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Abstract Simulation is used to measure the robustness and the efficiency of the forecast-

ing techniques performance over complex systems. A method for simulating multivariate

time series was presented in this study using vector autoregressive base-process. By

applying the methodology to the multivariable meteorological time series, a simulation

study was carried out to check for the model performance. MAPE and MAE performance

measurements were used and the results show that the proposed method that consider

persistency in volatility gives better performance and the accuracy error is six time smaller

than the normal hybrid model.
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1 Introduction

Simulation process is a cycle of enhancement to well match the prerequisites of the issues
element which incorporates the theoretical model building, its execution to mechanized model,
and experimentations to generate large data sets [1]. Realistic and accurate data collection is
needed for any decision-making process studies. Setting up the simulation experiments enable
the researchers to produce large data sets that may represent many situations and people’s
profiles by building a process that is easy to understand. In addition, by varying the simulation
parameters, the researchers are able to test the efficiency and the robustness of developed
algorithm [2].

Chai [3] had developed an algorithm for multivariate autoregressive time series simulation
using autoregressive base-process method. Azimmohseni et al [4] had proposed a simulation
methodology to generate real multivariate stationary process. Chai [5] provided a general
method for simulating univariate and multivariate time series data of flood variables. Cario
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and Nelson [6] simulated random variables from fitted autoregressive-to-anything (ARTA) using
the base-process method. They have specified that one of the limitations of this approach is that
the estimated base-process may not be stationary, and for this reason, a long-simulated time
series may not be available. Fiorentino et al [7] utilized continuous hydrological simulation to
investigates complexities related to spatial and temporal dependencies relating to flood, rainfall
and runoff process.

A good quality of simulated data will be produced if these three conditions are met, that
are, appropriate observed data sets, successful model, and precise specifications of simulation
conditions. In other words, by distorting the model or conveying excessive information may
prompt poor simulation process [8]. Unfortunately, there are up to 100 types of simulations from
the simulation taxonomy which presume that it is practically difficult to extract the general
guidelines and proper methodology for simulation processes [9]. Reliable simulation methods
for multivariate stochastic process are very challenging and demanding.

In order to overcome the general guideline issues, there is a critical step required in each
of the simulation processes, by checking on the verification and validation of the model and
their behavior whether the simulation procedures operates the way the researcher intended and
whether it behaves the way the real system does [1]. In this paper, we implemented the base-
process simulation analysis method from vector autoregressive (VAR) model to the multivariate
meteorological data series.

In our context of research, the simulation procedure includes several original features. The
method of simulation is within the scope of problem solving and at the stage of validating
the developed hybrid model building, where the developed hybrid model building is required
to deal with the heteroscedastic data and support the multivariable and correlated data sets.
The purpose of this study is to evaluate and verify the performance of hybrid proposed model
using simulated meteorological data sets. To this end, the normal hybrid of VAR – dynamic
conditional correlation (DCC) and the proposed hybrid VAR – hidden Markov model (HMM)
– DCC model have been developed and the simulated data will be generated based on base-
process of VAR.

This paper is organized as the following: Section 2 provides the methodology used for model
building and simulation techniques, while Section 3 presents the results and discuss the findings.
Lastly, conclusion is discussed in Section 4.

2 Methodology

In this section, the multivariate meteorological data is applied to the model building procedures.
It includes pre-processing analysis (e.g., stationarity), developing a model and diagnostic check-
ing. Then, the simulation analysis was carried out to validate and verify the developed model
accuracy.

2.1 Model Building

Model building analysis covers multivariate time series: vector autoregressive (VAR) model,
for the base model; hidden Markov model (HMM), where it is used to capture the hidden state
of volatility in residuals; and dynamic conditional correlation (DCC) model, from a multi-
variate generalized autoregressive conditional heteroscedastic (GARCH) family, to capture the
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fluctuation in the volatility.

2.1.1 VAR Model Estimation

A VAR specification was used to model each variable as a function of all the lagged endoge-
nous variables in the system. Johansen (1988) considered that the process yt is defined by an
unrestricted VAR system of order (p):

yt = δ + Γ1yt−1 + Γ2yt−2 + ...+ Γpyt−p + ut , t = 1, 2, 3, ..., T

where yt is independent and integrated to order one, I(1) variables, the Γ’s are estimable pa-
rameters and ut˜iid (0,Σ) is a vector of impulses which represent the unanticipated movements
in yt. However, such a model is only appropriate if each of the series in yt is integrated to order
zero, I(0), meaning that each series is stationary [10].

The hypothesis:

H0 : The data sets follows VAR model

H1 : The data sets do not follows VAR model

2.1.2 HMM Model

The joint likelihood of observations O1:T and hidden states, S = {S1, S2, ..., S5}, given model
parameters θ and covariates z1:T = (z1, ..., zT) in a dependent mixture model is written as
follow:

P (O1:T , S1:5 |θ, z1:T ) = πi (z1)bS1
(O1 |z1 )

T−1
∏

t=1

aij (zt) bSt
(Ot+1 |zt+1 )

where the model is described by the following elements:

1. πi (z1) = P [S1 = i |z1 ] , 1 ≤ i ≤ 5, provides the initial probability of class or states i
at time t = 1 with covariates z1.

2. aij (zt) = P [St+1 = j |St = i, zt ] , 1 ≤ i, j ≤ 5, gives the transition probability from
state i to state j with covariates zt.

3. bSt
is observation densities vector bkj (zt) = P

[

Ok
t |St = j, zt

]

, 1 ≤ j ≤ 5 that delivers
the conditional densities of observations Ok

t associated with latent class or states j and
covariates zt, j = 1, ..., 5 and k = 1, ..., m where m is the number of time series variables.

4. S = {S1, S2, ..., S5} giving the hidden states.

The process of an HMM is described as following. For the first step, a hidden state distri-
bution is labelled as π at time t. Next, a certain hidden state transfers from the initial state
to the next state according to the state transition probability matrix aij which describes the
probabilities of particular transitions. All elements in A are positive, less than one and the
total sum of every row is one. Each state emits observations according to the emission prob-
abilities bSt

which describe probability density of observation in a certain hidden state. The
observations end at a time tT where T is the length of the observations [11].
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2.1.3 DCC Model

This model split up the volatility modelling into two stages. The first stage is to acquire the
volatility series {σii,t} for i = 1, ..., k. In the practical estimation of DCC models, we consider
a k-dimensional innovation at to the residuals series zt. Univariate GARCH models are used
to acquire estimates of the volatility series {σii,t}. Let F

(i)
t−1 denote the σ-field generated by

the former information of ait. That is, F
(i)
t−1 = σ {ai,t−1, ai,t−2, ...}. Univariate GARCH models

obtain V ar(ait|F (i)
t−1). Then again, the multivariate volatility σii,t is V ar(ait|Ft−1).

The last stage is to model the dynamic dependence of the correlation matrices ρt. Let
Σt = [σij,t] be the volatility matrix of at given Ft−1, which represents the information accessible
at the time t− 1. Then, the conditional correlation matrix is

ρt = D−1
t ΣtD

−1
t

where Dt = diag
{

σ
1/2
11,t, ..., σ

1/2
kk,t

}

is the diagonal matrix of the k volatilities at time t. Let

ηt = (η1t, ..., ηkt)
′ be the marginally standardized innovation vector, where ηit = ait

/√
σii,t.

Then, ρt is the volatility matrix of ηit. The DCC models is projected by Engle [12] and is
defined as

Qt = (1 − θ1 − θ2) Q̄+ θ1Qt−1 + θ2ηt−1η
′

t−1

ρt = JtQtJt

(1)

where for ηt, Q̄ is the unconditional covariance matrix, θi are non-negative real numbers fulfilling

0 < θ1 + θ2 < 1, and Jt = diag
{

q
−1/2
11,t , ..., q

−1/2
kk,t

}

, with qii,t denotes the (i, i)th component of

Qt. From the delineation, Qt is a positive-definite matrix and Jt is just a normalisation matrix.
The correlations dynamic dependence is administered by Equation (1) with parameters θ1 and
θ2 [12].

2.2 Simulation Method

The simulation in this paper generates a gaussian distribution of meteorological time series
data sets. Let yt = (y1t, y2t, ..., ykt)

′

be an observed multivariate time series for k-dimensional
vector time series and t = 1, 2, ..., n. Then the simulation method can be summarized as listed
below.

Step 1 Identify the coefficient of the vector autoregressive model estimation including covari-
ance matrices
The coefficient of estimated VAR model has been identified from the observed multi-
variate time series yt of size n using the formulation below [13]

yt = δ + ψDt + φ1yt−1 + ...+ φpyt−p + ut , t = 0,±1,±2, ...

Step 2 Define base process
The base process of time series is defined by a causal process [3]

zt=φ1zt−1+φ2zt−2+...+φpzt−p+ut+θ1ut−1+θ2ut−2+...+θqut−q

where zt = (z1t, z2t, ..., zkt)
′

, φi and θj are fixed k×k coefficient matrices for i = 1, ..., p
and j = 1, ..., q. ut = (u1t, u2t, ..., ukt)

′ is k−dimensional normally distributed random
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variables with E (ut) = 0k and covariance matrices Σu as such

E (utu
′

t−h) =

{

Σu

0k×k

if h = 0
otherwise

Step 3 Simulate a long-time series data generating process from the base process and analyze
it using the proposed developed model

In this study, there is only a few information, taken from the parameter estimation of the
observed time series data. Hence, it is difficult to produce the generated time series data as
similar to the observed data [3]. Mean absolute percentage error (MAPE) and mean absolute
error (MAE) was used as the performance measure to evaluate the performance of the proposed
model.

3 Results and Discussion

In this study, the observed data of rainfall, temperature, humidity and wind speed monthly
data series were collected from Alor Star meteorological stations for 25 years from 1985 to 2009.
The data were found to be non-stationary and having a seasonal pattern. Seasonal differencing
was used to remove the seasonality in the data series. Akaike information criterion (AIC) has
been used to identify the possible number of lag length and it proposed lag two (p =2) as the
optimum lag length to fit the VAR model, as shown in Equation (2).
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(2)

Diagnostic checking for the VAR(2) residual reveals that it contains heteroscedastic effect in
the residual, or in another word, the sum of square of residual is not constant. DCC model was
adopted to VAR(2) model, to capture the heteroscedasticity in the residual. Table 1 presented
the model parameter estimation of VAR(2)-DCC model. As can be seen, the summation of α
and β is close to one (0.9791), indicate that there exists high persistency in the volatility. Three
hidden states of the volatility: high, medium and low volatility were classified from VAR(2)
residual using probabilistic HMM model to overcome the problem of high persistence in the
volatility. Next, each volatility state from VAR(2)-HMM was modelled again using DCC model
to capture the heteroscedastic effect in the residual. Table 1 displayed the model parameter
estimation of both models, VAR(2)-HMM-DCC and VAR(2)-DCC model with the standard
error (in parentheses). The summation of two parameters in all levels of VAR(2)-HMM-DCC
is now not as high as in VAR(2)-DCC model (0.8197, 0.8513, and 0.6523).
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Table 1: Model Parameter Estimation

Parameter
VAR(2)-DCC

VAR(2)-HMM-DCC
(standard error)

(standard error) High
volatility

Medium
volatility

Low
volatility

α 0.0451

(0.0204)
0.0925

(0.0623)
0.0235

(0.0135)
0.0492

(0.0248)

β 0.9340

(0.8803)
0.7272

(0.3618)
0.8278

(0.4216)
0.6031

(0.3884)

α + β 0.9791 0.8197 0.8513 0.6523

AIC 20.329 18.263 18.042 17.4432

Diagnostic checking has been tested to the developed model, as presented in Table 2. As
can be seen, there exists no autocorrelation in the residual data. However, the result from au-
toregressive conditional heteroscedastic-Lagrange multiplier (ARCH-LM) test for heteroscedas-
ticity shows that for VAR(2) model, the p-value is less than 0.05, indicating that the existence
of heteroscedasticity occurs in VAR(2) residual. This issue has been discussed in details in
previous paragraph, by adopting DCC model to VAR(2) and VAR(2)-HMM. Both developed
hybrid models, VAR(2)-DCC and VAR(2)-HMM-DCC model are free from autocorrelation and
heteroscedastic effect.

Table 2: Residual Analysis of All Models

Test statistics
(p-value)

Adequacy checking Test VAR
VAR-
DCC

VAR-
HMM-
DCC
(high)

VAR-
HMM-
DCC
(med)

VAR-
HMM-
DCC
(low)

Autocorrelation Breusch-Godfrey 0.1180
(0.9432)

0.1464
(0.9315)

1.3844
(0.5575)

3.0845
(0.2999)

2.2057
(0.3335)

Heteroscedasticity ARCH LM test 19.0280
(0.0093)

0.9715
(0.8065)

1.5062
(0.5811)

2.2078
(0.6374)

7.4159
(0.1367)

A simulation study is then used to evaluate the efficiency of the developed two-time se-
ries models presented in this paper, that are, VAR(2)-DCC and VAR(2)-HMM-DCC model.
The motivation for this is to establish whether the model that takes into consideration the
volatility persistence, VAR(2)-HMM-DCC model performs better than the one ignoring the
volatility persistence, VAR(2)-DCC model. In this simulation study, a multivariate time series
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of length 272 from the estimated VAR(2) base process is simulate for 30 replicates [14], [15]
from multivariate meteorological time series that consists of rainfall, temperature, humidity and
wind speed variables. The equation below presented the coefficients and covariance matrices of
VAR(2) parameter estimation that will be used for data generating process.
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where et is a white noise vector with E (et) = 04×4 and covariance matrix Σe such that
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The descriptive statistics of the generated data sets of each variable are given in Table 3, 4, 5,
and 6, respectively. It can be seen from the mean, minimum, and maximum values of all tables
that the generated data does not follow the similar range of the observed data. It has been
stated in Section 2.2 that it is not easy to generate as similar to the observed data since only
a few information used from the estimated parameter of the base-model [3]. The skewness and
kurtosis show all variables are having a normal distribution. All 30 replicates simulation data
then went through the modelling process, using the same algorithm and model as the observed
data. A comparison was carried out between simulated results of the two models. This is
aimed at validating the claim that VAR-HMM-DCC model performs better than the VAR-
DCC model. In general, the model that considers volatility persistence in the model improves
the forecast accuracy of the normal hybrid model, VAR-DCC model in meteorological time
series forecasting. There is no consensus on the appropriate performance measure to access
forecasting techniques, hence, MAPE and MAE are used as a performance measure in this
study. Table 7 and 8 displayed the accuracy results of simulation modelling using MAPE and
MAE obtained from 30 replicates simulated data sets.

It can be observed from the tables that VAR(2)-HMM-DCC model gives the smaller error
(in bold) compared to VAR(2)-DCC model, six times smaller in both MAPE and MAE. These
results signify that VAR(2)-HMM-DCC model performs better than the normal hybrid model.
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Table 3: Rainfall Simulation

Simulation Mean Median Min. Max. St. Dev. Skewness Kurtosis

1 −64.5 −947.9 −37204.1 36352.7 11968.2 −0.0294 2.9893
2 927.4 1053.3 1734.8 39528.5 11933.6 0.0465 2.9414
3 −47.6 320.4 −35443.0 35470.1 11474.4 −0.2980 3.3156
4 −361.9 −142.1 −33015.1 32343.6 12587.7 0.0842 2.7403
5 −801.9 −1598.8 −31504.7 32971.4 12063.6 0.0139 2.6132
6 1053 1299 −31019 31429 12063.3 −0.0834 2.4890
7 278.8 54.29 −35813.9 34933.7 12153.6 −0.0637 2.9964
8 −1097.2 −707.1 −36679.5 34400.3 12117.4 −0.0137 2.9179
9 −1361 −1488 −32945 31092 11748.4 −0.0229 2.7259

10 −907 −1433 −39998 37697 11955.7 −0.0661 3.4793
11 423.3 1822.3 −32388.3 32747.5 13193.9 −0.1056 2.7805
12 626.7 1217.6 −37356.8 43061.8 11858.5 −0.0911 3.2913
13 −57.6 91.63 −32437.7 41119.5 12408.6 0.0764 2.9946
14 632.1 1039.5 −38506.6 38441.3 12121.0 −0.0234 3.1757
15 −791.5 −870.7 −31538.8 34526.0 11447.7 0.0713 2.7300
16 137.6 −723.1 −30148.2 38472.4 12012.9 0.1572 3.1694
17 −406.9 −149.0 −35165.6 34124.0 11746.7 −0.0023 2.9694
18 −682.3 −692.8 −32181.3 39514.7 11676.8 0.1479 3.2227
19 106.5 −402.2 −30620.5 31227.5 11858.8 0.0247 2.9012
20 −515.3 −224.5 −38331.8 36491.7 13066.3 −0.0557 2.8453
21 401.7 −1071.0 −40710.3 33680.5 12413.4 −0.0964 3.2450
22 −197.5 −1296.5 −39143.9 34694.2 12278.8 0.1222 3.0513
23 −61.7 99.52 −36581.1 34473.6 11552.9 −0.0959 3.4041
24 −111.4 −715.0 −31489.1 36348.9 12005.3 0.2827 3.2514
25 −842.5 −2179.2 −37785.5 31068.8 12470.7 0.0509 2.7620
26 −437.4 61.14 −38664.4 33610.1 11827.9 −0.1188 3.0584
27 −286 −1537 −40417 34186 12482.4 0.0115 3.0290
28 −494.1 −610.0 −38055.2 28500.5 11972.7 −0.0860 2.7350
29 −282.7 410.9 −35003.3 26474.0 11982.7 −0.1193 2.6072
30 −565 −1804 −28953 31627 11947.4 0.1497 2.4922

Range
[−1361,
1053]

[−2179.2,
1822.3]

[−40710.3,
31734.8]

[26474,
43061.8]

[11447.7,
13193.9]

[−0.298,
0.2827]

[2.489,
3.4793]
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Table 4: Temperature Simulation

Simulation Mean Median Min. Max. St.Dev. Skewness Kurtosis

1 0.438 1.559 −79.340 79.639 25.0530 −0.0018 3.1067
2 −2.269 −2.348 −75.094 62.820 24.9335 −0.0396 2.7942
3 0.354 −0.710 −81.041 69.307 24.2682 0.2876 3.4453
4 0.999 1.019 −71.978 74.352 26.6759 −0.0356 2.8831
5 2.235 2.098 −66.369 64.780 24.9887 0.0158 2.6402
6 −2.622 −2.906 −62.703 70.677 25.6246 0.1128 2.4161
7 −0.664 −0.905 −74.526 78.345 25.2560 0.0879 3.2685
8 2.878 1.741 −73.434 79.085 25.0831 0.0549 3.0156
9 3.115 2.339 −64.875 66.188 24.642 0.0135 2.7022

10 2.401 4.299 −79.374 86.426 24.8799 0.0640 3.5933
11 −0.939 −3.181 −67.374 69.159 27.354 0.1210 2.7908
12 −1.407 −2.330 −84.128 78.645 24.9015 0.1246 3.2459
13 0.240 −0.898 −82.875 63.967 25.8797 −0.0156 2.9161
14 −1.443 −1.106 −80.264 76.581 25.4055 −0.0119 3.1489
15 1.636 2.295 −72.465 65.705 23.7846 −0.0634 2.7157
16 −0.338 1.174 −88.113 69.775 25.3336 −0.1355 3.2468
17 1.089 1.700 −68.212 72.998 24.7755 −0.0306 2.8688
18 1.935 2.928 −82.382 65.993 24.8520 −0.1630 3.1110
19 −0.165 1.154 −65.110 62.433 24.9571 −0.0747 2.8039
20 1.534 1.836 −78.847 83.820 27.6707 0.0755 2.9913
21 0.856 0.799 −70.264 84.414 26.2021 0.0979 3.2400
22 0.694 3.243 −72.417 76.581 25.8798 −0.1206 2.8835
23 0.201 −0.724 −69.514 80.429 24.4212 0.1191 3.4845
24 0.087 1.347 −78.907 64.218 25.4774 −0.2787 3.1911
25 1.997 3.470 −69.386 77.002 25.7258 −0.0616 2.9010
26 1.154 0.232 −72.423 72.06 24.7794 0.1070 2.9749
27 0.806 3.108 −68.433 85.956 26.2086 0.0040 3.0333
28 1.328 1.708 −60.587 87.233 25.3637 0.1261 2.8853
29 0.802 −0.046 −56.977 74.559 25.2371 0.1277 2.6413
30 1.179 3.197 −62.855 58.711 24.7826 −0.1249 2.5066

Range
[−2.622,
3.115]

[−3.181,
4.299]

[−88.113,
−56.977]

[58.711,
87.233]

[23.7846,
27.6707]

[−0.2787,
0.2876]

[2.4161,
3.5933]
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Table 5: Humidity Simulation

Simulation Mean Median Min. Max. St. Dev. Skewness Kurtosis

1 −3.09 −11.80 −567.34 515.01 183.23 −0.0471 2.9879
2 21.01 23.22 −488.52 513.69 175.71 −0.0425 2.7952
3 −1.80 3.92 −505.47 505.70 170.54 −0.2440 3.2192
4 −8.61 −4.92 −618.24 514.65 201.19 −0.0229 2.9580
5 −19.79 −24.77 −549.80 542.31 181.24 −0.0596 2.7973
6 24.37 23.25 −484.05 485.24 187.11 −0.0565 2.4831
7 6.50 4.48 −583.07 545.03 180.69 −0.1123 3.1875
8 −26.47 −12.23 −553.19 511.36 178.88 −0.0732 2.9137
9 −30.25 −34.53 −566.15 473.07 179.68 −0.0626 2.7625
10 −21.53 −39.63 −627.07 542.68 183.83 −0.0070 3.4130
11 9.23 24.30 −525.10 525.48 202.42 −0.1738 2.7545
12 13.56 21.32 −590.13 565.66 180.33 −0.1744 3.1954
13 −2.36 −5.94 −484.41 522.49 186.05 0.0445 2.9063
14 13.66 14.44 −653.65 570.56 186.10 −0.0973 3.3853
15 −16.39 −11.45 −482.76 483.59 175.19 −0.0324 2.7357
16 3.37 −1.99 −441.51 602.33 183.48 0.1190 3.0379
17 −10.08 −17.20 −543.10 457.43 180.86 0.0177 2.7916
18 −16.86 −9.05 −459.75 563.13 174.22 0.0866 3.1979
19 1.60 0.72 −520.54 476.78 184.51 −0.0256 2.9726
20 −13.64 −12.59 −597.42 518.78 201.57 −0.0976 2.8833
21 −8.77 −10.26 −688.18 566.20 193.75 −0.1268 3.2850
22 −5.67 −25.78 −639.92 495.50 186.95 0.0498 3.1860
23 −1.55 −9.75 −569.59 503.79 172.65 −0.0380 3.4548
24 −1.57 2.24 −495.04 546.33 183.20 0.1237 3.2824
25 −18.72 −36.39 −528.35 548.03 187.58 0.2626 2.8822
26 −10.25 −2.97 −543.69 510.92 183.15 −0.1631 3.0123
27 −6.72 −16.78 −645.24 479.31 190.80 −0.1588 3.0910
28 −12.24 −20.68 −554.22 450.20 176.67 0.0034 2.8334
29 −7.42 −10.74 −449.89 478.70 178.77 0.0867 2.6818
30 −11.97 −22.76 −433.53 456.72 180.70 0.0590 2.4781

Range
[−30.25,

24.37]
[−39.63,

24.3]
[−688.18,
−433.53]

[450.2,
602.33]

[170.54,
202.42]

[−0.244,
0.2626]

[2.4781,
3.4548]
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Table 6: Wind Speed Simulation

Simulation Mean Median Min. Max. St.Dev Skewness Kurtosis

1 0.291 −0.307 −39.717 46.685 16.755 0.1963 2.6279
2 −2.464 −3.655 −39.021 35.548 14.721 0.2328 2.9400
3 −0.035 0.352 −37.134 43.501 14.499 0.0359 2.7964
4 0.883 −0.267 −49.765 66.776 19.601 0.1693 3.2914
5 2.263 0.153 −45.478 56.476 16.213 0.3050 3.2908
6 −3.026 −4.006 −44.235 33.464 17.113 0.0213 2.4350
7 −0.803 −0.589 −44.178 48.431 15.781 0.1321 2.9685
8 3.157 2.232 −34.293 45.417 15.391 0.2064 2.7005
9 3.670 3.733 −37.258 52.724 16.785 0.3052 3.0511

10 2.518 3.583 −44.288 50.383 17.480 −0.1899 2.9130
11 −1.261 −1.523 −45.519 49.250 18.666 0.3760 2.9206
12 −1.618 −2.923 −40.967 55.021 16.140 0.4138 3.4001
13 0.349 0.954 −51.330 44.388 16.447 −0.2906 3.0127
14 −1.615 −3.937 −45.735 54.388 17.124 0.3728 3.0936
15 2.056 0.493 −32.027 45.614 16.220 0.3002 2.7530
16 −0.500 −0.404 −46.180 43.405 16.606 −0.0185 2.6151
17 1.217 2.315 −45.138 45.355 16.403 −0.0386 3.0147
18 1.910 2.374 −44.945 48.205 15.247 −0.0631 3.3009
19 −0.025 −1.276 −49.128 62.232 17.438 0.2346 3.6162
20 1.721 2.191 −44.424 46.895 18.667 0.0934 2.5374
21 1.121 −0.624 −52.315 57.897 18.524 0.1597 2.9156
22 0.635 0.691 −48.848 61.454 16.926 0.0189 3.8629
23 0.167 0.412 −36.874 45.835 14.670 0.1089 3.4331
24 0.155 −0.043 −47.052 51.347 16.488 0.2611 3.3918
25 2.070 3.158 −55.746 41.896 17.050 −0.5960 3.5626
26 1.214 0.692 −43.990 48.985 17.386 0.2588 2.8853
27 0.699 −1.532 −43.156 52.859 17.182 0.4446 3.0851
28 1.384 1.836 −39.681 43.226 14.664 −0.2043 2.9038
29 0.915 2.480 −49.422 33.225 15.357 −0.4291 2.9239
30 1.478 1.570 −38.242 44.168 16.165 0.0773 2.5613

Range
[−3.026,

3.67]
[−4.006,

3.733]
[−55.746,
−32.027]

[33.225,
66.776]

[14.499,
19.601]

[−0.596,
0.4446]

[2.435,
3.8629]
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Table 7: MAPE Accuracy Checking

Model Rainfall Temperature Humidity Wind Speed Average

VAR-DCC 1.8384 1.4659 2.8190 1.4725 1.8990
VAR- High 0.0494 0.1010 0.1637 0.1291 0.1108

HMM- Medium 0.2637 0.5180 0.7543 1.0551 0.6478
DCC Low 0.1242 0.2182 0.1675 0.0690 0.1447

Table 8: MAE Accuracy Checking

Model Rainfall Temperature Humidity Wind Speed Average

VAR-DCC 0.7821 0.7483 0.7304 0.1577 0.6046
VAR- High 0.1830 0.1861 0.1890 0.0454 0.1509
HMM- Medium 0.5087 0.4933 0.4797 0.1134 0.3988
DCC Low 0.0437 0.0429 0.0486 0.0098 0.0363

4 Conclusion

This section is alienated into two major points; simulation of developed model building and
the verification of the simulated multivariate data sets. This simulation study is based on
the developed model building whereby VAR(2)-HMM-DCC model has undergone the step-by-
step time series model procedures including data pre-processing analysis, thorough diagnostic
checking, one year forecasting analysis and validating accuracy checks. This study was done
to verify and prove that the developed hybrid multivariate meteorological time series model to
be better than the normal hybrid multivariate time series model. Accuracy tests have revealed
that the developed model was better that the normal model using the simulated time series
data sets in meteorological application and probably can be used in many other areas. However,
some proper simulation measures may need to be developed in future so that the simulated
time series data can be as close as the observed data.
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