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Abstract In this paper we consider a harvesting model of predator-prey fishery in which

the prey is directly infected by some external toxic substances. The toxic infection is

indirectly transmitted to the predator during the feeding process. The model is a modified

version from the classic Lotka-Volterra predator-prey model. The stability and bifurcation

analyses are addressed. Numerical simulations of the model are performed and bifurcation

diagrams are studied to investigate the dynamical behaviours between the predator and

the prey. The effects of toxicity and harvesting on the stability of steady states found in

the model are discussed.
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1 Introduction

In the recent decades, human desire seems to be profound and even endless. Due to the global
modernisation and urbanisation, human tend to fulfill their material cravings in various ways.
This scenario foments the increasing human demands in searching more food and resources.
Unfortunately, irresponsible actions and inconsiderate exploitation on natural resources such
as fisheries and forestry will result in some unpleasant effects on the environment.

One of the most significant problems is the effects of toxicants on the dynamics of ecosystem.
A toxicant is defined as any anthropogenic toxic substance released into environment through
human activities. Unlike toxicant, a toxin is a poisonous substance that naturally produced
within an organism. Recently, many research have been done to investigate the impacts of
toxicants on the ecosystem health. Some of the leading studies are the work of Hallam and
Clark [1] which emphasised on the effects on the first order kinetics of a population in the
presence of toxicity. They proposed a threshold value of terminal organismal concentration
that can control the extinction rate of the population even in the limiting toxicants condition.
Further work on the presence of toxicity was done by Hallam and De Luna [2] where they
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modified the model by taking into account of toxicity from both environmental and food chain
pathways.

Other work regarding the effects of toxicants on general single species was done by Freedman
and Shukla [3]. The steady states of the prey-predator system were found, and the amount of
toxicants keep reducing at a certain rate. The impacts of toxicants on two species competing
with each other were studied by Chattopadhyay [4] where the presence of toxicants was found
to be an important element for the persistence of the population. Huang et al. [5] modified
the model of prey-predator with the influence of environmental toxicants where both prey and
predator are exposed to the toxicants simultaneously. However, most of the models dealing with
toxicants are limited to general communities but not specific to a certain aquatic environment.

Many researchers now have started to study the mathematical models dealing with toxicants
in fishery perspectives. The model developed by Huang et al. [6] considered both toxins in the
population and also in the environment. The complex dynamical behaviours of fish population
in the presence of toxicants was discussed by Scott and Sloman [7] where the reproduction
growth, social behaviours and hormone production of fish were observed.

Kar and Chaudhuri [8] studied a model which combined both underlying concepts of har-
vesting term and toxicity in two competing fish species. They found that the persistence and
extinction properties of a large marine ecosystem are not only dependent on the inter specific
interaction between the marine species but it also dependent of the external environment fac-
tors. Slightly different from the work of Kar and Chaudhuri [8], Das et al. [9] incorporated
the effects of toxicants in a prey-predator fishery model in which the growths of both prey and
predator species vary at different rates.

The main objective of the present paper is to study the dynamical properties of a prey-
predator fishery model in the presence of toxicity. Both prey and predator species are subjected
to a certain rate of harvesting. The rate of exposure to the toxicants is different for both species.
We study the effects of toxicants on both prey and predator species to make a further conjecture
on the persistence and extinction properties.

2 Model Formulation

Generally, the form of the classical prey-predator model, which is commonly known as Lotka-
Volterra model [10] is

dX

dt
= r1X − γ1XY, (1a)

dY

dt
= −r2Y + γ2XY, (1b)

where the prey, X, grows at a rate of r1 in the absence of predator, Y . Similarly, the predator
dies out at a rate of r2 in the absence of prey. Parameters γ1 and γ2 represent the respective
rates of change of prey and predator due to the prey-predation. The prey population grows
exponentially in the absence of predator which is unreasonable [11]. In order to overcome this
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problem, the logistic limiting term is added to the prey population and we have the system of

dX

dt
= r1X

(

1 −
X

K

)

− γ1XY, (2a)

dY

dt
= −r2Y + γ2XY, (2b)

where K is the environmental carrying capacity of the prey population. The model assumes
that the prey population grows logistically with the rate of r1 in the absence of predator while
the predator population dies out exponentially with a rate of r2 in the absence of prey. Since our
main objective is to examine the dynamical behaviours of prey-predator fishery in the presence
of harvesting and toxicity, we study the system [9]

dX

dt
= r1X

(

1 −
X

K

)

− γ1XY − aEX − bX3, (3a)

dY

dt
= −r2Y + γ2XY − cEY − dY 2, (3b)

where the catchability coefficients of the prey and predator population are denoted by a and
c, respectively. Both populations are subjected to a combined harvesting effort, E, and the
catch rate function of aEX and cEY follow the catch-per-unit-effort rules. In this model, the
prey fish species is directly infected by environmental toxicants such as the industrial waste
and the predator fish species is indirectly infected by the toxicants through the feeding process
on the infected prey species. Parameters b and d denote the coefficients of toxicity on prey and
predator, respectively. All parameters are assumed to be positive values.

2.1 Non-dimensional Model

In order to reduce the number of parameters for better interpretation and computation, the
non dimensionalisation of system (3) is carried out using a set of scaled variables

x =
γ2X

r1

, y =
γ1Y

r1

, τ = r1t.

The dimensional system (3) becomes

dx

dτ
= x(1 − αx) − xy − g1x− h1x

3, (4a)

dy

dτ
= −βy + xy − g2y − h2y

2, (4b)

where

α =
r1

γ2K
, g1 =

aE

r1

, h1 =
br1

(γ2)2
, β =

r2

r1

, g2 =
cE

r1

, h2 =
d

γ1

.

In the system (4),
α : ratio of the growth rate of x to the product of growth rate of y by x and environmental

carrying capacity of x;
g1 : ratio of the product of catchability coefficient of x and harvesting effort to the growth
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rate of x;
h1 : ratio of the product of coefficient of toxicity and growth rate of x to the square of

growth rate of y by x;
β : ratio of the death rate of y to the growth rate of x;
g2 : ratio of the product of catchability coefficient of y and harvesting effort to the growth

rate of x;
h2 : ratio of the coefficient of toxicity on y to the death rate x by y.

3 Steady States, Equilibria and Stability Analysis

There are four possible steady states of Pi in the form of (x, y) where i represents the number
of steady states occur in the system and three of them are trivial steady states:

P0 =

(

0,−
β + g2

h2

)

, P1 = (0, 0) and P2 = (x̃, 0),

where x̃ is the root of the quadratic equation of

h1x̃
2 + αx̃ + g1 − 1 = 0 or x̃ =

−α +
√

α2 − 4h1(g1 − 1)

2h1

. (5)

In the present paper, the steady state of P0 is not considered since −
β + g2

h2

represents the

negative population size which is not biologically meaningful. The equilibrium of P1 represents
when both the prey and predator population die out and extinct. It has the characteristic
equation of

λ2 + (g1 + g2 + β − 1)λ + (g1 − 1)(g2 + β) = 0,

where λ is the eigenvalue. Equilibrium P1 has a set of eigenvalues of EP1
= {1 − g1,−β − g2}.

Note that since −β−g2 is always negative, thus P1 is a stable node if g1 > 1 or P1 is an unstable
saddle point if g1 < 1.

On the other hand, the equilibrium of P2 represents when the prey population survives in
the absence predator population. It has the characteristic equation of

λ2 + (3x̃2h1 + 2αx̃ + β − x̃ + g1 + g2 − 1)λ + (3x̃2h1 + 2αx̃ + g1 − 1)(β − x̃ + g2) = 0,

with a set of eigenvalues EP2
= {−β + x̃− g2,−3x̃2h1 − 2αx̃− g1 + 1}, where x̃ is given in (5).

The non-trivial steady state (coexistence equilibrium) of the model (4) is P3 =
(

x̂, x̂−β−g2

h2

)

where x̂ is obtained by solving the quadratic equation

c1x̂
2 + c2x̂ + c3 = 0,

with
c1 = h1h2, c2 = αh2 + 1 and c3 = h2(g1 − 1) − β − g2,

and

x̂ =
−(αh2 + 1) +

√

(αh2 + 1)2 − 4h1h2(g1h2 − h2 − β − g2)

2h1h2

.
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4 Bifurcation Results and Analysis

We investigate the dynamical behaviours of the prey-predator fishery with toxicity by perform-
ing bifurcation analysis using parameter variation [12]. In order to examine the steady states for
further interpretation, the model (4) is analysed by using the numerical software of XPPAUT
and the steady state diagrams are obtained using the MATLAB software. For simplicity, we
set the parameter of α = 0.1, g1 = 0.1, h1 = 0.5, β = 0.5, g2 = 0.5 and h2 = 1. In this section,
we investigate the effects of the toxicant parameter (h1) found in the system (4). Figure (1a)
and (1b) illustrate the steady state diagrams with respect to the toxicant parameter, h1. In
both diagrams, the blue solid lines represent the stable steady states while the red dotted lines
represent the unstable steady states.

(a) (b)

Figure 1: Steady-state Diagrams of Model (4) with respect to the Toxicant Parameter, h1 ,
with α = 0.1, g1 = 0.1, β = 0.5, g2 = 0.5 and h2 = 1 for (a) Prey, x, and (b) Predator, y,
respectively

Referring to the Figure (1a) and (1b), the transcritical bifurcation (TB) occurs where the
two steady-state branches of P2 and P3 interchange with each other after passing through a
transcritical bifurcation point. From the diagrams, the population densities of both x (prey) and
y (predator) decrease as the toxicant parameter of h1 increases. This scenario happens because
the presence of toxicants affects the growth of prey and consequently depletes the number of
predator which depends on the prey as a food source. This scenario is described by the solid
lines of P3 in Figure (1a) and (1b). On the other hand, as the toxicant parameter of h1 increasing
until it passes through a transcritical bifurcation point (h1 = 0.8) the two steady-state branches
interchange where the steady state P3 becomes unstable and P2 becomes stable. In results, the
population density of the prey continues to decrease, however, the predator population dies
off and finally extincts due to the high level of toxicants. The predator population decreases
more drastically than prey because the presence of toxicants will not only affect the predator
indirectly, but also reduces the food source of predator population. In short, if the toxicant
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parameter h1 < 0.8, the coexistence of prey and predator occurs but if h1 > 0.8, the predator
species dies off.

(a) (b)

Figure 2: Time Plots of Model (4) with α = 0.1, g1 = 0.1, β = 0.5, g2 = 0.5, h2 = 1 and Initial
Conditions of (x0, y0) = (2.5, 1) at (a) h1 = 0.1 and (b) h1 = 3.2 respectively

In order to observe the underlying trends and behaviours over time of the population in
system (4,) time series plots are obtained using MATLAB software as shown in the Figure (2a)
and (2b), using the same values of parameters and by fixing the value of h1 = 0.1 and h1 = 3.2.
For Figure (2a), the value of toxicant parameter is h1 < 0.8, where coexistence of the both
species x and y. In Figure (2b,) h1 > 0.8, the extinction of the predator y occurs due to the
loss of food source and infection of toxicants. In Figure 2a, the population of prey decreases
slightly at the beginning before they increase to a maximum value and reach the stable steady
state values. This scenario is due to the predation activities conducted by the predator on the
prey. The predator population continues to decrease until they are eliminated from the system,
however, the prey population continue to persist.

Besides investigating the dynamical behaviours of prey-predator fishery with respect to the
toxicant parameter, we are also interested in the effects of the harvesting parameter, g2 of the
model (4). Figure (3a) and (3b) depict the steady state diagrams of model (4) with respect to
the harvesting parameter of g2.

From Figure (3a) and (3b), the prey population x increases but the predator population
y decreases as the harvesting parameter, g2 increases before passing through the transcritical
bifurcation point of g2 = 0.7454. This is because the increasing of harvesting activities on
predator suppress the predator population and consequently reduce the predation activities
on the prey population. This scenario is described by the blue solid lines of P3 where the
coexistence of the both prey and predator population occurs. On the contrary, the extinction
of the predator population occurs when the harvesting parameter g2 > 0.7454 which is denoted
by the blue solid lines labelled as P2.

From Figure (4a) and (4b), when the harvesting activities on the predator are maintained



T.K. Ang et al. / MATEMATIKA 34:1 (2018) 143–151 149

(a) (b)

Figure 3: Steady-state Diagrams of Model (4) with respect to the Harvesting Parameter of
g2 with α = 0.1, g1 = 0.1, h1 = 0.5, β = 0.5 and h2 = 1 for (a) Prey, x and (b) Predator, y,
respectively

(a) (b)

Figure 4: Time Plots of Model (4) with α = 0.1, g1 = 0.1, h1 = 0.5β = 0.5, h2 = 1 and Initial
Conditions of (x0, y0) = (2.5, 1) at (a) g2 = 0.2 and (b) g2 = 3 respectively

below the threshold level, 0.7454 both prey and predator population survive and persist to-
gether. Excessive harvesting activities on predator will lead to the extinction of the predator
population and only the prey population can persist.
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5 Conclusion

In the previous sections, a prey-predator system of a fishery model by considering the influence
of toxicants and harvesting activities has been investigated. The toxicants affect the prey
species directly while the predator species get infected indirectly through the feeding process.
Harvesting process is conducted on both prey and predator population with similar harvesting
effort.

The effects of toxicants and harvesting efforts to prey-predator model is observed with
different values of the toxicant parameter, h1 and harvesting parameter, g2 that showed the
impacts on the prey and predator population. From the steady state diagrams, low level of
toxicants and harvesting activities leads to the coexistence of both species but conversely, high
level of toxicants and harvesting activities eradicates the entire predator population in a short
period of time. Moreover, from the time series plots, we can observe that the prey population
continues to survive and persists even at a high level of toxicants since the prey follows the
logistic growth compared to the predator.

Therefore, rational initiatives should be conducted to ensure that both toxicants and har-
vesting levels are in moderate levels in order to protect the entire aquatic ecosystem from
collpase.
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