154(−2) 1.12922(−2) 254 8.49079(−2) 2.04794(−2)
VOSBD 154 5.54428(−2) 9.04569(−3) 217 1.07600(−1) 3.03894(−2)
2PBVOS 219 9.97057(−1) 1.13013(−1) 163 5.90439(−1) 6.87560(−2)

10−4 DI 169 3.28968(−4) 8.48859(−5) 332 1.54704(−3) 4.72630(−4)
VOSBD 215 4.90227(−4) 6.47465(−5) 284 1.24649(−3) 1.92899(−4)
2PBVOS 150 2.67777(−3) 1.68773(−4) 186 3.18495(−3) 7.36456(−4)

10−6 DI 173 2.19533(−5) 2.80453(−6) 382 4.24089(−5) 1.56849(−5)
VOSBD 236 1.31698(−5) 1.91707(−6) 330 1.28039(−5) 3.26641(−6)
2PBVOS 160 1.18496(−5) 1.32048(−6) 279 1.22989(−5) 3.85559(−6)

10−8 DI 204 1.48896(−7) 3.10007(−8) 651 7.93605(−7) 1.55130(−7)
VOSBD 224 1.82416(−7) 2.22705(−8) 499 7.27324(−7) 1.46368(−7)
2PBVOS 192 1.95831(−7) 2.73453(−8) 609 3.19819(−7) 1.91880(−8)

10−10 DI 317 1.18565(−9) 3.94604(−10) 772 7.83863(−9) 2.03721(−9)
VOSBD 224 1.12450(−9) 2.04848(−10) 702 9.05773(−9) 1.01381(−9)
2PBVOS 217 2.80516(−9) 1.17721(−9) 1376 2.80516(−9) 1.28110(−10)

Table 2: Numerical result for Problem 3

x
2PBVOS

SHPM SNM
Tol = 1 × 10−1 Tol = 1 × 10−5 Tol = 1 × 10−10

0.5 7.68843(-1) 7.68802(-1) 7.68802(-1) 7.68766(-1) 7.68802(-1)
1.0 2.34320(-1) 2.33694(-1) 2.33692(-1) 2.33680(-1) 2.33692(-1)
2.0 -8.65820(-1) -8.59353(-1) -8.59349(-1) -8.9323(-1) -8.59349(-1)
3.5 -2.91355(-1) -9.30087(-2) -9.30110(-2) -9.30340(-2) -9.30130(-2)
5.0 3.19402(-1) 9.47105(-1) 9.47130(-1) 9.47107(-1) 9.47130(-1)

Figure 1: Accuracy of DI, VOSBD and 2PBVOS method for Problem 1



172 Ahmad Fadly Nurullah bin Rasedee et al.

Table 3: Comparison of total steps and accuracy for Problem 4

Problem 4

TOL MTD STEPS MAXE AVER

10−2 DI 48 2.06305(−1) 3.75201(−2)
VOSBD 46 2.19901(−2) 4.59352(−3)
2PBVOS 44 6.68423(−2) 1.58501(−2)

10−4 DI 80 6.74572(−4) 2.44601(−4)
VOSBD 86 1.58280(−3) 3.94428(−4)
2PBVOS 49 3.28712(−4) 6.40115(−5)

10−6 DI 139 1.37722(−4) 4.02719(−5)
VOSBD 102 1.26373(−4) 3.15140(−5)
2PBVOS 87 2.49624(−4) 5.12886(−5)

10−8 DI 399 1.28150(−4) 3.03717(−5)
VOSBD 126 1.23095(−4) 2.94248(−5)
2PBVOS 114 1.29053(−4) 3.80954(−5)

10−10 DI 308 1.27015(−4) 3.42987(−5)
VOSBD 225 1.19540(−4) 3.24947(−5)
2PBVOS 236 1.28890(−4) 4.07321(−5)

Figure 2: Accuracy of DI, VOSBD and 2PBVOS method for Problem 2
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Figure 3: Accuracy of DI, VOSBD and 2PBVOS method for Problem 3

5.1 Discussion and conclusion

Table 1 displays the comparison of numerical results between three VOS methods, DI, VOS
and 2PBVOS. The DI method established by Suleiman [3] is the benchmark for most VOS
algorithm. In this research, the DI method acts as the standard of efficiency. An overall
review of Table 1 so the competitive nature of the 2PBVOS method against the VOSBD and
well within the range of efficiency provided by the DI method. For Problem 1, it is apparent
that the 2PBVOS requires the least number of steps for each tolerance (with the exception
when TOL=10−2) while maintaining a level of accuracy similar to DI and VOSBD. On the
other hand, results for Problem 2 shows the advantage of the 2PBVOS in terms of total
step for larger tolerances, when TOL is between 10−2 and 10−6. For finer tolerances (TOL
10−8 and 10−10), the 2PBVOS method is seen to be more accurate but, with the cost of
compromising the number steps.

Problem 3 is a Duffing oscillator without any known exact solution. This problem
was selected to test the accuracy of the 2PBVOS method. The approximated solution
obtained by the 2PBVOS method is compared with conventional methods. Table 2 provides
the approximated solution for the SHPM, SNM and 2PBVOS (tolerances 10−1, 10−5 and
10−10). Results show that the 2PBVOS becomes more accurate solution when a finer TOL
is used.

A higher order Duffing oscillator (order 4) is considered to observe the capability of the
2PBVOS method when dealing with more difficult problems. The numerical results in Table
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3 again features the comparison between the DI, VOSBD and 2PBVOS methods. And once
again, the 2PBVOS is proven to require the least number of steps without lost of accuracy.

Figure 1 to 3 illustrates efficiency of the methods. Here, efficiency of the methods is
defined by the undermost curve of the provided graphs. The figures clearly show that the
2PBVOS has the undermost curve of all 3 methods with the exception of a few accuracy.
In conclusion, it is apparent that the 2PBVOS method is a viable option for solving Duffing
oscillators. The 2PBVOS also has the added advantage of being parallel programmable
which will reduce computational cost even more.

Acknowledgments

This research has been supported by Ministry of Education (MoE) under the Fundamental
Research Grant Scheme (FRGS), project number USIM/FRGS/FEM/055002/51517 and
Universiti Sains Islam Malaysia (USIM) under the Short Term Grant Scheme, project num-
ber PPP/FST-0117/051000/11417.

References

[1] Gear, C. W. The numerical integration of ordinary differential equations. Mathematics

of Computation. 1967. 21: 146–156.

[2] Hall, G. and Watt, J. M. Modern Numerical Methods for Ordinary Differential Equa-

tions. Oxford: Clarendon Press. 1976.

[3] Suleiman, M. B. Generalised Multistep Adams and Backward Differentiation Methods

for the Solution of Stiff and Non-stiff Ordinary Differential Equations. Manchester:
University of Manchester. 1979.

[4] Majid, Z. A. and Suleiman, M. Two point fully implicit block direct integration variable
step method for solving higher order system of ordinary differential equations. World

Congress on Engineering. 2007. 812–815.

[5] Ibrahim, Z. B., Othman, K. I and Suleiman, M. B. 2-point block predictor-porrector
of backward differentiation formulas for solving second order ordinary differential equa-
tions directly. Chiang Mai J. 2012. 33(3): 502–510.

[6] Suleiman, M. B., Ibrahim, Z. B. and Rasedee, A. F. N. Solution of higher-order ODEs
using backward difference method. Mathematical Problems in Engineering. 2011. 2011:
Article ID 810324, 18 pages.

[7] Suleiman, M. B. Solving nonstiff higher order ODEs directly by the direct integration
method. Applied Mathematics and Computation. 1989. 33(3): 197–219.

[8] Omar, Z. and Suleiman, M. B. Parallel two-point explicit block method for solving
high-order ordinary differential equations. International Journal of Simulation and

Process Modelling. 2006. 2(3-4): 227–231.

[9] Rasedee, A. F. N., Suleiman, M. B and Ibrahim, Z. B. Solving nonstiff higher order
odes using variable order step size backward difference directly Mathematical Problems

in Engineering. 2014. 2014: Article ID 565137, 10 pages.



Solution for nonlinear Duffing oscillator 175

[10] Shampine, L. F. and Gordon, M. K. Computed Solutions of Ordinary Differential

Equations. San Francisco: W. H. Freeman. 1975.

[11] Krogh, F. T. Algorithms for changing the step size. Siam: Journal on Numerical

Analysis. 1973. 10: 949–965.

[12] Hall, G. and Suleiman, M. B. Stability of Adams-type formulae for second-order
ordinary differential equations. IMA: Journal of Numerical Analysis. 1981. 1(4): 427–
438.

[13] Rasedee, A. F. N. Direct Method Using Backward Difference for Solving Higher Order

Ordinary Differential Equations. Selangor: University Putra of Malaysia. 2009.

[14] Rad, J. A., Kazem, S. and Parand, K. A numerical solution of the nonlinear con-
trolled Duffing oscillator by radial basis functions. Computers & Mathematics with

Applications. 2012. 64(6): 2049–2065.

[15] Nourazar, S. and Mirzabeigy, A. Approximate solution for nonlinear Duffing oscillator
with damping effect using the modified differential transform method. Scientia Iranica.
2013. 20(2): 364–368.

[16] Branch, M. and Mahshahr, I. R. I. Computing simulation of the generalized Duffing
oscillator based on EBM and MHPM. Mechanics and Mechanical Engineering. 2016.
20(4): 595–604.

[17] Najafi, R. and Nemati Saray, B. Numerical solution of the forced Duffing equations
using Legendre multiwavelets. Computational Methods for Differential Equations. 2017.
5(1): 43–55.

[18] Tabatabaei, K. and Gunerhan, E. Numerical solution of Duffing equation by the
differential transform method. Applied Mathematics & Information Sciences Letters.
2014. 2: 1–6.

[19] Khalid, M., Sultana, M., Arshad, U. and Shoaib, M. A comparison between new
iterative solutions of non-linear oscillator equation. International Journal of Computer

Applications. 2015. 128(4): 1–5.

[20] Najafi, R. and Nemati Saray, B. A new modification of the HPM for the Duffing
equation with cubic nonlinearity. Proceedings of the 2011 international conference on

Applied & computational mathematics. 2011. 139–143.

[21] Liu, G. R. and Wu, T. Y. Numerical solution for differential equations of Duffing-type
non-linearity using the generalized differential quadrature rule. Journal of Sound and

Vibration. 2000. 237(5): 805–817.


