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Abstract Symmetric methods such as the implicit midpoint rule (IMR), implicit trape-
zoidal rule (ITR) and 2-stage Gauss method are beneficial in solving Hamiltonian problems

since they are also symplectic. Symplectic methods have advantages over non-symplectic
methods in the long term integration of Hamiltonian problems. The study is to show

the efficiency of IMR, ITR and the 2-stage Gauss method in solving simple harmonic
oscillators (SHO). This study is done theoretically and numerically on the simple har-
monic oscillator problem. The theoretical analysis and numerical results on SHO problem

showed that the magnitude of the global error for a symmetric or symplectic method
with stepsize h is linearly dependent on time t. This gives the linear error growth when

a symmetric or symplectic method is applied to the simple harmonic oscillator problem.
Passive and active extrapolations have been implemented to improve the accuracy of the

numerical solutions. Passive extrapolation is observed to show quadratic error growth
after a very short period of time. On the other hand, active extrapolation is observed to

show linear error growth for a much longer period of time.

Keywords Symmetric; symplectic; linear error growth; extrapolation; simple harmonic

oscillator.

Mathematics Subject Classification 65L06

1 Introduction

Hamiltonian problems are problems that maintain the structure or behaviour of the numerical
solution over long time interval. The Hamiltonian systems are defined as follows:

Let H : R×R
n×R

n → R be a real-valued function. Consider (t, p, q) ∈ R×R
n×R

n, where
p = (p1, · · · , pn) and q = (q1, · · · , qn). Then a n-dimensional system is given by

dqi

dt
=

∂H

∂pi

,

dpi

dt
= −

∂H

∂qi

, i = 1, . . . , n.
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Both p and q are vector functions of d (number of degrees of freedom of mechanical system). The
qi are called generalised coordinates while pi are called the conjugated generalised momenta.
H is called the Hamiltonian of the system and for mechanical systems it represents the total
mechanical energy [8].

The simplest Hamiltonian system is the linear harmonic oscillator that can be written as
the Hamiltonian equation of the motion.

q′(t) = p(t),

p′(t) = −q(t),
(1)

where y0 = [q0, p0] = [1, 0]T . The exact solution is y(tn) = [cos(tn),− sin(tn)]. The exact
solution’s phase diagram is a unit circle. For the numerical solution to have the same magnitude
as the exact solution the magnitude of the stability function on the imaginary axis must satisfy
the following condition

|R(ih)| = 1. (2)

For Runge-Kutta methods to satisfy the condition (2), that methods has to be symmetric and
symplectic which are defined in the following section.

2 Symmetric and Symplectic Runge-Kutta Methods

2.1 Symmetric

Let R denotes the equivalence class of Runge-Kutta methods written as R = (A, b, c), where
A is the Runge–Kutta matrix, b the vector of weights, c the vector of abscissas and e the vector
of units. At the nth step xn−1 → xn = xn−1 + h with stepsize h, the method is defined by

Y [n] = e ⊗ yn−1 + h(A ⊗ IN )F
(

xn−1 + ch, Y [n]
)

,

yn = yn−1 + h(bT ⊗ IN)F
(

xn−1 + ch, Y [n]
)

, (3)

for an initial value problem y′(x) = f(x, y), y(x0) = y0. yn is the update while Y [n] is the vector
of internal stages with

Y [n] =







Y
[n]
1
...

Y
[n]
s






, F

(

xn−1 + ch, Y [n]
)

=







f
(

xn−1 + c1h, Y
[n]
1

)

...

f(xn−1 + csh, Y
[n]
s )






.

The method is called symmetric or self-adjoint if

−R
−1 = R, (4)

where −R = (−A,−b,−c) is the method R applied with stepsize −h, and R−1 = (A −
ebT ,−b, c − e) is the inverse of R. It follows that the adjoint of R is given by −R−1 =
(ebT −A, b, e− c) ≡ (PAP, Pb, Pc), and a symmetric method is therefore characterized by the
symmetry conditions,

Pb = b, PAP = ebT − A, Pc = e − c, (5)
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where P is a permutation matrix which reverses the order of the stages with its elements
satisfying pij = δi,s+1−j. The third condition assumes that bTe = 1 and Ae = c hold. To
show that symmetric methods satisfy condition (2), it can be shown that the stability function
R(z) = 1 + zbT (I − zA)−1e satisfies

R(z)R(−z) = 1. (6)

When z = ih, R(−ih) = R(ih) so that |R(ih)| = 1.

There are also symmetrized methods studied by Chan and Gorgey [4] and [7] that are not
symmetric itself but do posses the asymptotic error expansions of even powers.

2.2 Symplectic

For an s-stage Runge-Kutta method (3) to be symplectic [12], the condition needed to be
satisfied is

BA + ATB = bbT , (7)

where B is a matrix with elements of b on the diagonal position, that is defined as follows:

B(i, j) =

{

bi, if i = j

0, otherwise

If the RK method is symplectic, then its stability function also satisfies condition (2).
For example the ITR, IMR and 2-stage Gauss method are symplectic and symmetric by (2)
and (7) and they are defined in Table 1.

Table 1: Some Examples of Symmetric and Symplectic Runge-Kutta Methods

1

2

1

2

1

0 0 0
1 1

2

1

2

1

2

1

2

1

2
−

√
3

6

1

4

1

4
−

√
3

6

1

2
+

√
3

6

1

4
+

√
3

6

1

4

1

2

1

2

(a) IMR (b) ITR (c) 2-stage Gauss

To show that the Gauss 2-stage method is symplectic, consider the following example.

Consider the 2-stage Gauss method defined in Table 1.

A =

(

1
4

1
4
−

√
3

6
1
4

+
√

3
6

1
4

)

, B =

(

1
2

0
0 1

2

)

.

To check whether the method is symplectic, solve for BA + ATB = bbT .
LHS gives,

BA + ATB =

(

1
8

1
8
−

√
3

12
1
8

+
√

3
12

1
8

)

+

(

1
8

1
8

+
√

3
12

1
8
−

√
3

12
1
8

)

=

(

1
4

1
4

1
4

1
4

)

,
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Similarly, solving for RHS gives

bbT =

(

1
2

1
2

)

(

1
2

1
2

)

=

(

1
4

1
4

1
4

1
4

)

,

Hence, Gauss 2-stage method satisfies the symplectic condition.

Symplectic numerical methods exist for reliable long time integration of Hamiltonian sys-
tems. Sanz- Serna [12] has systematically developed symplectic Runge- Kutta (RK) methods.
Their idea is based on features of algebraic stability introduced, in connection with stiff systems
studied by Burrage and Butcher [2]. Such methods have wide range of applications not only in
Hamiltonian problems but also in optimal control problems and in other applications requir-
ing the use of adjoint systems [11]. A group of Chinese mathematicians [16] have studied the
stochastic symplectic Runge-Kutta methods for strong approximations of Hamiltonian systems
with additive noise both theoretically and numerically. From their observation, when solving
stochastic harmonic oscillator with additive noise, the linear growth property can be preserved
exactly over long-time simulation.

3 Error Analysis on Simple Harmonic Oscillator (SHO)

The SHO problem can be expressed as the initial value problem (IVP) by using complex
numbers and denoting y = p + iq which is given as follows:

y′ = iy, y(0) = y0, (8)

where y0 is the starting value and the exact solution is given by

y(tn) = y0e
itn. (9)

Applying RK method (3) that has the stability function R(z) = I + zbT (I − zA)−1e using a
constant stepsize h to (8) gives the numerical solution at time tn = nh,

yh(tn) = R(ih)yh(tn−1) = R(ih)ny0,

with yh(0) = y0.
By the principle of logarithm since R(ih) = elogR(ih) = elog |R(ih)|+iarg R(ih). Defining

φ(h) =
1

h
(arg R(ih) − i log |R(ih)|) , (10)

gives

R(ih) = eihφ(h),

so that

yh(tn) = eitnφ(h)y0. (11)
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The initial value is given by y0 = e−itny(tn). Hence the global error at time tn is given by

yh(tn) − y(tn) = (eiθ(h) − 1)y(tn), (12)

where θ(h) = tn(φ(h) − 1).
Basically the performance of the numerical solutions depends on how well the φ(h) function

behaves. If φ(h) is real then only the phase is affected. If φ(h) is purely imaginary then
the amplitude is affected. In general both the phase and amplitude of the exact solution are
modified by the numerical solution.

Lemma 1 If the method is symmetric and symplectic, then φ(h) is a real and even function
such that for φ(h) to be an even function, |R(ih)| = 1 ( [3]).

To define the φ(h) function given in (10) for Runge-Kutta methods, consider modifying the
stability function R(z) for R(ih).

R(z) = 1 + zbT (I − zA)−1e,

R(ih) = 1 + (ih)bT (I − ihA)−1e,

= 1 + (ih)bT (I − ihA)−1(I + ihA)−1(I + ihA)−1e,

= 1 − h2bT (I + h2A2)−1Ae + ihbT (I + h2A2)−1e.

Taking the complex arguments yields

arg(R(ih)) = tan−1

(

hbT (I + h2A2)−1e

1 − h2bT (I + h2A2)−1Ae

)

.

From (10), and by Lemma 1

φ(h) =
1

h
tan−1

(

hbT (I + h2A2)−1e

1 − h2bT (I + h2A2)−1Ae

)

. (13)

Example 1 For IMR with A = 1/2, b = 1 and e = 1,

φ(h) =
1

h
tan−1







h
(

I + h2

4

)−1

1 − h2
(

I + h2

4

)−1
1
2






,

=
1

h
tan−1

(

h

1 − h2

4

)

= 1 −
1

12
h2 +

1

80
h4 −

1

448
h6 + O(h8).

A similar φ(h) function is obtained for symmetrized IMR that is given in [4]. Although the IMR
is symmetric and symplectic, but the symmetrized IMR is neither symmetric nor symplectic.
However it is interesting to know that they have similar φ(h) function.

Example 2 For ITR, the φ(h) function is given as

φ(h) =
1

h
tan−1

(

h

1 − h2

2

)

= 1 +
1

6
h2 −

1

20
h4 −

1

56
h6 + O(h8).
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Example 3 For 2-stage Gauss method as given in Table 1, using Maple 2016, the equation is
expanded in series and the φ(h) function is given as

φ(h) =
1

h
tan−1

(

12(h2 − 12)h

h4 − 60h2 + 144

)

= 1 −
1

720
h4 +

1

12096
h6 + O(h8).

In order to understand the behaviour of symplectic and non-symplectic Runge-Kutta meth-
ods, a simple experiment has been carried out and the numerical results are given in section
Numerical Results.

There are also combination of two methods that can be shown to be symmetric and sym-
plectic. The combinations of these two methods is known as partitioned Runge-Kutta methods
(PKR), as given in [1] and [14]. PKR methods is advantageous in solving Hamiltonian system
that is separable such as given in (3). A PKR method consists of two RK methods where one
method solve for p and the other method solve for q. One example of PKR method is the
Stömer-Verlet (SV) method which consists of 2-stage Lobatto IIIA and Lobatto IIIB methods.

The construction of symplectic (partitioned) Runge-Kutta methods with continuous stage
are studied by Tang, Lang and Luo [15], recently. By relying on the extension of the orthogonal
polynomials and simplifying assumptions these partitioned RK methods are constructed. In
addition to that, the construction of trigonometrically fitted symplectic Runge-Kutta-Nystrm
(RKN) methods from symplectic trigonometrically fitted partitioned. Runge-Kutta (PRK)
methods up to five stages and fourth algebraic order are investigated by Monovasilis, Kalogi-
ratou and Simos [10] for the two-body problem and the perturbed two-body problem.

4 Linear Error Growth for Symmetric and Symplectic Methods

The numerical solution of the base method with stepsize h at time tn is given by

yh(tn) = eiθ(h)y(tn).

For a symmetric or symplectic method, φ(h) = φ(ih) = 1
h

arg R(ih). It is observed that (refering
to Example 1-Example 3), when φ is even and real function, it has the expansion in the following
form:

φ(ih) = 1 + cp(ih)p + cp+2(ih)p+2 + O((ih)p+4), (14)

where cp, cp+2, . . ., are constants independent of h.
Since θ(h) = tn(φ(h) − 1), substituting (14) gives

θ(h) = tn(φ(h) − 1),

= tn

(

cp(ih)p + cp+2(ih)p+2 + O((ih)p+4)
)

,

= ip
(

cpτ − cp+2τh2 + O(τh4)
)

, where tnh
p = τ. (15)
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The global error is given by

εh(tn) = yh(tn) − y(tn),

= (eiθ(h) − 1)y(tn),

= ei
θ(h)
2

(

ei
θ(h)

2 − e−i
θ(h)

2

)

y(tn),

= ei
θ(h)
2

(

2i sin

(

θ(h)

2

))

y(tn). (16)

The magnitude of the global error for a symmetric or symplectic method is given by

|εh(tn)| = 2

∣

∣

∣

∣

sin

(

θ(h)

2

)∣

∣

∣

∣

y(tn). (17)

Assuming |y(tn)| = |y0| = 1 and θ(h) is small, the Taylor series expansion of sin
(

θ(h)
2

)

gives

2

∣

∣

∣

∣

sin

(

θ(h)

2

)∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

θ(h)

2
−

1

6

(

θ(h)

2

)3

+ O(θ(h))5

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

θ(h) −
1

24
(θ(h))3 + O(θ(h))5

∣

∣

∣

∣

. (18)

Hence the global error is obtained by substituting (15) into (18).

|εh(tn)| =

∣

∣

∣

∣

θ(h) −
1

24
(θ(h))3 + O(θ(h))5

∣

∣

∣

∣

y(tn),

≤ |ipcp|τ − |ipcp+2|τh2 + O(τ 3 + τh4),

= |cp|τ + O(τ 2 + τh3). (19)

Note: The term O(τ 3) is obtained by expanding (θ(h))3 in series and considering only the first
term.

From (19), if τ and h are relatively small then the global error is dominated by |cp|τ . Since
τ = tnh

p, the magnitude of the global error for a symmetric or symplectic method with stepsize
h is linearly dependent on time t. This gives the linear error growth when a symmetric or
symplectic method is applied to the simple harmonic oscillator problem.

5 Numerical Results

Figure 1-3 give the numerical results of IMR, ITR and 2-stage Gauss methods with passive
and active extrapolation applied to simple harmonic oscillator at different time. At tn = 10,
it is shown that all these methods exhibits linear error growth as shown theoretically. The
numerical results were also given for passive and active extrapolation. The theoretical results
for symmetric or symplectic methods when applied with passive and active extrapolation is
given in another paper by the author [6]. The numerical results for active extrapolation is
observed to give the lowest error if compared with passive extrapolation. As the time increases
(tn = 1000), it is shown in Figure 2 that passive extrapolation gives quadratic error growth.
However, active extrapolation still gives the lowest error even with linear error growth. Figure 3
shows the numerical results at tn = 1000000. All the base methods with passive extrapolation
give periodic behaviour except for active extrapolation for IMR and ITR.
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Figure 1: The Linear Error Growth of IMR, ITR and 2-stage Gauss Methods with Passive and
Active Extrapolation in Solving Simple Harmonic Oscillator for h = 0.1 at tn = 10.
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Figure 2: The linear error growth of IMR, ITR and 2-stage Gauss methods with passive and
active extrapolation in solving Simple Harmonic Oscillator for h = 0.1 at tn = 1000.
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Figure 3: The linear error growth of IMR, ITR and 2-stage Gauss methods with passive and
active extrapolation in solving Simple Harmonic Oscillator for h = 0.1 at tn = 1000000.
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6 Conclusions

Symmetric methods such as the IMR, ITR and 2-stage Gauss are beneficial in solving Hamil-
tonian problems since they are also symplectic. Symplectic methods have advantages over
non-symplectic methods in the long term integration of Hamiltonian problems. For instant, in
the simple harmonic oscillator problem, symplectic methods such as the IMR, ITR and 2-stage
Gauss show linear error growth. Passive and active extrapolations have been implemented to
improve the accuracy of the numerical solutions. Passive extrapolation is observed to show
quadratic error growth after a very short period of time. On the other hand, active extrapola-
tion is observed to show linear error growth for a much longer period of time. In addition to
that, active extrapolation is also give stable results for a longer period of time and therefore is
more advantageous on solving simple harmonic oscillator especially for IMR and ITR. However,
for 2-stage Gauss method it is observed that active extrapolation gives oscillatory behaviour
over long time interval. We wish to extend this study with symmetrized methods [5] and hope
symmetrization of active and passive extrapolation gives satisfying results.
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