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Abstract Logging activity is one of the most important activities for tropical countries

including Malaysia, as it produces quality trees for papers. One of the important tree

species is the Acacia Mangium which it produces a soft tree for papermaking enterprises.

The papers are exported to Europe and countries which have high demand for paper

due to the rapid development of the printing industry. Thus we analyzed the height for

individual trees. We investigate the maximum height of the trees from 1990 to 2006

and we fit the data using extreme value model. Some of the data are missing and three

imputation methods we used to solve this problem.
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1 Introduction

One of the most important disciplines within statistics in dealing with extreme values over the
last 50 years is Extreme Value Theory, EVT. The EVT method is unique in describing rare
events more than the (coverage) events. Usually, extreme value analysis requires estimation of
the probability of events that are more extreme than any other observation [1]. EVT deals with
statistical problems concerning of heavy tail distribution [2] and the existing data is used in the
estimations of design parameters which lead to the construction of a specified probability [3]. In
pursuing national development and improving living standards of the people, economic activities
and development projects in a country often ignore the environmental issues. Forest is one of
the victims as a result of the implementation of these developments. A lot of research has
been conducted to deal with this problem and one of the approaches is using the EVT method.
This method provides a draft in estimating the anticipated feature in tree growth pattern
using historical data. Extreme value theory originated from Fisher and Tippet described the
behaviour of the maximum of independent and identically distributed (i.i.d.) random variables
in 1928. Hydrologists, environmentalist, scientists and statisticians use extreme value concept
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to analyze varieties of extreme data. Extreme value model is important because in some areas
the interest is not only on estimating some population central characteristics (e.g. average
rainfall, average temperature, average wind speed and sports modelling) but also on estimating
the minimum or the maximum values for these central characteristics [2, 4–6].

2 Materials and Methods

The data used in this paper is obtained from Acacia Mangium plantation at Segaliud Lokan
Project, Sabah. The data consist of 20 permanent sample plots covering five types of random-
level range deployed in four blocks at each level [7]. This data is measured in block with spacing
for every tree is 2.0 m x 2.0 m. Twenty five trees from each block are chosen randomly. All trees
were observed annually from 1990 (when the tree ages either 4 or 5 years old) to 2000 and the
variables of the trees recorded were their height (maximum height is 35m) and the circumstance
(maximum diameter is 35cm) of each tree whether they are alive or dead [8]. Only maximum
height data are available for further analysis. The issue of missing data had been observed
right from the beginning of the project due to the dead trees and further deteriorated where
many more trees died after 2000. Furthermore there is another case of missing tree monitoring
record which is in 1998. The challenge in this research is to replace the missing data for 1998
i.e. first stage and also to replace the missing data for death tree each year from 1990 to 2000
i.e. second stage. Imputation methods have been explored by researchers to replace the missing
value [9, 10].

There are three classes of the extreme value distribution mentioned in Extremal Types
Theorem [1] for types I, II and III that can be widely known as the Gumbel, Fréchet and
Weibull families. The Gumbel family when shape parameter is equal to zero (ξ = 0), the
Fréchet family when the shape parameter is greater than zero (ξ > 0) and the Weibull family
when the shape parameter is less than zero (ξ < 0) [1].

• Gumbel
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• Fréchet if ξ = α−1 with α > 0

G(z) =

{

0, z≤ µ,

exp
{

−
[

z−µ
σ

]

−α
}

, z> µ.

• Weibull if ξ = −α−1 with α > 0
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1, z≥ µ.

By reformulation of all three families, we can get a single family of models that is the
Generalized Extreme Value (GEV) as in Equation 1. The distribution of the maxima would
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converge to a member of the Generalized Extreme Value (GEV) family of distributions if it is
under the same affine transformation converges.

G(z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}

(1)

defined on {z : 1 + ξ (z − µ) /σ > 0}, where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. Here µ
is location parameter, σ is a scale parameter and ξ is a shape parameter.

2.1 Maximum Likelihood Extreme

Maximum likelihood estimation method (MLE) is a popular statistical method for estimating
the values of parameters [2,11]. By using this method, the unknown parameters of a model are
inferred on the basis of historical data and it is also unique for its adaptability to model change.
Although the model is modified and the estimating equations are changed, the underlying
methodology remains unchanged.

Let z1, . . . , zm be independently and identically distributed, i.i.d. variables having the GEV
distribution, when ξ 6= 0 the log-likelihood for the GEV parameters is

L (µ, σ, ξ) = − m log σ −

(
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) m
∑
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where

1 + ξ

(

zi − µ

σ

)

> 0, for i = 1, . . . , m. (3)

The maximum likelihood estimate with respect to the entire GEV family will take a lead
when maximization of (2) with respect to the parameter vector (µ, σ, ξ). For any given dataset,
the maximization is straightforward but there is no analytical solution using standard numerical
optimization algorithms.The likelihood will become zero and the likelihood equals to negative
infinity when the parameter combinations in (3) is violated when at least one of the observed
data falls beyond end-point of the distribution [1].

In this study, the aim is to model the data within each year and also to model the growth
of maximum height across the years from 1990 to 2000. The focus parameter is µ as it will give
the everage height of the �Acacia Mangium trees.

2.2 Imputation

Missing data can lead to highly inaccurate results in certain cases. In addition, there are
various types of imputation methods which can lead to accurate results [10], [12], [13]. The
issue of missing data had been observed right from the beginning of the project due to the dead
trees and further deteriorated where many more trees died after 2000. Furthermore there is
another case of missing tree monitoring record which is in 1998. Many Imputation methods
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have been explored by researchers to deal with the missing value [9]. In this work we apply
Mean Imputation, Maximum Imputation, Average Mean Imputation and Random Imputation
to solve this problem. Two stages of the imputation have been used:

1. For the first stage, some of the missing data in 1998 are imputed using Mean Imputation.
This method is applied to the trees that has no missing height measures in 1997 and 1999.
The missing 1998 height measure for each tree is replaced by the mean of its observed
1997 and 1999 height values. See Figure 1. By taking the mean from the existing pair
data before and after the missing year, we still can maintain the trend characteristic of
the data. The mean of two value of data also similar to the median of two value of data.
Considering only the available data in 1997 and in 1999 is used to replace data in 1998
lead to the nearest, accurate and logical value of the missing data.

2. In the second stage, all the other missing data are imputed using the three imputation
methods, Maximum Imputation, Average Mean Imputation and Random Imputation.
This stage is implemented to get a set of all data across years in order to obtain the GEV
parameter estimates within year from 1990 to 2000. This stage will provid and fill all the
missing data with the imputated values and give “a complete set” of Acacia Mangium

height data for further analysis.

2.2.1 Maximum Imputation

In maximum imputation, the highest observed height value of the trees for each year is used to
impute all the missing data. The results is shown in Figure 2. The resulting completed data set
is then used to estimate the EVT model parameters which is location, µ, scale σ, and shape, ξ
using MLE.

2.2.2 Average Mean Imputation

In this method, we impute the missing data by the average of the observed yearly data The
result is shown in Figure 3. When {tnj

} is the remaining and available data set of that year
then

xj =

{

t1, t2, . . . , tnj

}

nj

where xj is the average of the data and nj is the number of observations in that j year re-
spectively. Remember that for nj = 2, the average is equal to medium value. The resulting
completed data set is then used to estimate the model parameters stated in Section 2.3.

2.2.3 Random Imputation

With this method, we impute the missing value in a particular year chosen at random from a
uniform distribution

x ∼ Uniform(ax, bx)

where ax is the observed minimum value and bx is the observed maximum value in that partic-
ular year.

The resulting completed data set is shown in Figure 4. Similarly the EVT parameters which
are location µ, scale σ and shape ξ are estimated from this completed data set.
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Figure 1: Completed Data using Mean Imputation Method for 1998 Missing Data in the First
Stage

3 Results

Tables 1, Table 2, Table 3 and Table 4 show the years in the first column, location, scale,
shape parameters in the second, third and fourth column repectively and the last column is the
number of trees that are still alive at the corresponding years. The number of trees that are
alive is denotated by nl. The Mean Imputation for the first stage and the Random, Average
Mean and Maximum Imputations have been carried out for the height Acacia Mangium height
data from 1990 until 2000 for the second stage.

Table 1, Table 2 and Table 3 show the location parameter estimate values increase as the
years increases and it is also proportional to the dead trees. Results for the shape estimates are
not stable as its consist of regular (ξ > −0.5) and non-regular (ξ < −0.5)) also the changing
of the sign of ξ value of estimates. For example in 1997 (0.376) and 1998 (0.607) were positive
values instead of negative values in other years. For standard error in 1998, it gives the biggest
standard error, se(µ) = 2.7, se(σ) = 5.67 and se(ξ) = 6.296 compared to other years.

Table 2 shows an increasing then decreasing with small differences for the location estimates
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Figure 2: Completed Data Set using Maximum Imputation Method from 1990 to 2000
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Figure 3: Completed Data using Average Mean Imputation Method from 1990 to 2000
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Figure 4: The Completed Data Set using Random Imputation Method from 1990 to 2000

Table 1: Parameters Estimates using GEV with the Data Height

Year µ̂ σ̂ ξ̂ nl

1990 4.5 (0.1) 0.66 (0.11) −0.566 (0.146) 24
1991 10.1 (0.1) 2.05 (0.39) −0.726 (0.460) 24
1992 12.6 (0.1) 4.59 (1.06) −0.819 (1.109) 20
1993 13.8 (0.2) 4.57 (1.06) −0.133 (1.109) 14
1994 13.8 (0.4) 5.77 (1.75) −0.360 (2.000) 15
1995 14.0 (0.4) 6.62 (2.13) −0.331 (2.396) 15
1996 15.2 (0.3) 6.20 (1.44) −0.246 (1.975) 13
1997 16.4 (0.5) 4.06 (1.40) 0.376 (1.565) 12
1998 15.4 (2.7) 4.26 (5.67) 0.607 (6.296) 11
1999 17.8 (0.6) 8.11 (3.19) −0.382 (3.478) 11
2000 16.9 (0.7) 7.56 (3.52) −0.190 (3.523) 11
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Table 2: GEV Parameters Estimates using Average Mean Imputation Method for Height Data

Year µ̂ σ̂ ξ̂ nl

1990 4.5 (0.1) 0.65 (0.11) −0.551 (0.146) 24
1991 10.1 (0.1) 2.00 (0.39) −0.704 (0.450) 24
1992 12.3 (0.2) 3.99 (0.78) −0.671 (0.903) 20
1993 12.2 (0.2) 3.83 (0.64) −0.323 (0.895) 14
1994 14.0 (0.1) 4.34 (0.71) −0.251 (1.008) 15
1995 14.3 (0.2) 5.01 (0.83) −0.240 (1.169) 15
1996 15.9 (0.1) 4.62 (0.68) −0.226 (1.040) 13
1997 18.4 (0.1) 3.89 (0.62) −0.076 (0.891) 12
1998 18.6 (0.1) 4.43(0.66) −0.156(0.973) 11
1999 18.3 (0.1) 5.21 (0.80) −0.232 (1.187) 11
2000 18.1 (0.1) 5.28 (0.82) −0.203 (1.208) 11

Table 3: GEV Parameters Estimates using Random Imputation Method for Height Data

Year µ̂ σ̂ ξ̂ nl

1990 4.4 (0.1) 0.67 (0.11) −0.550 (0.145) 24
1991 10.1 (0.1) 2.00 (0.37) −0.714 (0.430) 24
1992 12.2 (0.1) 4.60 (0.93) −0.767 (1.013) 20
1993 10.6 (0.3) 3.87 (0.76) −0.103 (0.985) 14
1994 14.1 (0.2) 5.35 (1.05) −0.373 (1.303) 15
1995 12.8 (0.2) 5.23 (0.96) −0.051 (1.276) 15
1996 15.6 (0.2) 7.00 (1.28) −0.419 (1.641) 13
1997 18.6 (0.5) 5.59 (1.65) −0.468 (1.769) 12
1998 19.9 (0.3) 7.38 (1.53) −0.468 (1.769) 11
1999 16.5 (0.3) 6.69 (1.57) −0.173 (1.879) 11
2000 17.1 (0.3) 6.76 (1.50) −0.183 (1.833) 11

in the years of 1990-2000. In 1994, the number of trees that are alive gained one tree from 14
to 15 trees. All the shape estimates are negative values with small the standard errors values.
For example, in all years, the value of average location estimates is only from 0.1 until 0.2.

Table 2 and Table 3 present quite similar estimates for all parameters, but in some years
the value is not very stable where it decreases slightly and then increased again in the following
year as in 1992 (12.2) and 1993 (10.6) where it decreased but increased again in the next
year, 1994 (14.1) for Random Imputation in Table 3. But in 1999 and 2000 they continue
to decrease. For the shape estimates in Table 3, the values are negative which are similar to
Table 2, 1997 (−0.017) and 1998 (−0.468).

For Maximum Imputation method, we can see the result in Table 4. Only in 1990, 1991
and 1996 that give the estimate value for all three parameters. Both parameters estimates,
location and scales parameter increases as years increases. The shape parameter estimates give
negative values even other years cannot give parameter estimates.
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Table 4: GEV Parameters Estimates using Maximum Imputation Method for Height Data (the
dashed is because the process of optimization is not happen. Convergency is not happening
when maximizing the GEV likelihood function)

Year µ σ ξ nl

1990 4.5 0.69 −0.610 23
1991 10.3 2.16 −0.827 23
1992 - - - 19
1993 - - - 13
1994 - - - 14
1995 - - - 14
1996 25.0 4.24 −1.248 12
1997 - - - 11
1998 - - - 10
1999 - - - 10
2000 - - - 10

Table 5: The Approximate Total Production of Tree, µ × nl × diameter,×100 cm3

Year
Diameter

First Stage
Second Stage Second Stage

(cm) Random Average Mean

1990 5 540 528 540
1991 14 3394 3394 3394
1992 23 5842 5612 5658
1993 26 5023 3858 4441
1994 29 6003 6134 6090
1995 30 6300 5760 6435
1996 32 6323 6490 6614
1997 33 6494 7366 7286
1998 34 5760 7443 6956
1999 35 6853 6353 7035
2000 36 6692 6772 7168

3.1 Production Prediction

Hedge et al. [8] give the rough estimate of the diameter growth for Acacia Mangium i.e. Max
5cm for the first 5 years, approximately 9.4 cm after 2 years and declining after 7 to 8 years.
In this study, the value of diameter growths that have been considered from 1990 to 2000 are 5
cm, 14 cm, 23 cm, 26 cm, 29 cm, 30 cm, 32 cm, 33 cm, 34 cm, 35 cm and 36 cm. The Observed
Maximum Value Imputation has been excluded because it not suitable for modelling maximum
height data. Table 5 calculates the rough volume for the Acacia Mangium trees.
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4 Discussion

This research proposed a new method for imputing missing extreme data. Three methods have
been proposed which is Observed Maximum Value Imputation, Average Mean Imputation and
Random Imputation. The results show there is an increasing pattern in location estimation
for each model by years as the number of dead trees increased. Among all methods tested, we
found that the method Average Mean Imputation method give the lowest root mean square error
(0.339) compared to the other methods. For location estimators, standard error for Average
Mean Imputation in Table 2 gives the lowest range (0.1-0.2) compared to the other models,
followed by Random Imputation in Table 3 (0.1-0.5) and first stage imputation in Table 1 (0.1-
2.7). As for the shape parameters, the lowest is Average Mean Imputation (0.1-1.2), Random
Imputation (0.1-1.8) and the highest in the first stage imputation (0.1-6.2).

Table 4 shows that Maximum Imputation method failed to give the values of parameter
estimation as it is not suitable for EVT because of Maximum Imputation by nature using the
maximum value, creating two peaks of local maximum in either histogram or density plot (not
shown). The feature to capture the extreme pheomena is not available in the data i.e. the data
is non degenerated and not full fill the max-stable properties of extreme distribution.

The 1998 replacement data from the first stage mean imputation shows high standard errors
for all parameters, se(µ) = 2.7, se(σ) = 5.67 and se(ξ) = 6.296. From the replacement for all
missing data from second stages, the Average Mean Imputation give se(µ) = 0.1, se(σ) = 0.66
and se(ξ) = 0.973 and Random Imputation, se(µ) = 0.3, se(σ) = 1.53 and se(ξ) = 1.769
i.e. lower standard errors than first stage imputation. By implementing the second stages of
imputations better models have been fitted but for the completed data size.

In term of the productivity of producing log, in general Acacia Mangium tree can be cut
after 1994 where more than 6000 cm3 being produced, i.e. after the tree age of more than nine
years old. The production is more than 7000 cm3 for 1997 and 1998 for Random Imputation
method and 1997, 1999 and 2000 for the Average Mean Imputation method where the later
method gave the best fitting model for the maximum height data.

5 Conclusion

The imputation methods can be one of the statistical solution in solving the missing extreme
Acacia Mangium height data. Ignoring the missing data will lead to a less data and difficulty
in analysing Acacia Mangium height data.The proposed of two stages Average Mean Method
gives the best, nearest and accurate model compared to the other two methods in the research.
In term of harvesting time of getting the log, the recommend time is after the age of tree is
more than 10 years old.
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