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Abstract Algebraic hyperstructures represent a natural extension of classical algebraic

structures and they have many applications in various sciences. The main purpose of this

paper is to provide a new application of n-ary weak hyperstructures in Chemistry. More

precisely, we present three different examples of ternary hyperstructures associated with

electrochemical cells. In which we prove that our defined hyperstructures are ternary

Hv-semigroups.
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1 Introduction

Hyperstructure theory was known for the first time in 1934 at the eighth Congress of Scandi-
navian Mathematicians, when Marty [1] gave the definition of hypergroup as a generalization
of the notion of the group. Where in a group, the operation’s result of two elements is again
an element while in a hypergroup, the hyperoperation’s result of two elements is a non-void
set. Moreover, he illustrated some applications and showed its utility in the study of groups,
algebraic functions and relational fractions. Recently, the hyperstructures are studied from
the theoretical point of view and for their applications to many subjects of pure and applied
mathematics: geometry, topology, cryptography and code theory, graphs and hypergraphs,
probability theory, binary relations, theory of fuzzy and rough sets, automata theory, economy,
etc. In [2], Corsini and Leoreanu presented some of hyperstructures’ applications to many of
the mentioned subjects.

The largest class of hyperstructures is the one that satisfies weak axioms, i.e., the non-empty
intersection replaces the equality. These are called Hv-structures and they were introduced in
1990 and different examples from Biology and Chemistry were studied to verify them. As
a biological example of weak binary hyperstructures, in [3], the authors analyzed the second

35:1 (2019) 13–24 | www.matematika.utm.my | eISSN 0127-9602 |



M. Al Tahan and B. Davvaz / MATEMATIKA 35:1 (2019) 13–24 14

generation phenotypes of n-hybrid cross with a mathematical structure. They used the concepts
of cyclic hypergroup and Hv-semigroup in the F2-phenotypes with mating as a hyperoperation.
Also, some chemical examples were studied in Chung, Davvaz et al., and Davvaz and Nezhad
[4-6], redox, chain and dismutation reactions and provided as different examples of weak binary
hyperstructures. As a generalization of binary weak hyperstructure, n-ary weak hyperstructures
were introduced. Several examples on the latter were studied by Al-Tahan et al. and Davvaz
et al.[7-8].

In our paper, we consider the binary chemical hyperstructure using electrochemical cells
defined and studied in details by the authors in Al-Tahan and Davvaz [9]. We define ternary
hyperstructures associated with electrochemical cells and investigate their properties. This pa-
per is organized as follows: after the Introduction Section, Section 2 presents some definitions
that are used throughout the paper. Section 3 with two already defined binary hyperstructures
by the authors related to both Galvanic cells and Electrolytic cells, defines ternary hyperstruc-
tures on them and proves that they are equivalent. Section 4 defines a ternary hyperstructure
related to both Galvanic and Electrolytic cells at the same time and investigates its properties.

2 n-ary Weak Hyperstructures

In this section, we present some definitions related to n-ary hyperstructures (see [10-15]) that
are used throughout the paper.

Definition 1 [10] Let H be a non-empty set. Then, a mapping ◦ : H ×H → P∗(H) is called
a binary hyperoperation on H, where P∗(H) is the family of all non-empty subsets of H. The
couple (H, ◦) is called a hypergroupoid.

In the above definition, if A and B are two non-empty subsets of H and x ∈ H, then we
define:

A ◦ B =
⋃

a∈A

b∈B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

Hv-structures were introduced by T. Vougiouklis as a generalization of the well-known alge-
braic hyperstructures. Some axioms of classical algebraic hyperstructures are replaced by their
corresponding weak axioms in Hv-structures. Most of Hv-structures are used in the represen-
tation theory.

Definition 2 [16] A hypergroupoid (H, ◦) is called an Hv-semigroup if (x◦(y◦z))∩((x◦y)◦z) 6=
∅ for all x, y, z ∈ H.

Theorem 1 [9] Let H = {a, b, c, d}, ⊕1 be the hyperoperation on H and consider Table 1
corresponding to (H,⊕1). Then (H,⊕1) is a commutative Hv-semigroup.

Theorem 2 [9] Let H = {a, b, c, d}, ⊕2 be the hyperoperation on H and consider Table 2
corresponding to (H,⊕2). Then (H,⊕1) is a commutative Hv-semigroup.

Theorem 3 [9] Let H = {a, b, c, d}, ⊕ be the hyperoperation on H and consider Table 3
corresponding to (H,⊕). Then (H,⊕) is a commutative Hv-semigroup.
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Table 1: (H,⊕1)

⊕1 a b c d

a a {a, b} {a, c} {a, d}
b {a, b} b {a, d} {b, d}
c {a, c} {a, d} c {c, d}
d {a, d} {b, d} {c, d} d

Table 2: (H,⊕2)

⊕2 a b c d

a a {a, b} {a, c} {b, c}
b {a, b} b {b, c} {b, d}
c {a, c} {b, c} c {c, d}
d {b, c} {b, d} {c, d} d

Table 3: (H,⊕)

⊕ a b c d

a a {a, b} {a, c} {b, c}
b {a, b} b {a, d} {b, d}
c {a, c} {a, d} c {c, d}
d {b, c} {b, d} {c, d} d

An element x ∈ H is called idempotent if x2 = x ◦ x = x and an element e ∈ H is called
an identity of (H, ◦) if x ∈ x ◦ e ∩ e ◦ x, for all x ∈ H. The latter is called strong identity if
e ◦ x = x ◦ e ⊆ {e, x} for all x ∈ H.

Definition 3 [10] A hypergroupoid (H, ◦) is called a:

1. semihypergroup if for every x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z;

2. quasi-hypergroup if for every x ∈ H, x ◦ H = H = H ◦ x (The latter condition is called
the reproduction axiom);

3. hypergroup if it is a semihypergroup and a quasi-hypergroup.

Definition 4 [10] Two hypergroupoids (H, ◦) and (K, ?) are said to be isomorphic hyper-
groupoids, written as H ∼= K, if there exists a bijective function f : H → K such that
f(x ◦ y) = f(x) ? f(y) for all x, y ∈ H.

Definition 5 n-ary hypergroupoid. Let H be a nonempty set. Then a map f : Hn → P∗(H)
is called an n-ary hyperoperation on H and the pair (H, f) is called an n-ary hypergroupoid.
Here, Hn = H × . . . × H

︸ ︷︷ ︸

n times

.
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If A1, . . . , An are nonempty subsets of H, then we define:

f(A1, . . . , An) =
⋃

ai∈Ai

f(a1, . . . , an).

f(x1, . . . , xi, yi+1, . . . , yj, zj+1, . . . , zn) can be written as f(xi
1, y

j
i+1, z

n
j+1) where xi

1, y
j
i+1, z

n
j+1 are

the sequences given by {x1, . . . , xi}, {yi+1, . . . , yj} and {zj+1, . . . , zn} respectively.

Definition 6 [14] An n-ary hypergroupoid (H, f) is called a
1. n-ary semihypergroup if (H, f) is associative, i.e., for every x1, . . ., x2n−1 ∈ H and i, j ∈

{1, . . . , n} we have

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ).

2. n-ary Hv-semigroup if (H, f) is weak associative, i.e., for every x1, . . ., x2n−1 ∈ H and
i, j ∈ {1, . . . , n} we have

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) ∩ f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ) 6= ∅.

For example, in the case of n = 3 (ternary), we have (H, f) a ternary semihypergroup if: For
every a1, a2, a3, a4, a5 ∈ H we have

f(f(a1, a2, a3), a4, a5) = f(a1, f(a2, a3, a4), a5) = f(a1, a2, f(a3, a4, a5)).

Definition 7 An n-ary hypergroupoid (H, f) is commutative if for every x1, . . ., xn ∈ H and
σ ∈ Sn (Sn is the symmetric group on n letters) we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Definition 8 [15] A subset K of an n-ary Hv-semigroup (H, f) is called an n-ary Hv-subsemigroup
if (K, f) is an n-ary Hv-semigroup.

Definition 9 Weak neutral element. Let (H, f) be an n-ary hypergroupoid. An element e ∈ H

is called a weak neutral element of H if for every x ∈ H and i ∈ {1, . . . , n} we have

x ∈ f(e, . . . , e
︸ ︷︷ ︸

i−1

, x, e, . . . , e
︸ ︷︷ ︸

n−i

).

For the case n = 3 the map f : H ×H × H → P∗(H) is called a ternary hyperoperation on
H and the pair (H, f) is called a ternary hypergroupoid. If A, B, C are nonempty subsets of H,
then we define:

f(A, B, C) =
⋃

a∈A

b∈B,c∈C

f(a, b, c).

A ternary hypergroupoid is called commutative if for every a1, a2, a3 ∈ H and σ ∈ S3 we have

f(a1, a2, a3) = f(aσ(1), aσ(2), aσ(3)).

And it is called a ternary quasi-hypergroup if for every x, y ∈ H we have

f(H, x, y) = f(x, H, y) = f(x, y, H) = H.

An element e ∈ H is called a neutral element of a ternary hypergroupoid (H, f) if for all a ∈ H,

f(e, e, a) = f(e, a, e) = f(a, e, e),

and is called weak neutral element if for all a ∈ H,

f(e, e, a) ∩ f(e, a, e) ∩ f(a, e, e) 6= ∅.
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3 Ternary Hyperstructures in Galvanic Cells
Galvanic cell consists of two half-cells, such that the electrode of one half-cell is composed of
metal A (with larger electronegativity) and the electrode of the other half-cell is composed of
metal B (with smaller electronegativity). The redox reactions for the two separate half-cells
are given as follows:

An+ + ne− −→ A,

B −→ Bm+ + me−.

The two metals A and B can react with each other according to the following balanced equation:

nB + mAn+ −→ mA + nBm+.

The authors in Al-Tahan and Davvaz [9] considered the set H = {A, B, An+, Bm+} and defined
a binary hyperoperation ⊕1 on H as follows:

x ⊕1 y is the result of a possible reaction between x and y in a Galvanic cell. If x

and y do not react in a Galvanic cell then we set x⊕1 y = {x, y}.

All possible spontaneous redox reactions of {A, B, An+, Bm+} in a Galvanic cell are sum-
marized in Table 4.

Table 4: Redox Reactions in Galvanic Cell

⊕1 A B An+ Bm+

A A {A, B} {A, An+} {A, Bm+}

B {A, B} B {Bm+, A} {B, Bm+}

An+ {A, An+} {Bm+, A} An+ {An+, Bm+}

Bm+ {A, Bm+} {Bm+, B} {An+, Bm+} Bm+

Electrolytic cells consist of two half-cells, such that the electrode of one half-cell is composed
of metal A (with larger electronegativity) and the electrode of the other half-cell is composed
of metal B (with smaller electronegativity). The redox reactions for the two separate half-cells
are given as follows:

A −→ An+ + ne−,

Bm+ + me− −→ B.

The two metals A and B can react with each other according to the following balanced equation:

mA + nBm+ −→ nB + mAn+.

For more details about electrocemical cells, see Zumdahl [17]. The authors in Al-Tahan and
Davvaz [9] considered the set H = {A, B, An+, Bm+} and defined another hyperoperation ⊕2

on H as follows:

x⊕2 y is the result of a possible reaction between x and y in an Electrolytic cell. If
x and y do not react in an Electrolytic cell then we set x⊕2 y = {x, y}.

All possible non-spontaneous redox reactions of {A, B, An+, Bm+} in an Electrolytic cell are
summarized in Table 5.
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Table 5: Redox reactions in Electrolytic cell

⊕2 A B An+ Bm+

A A {A, B} {A, An+} {An+, B}

B {A, B} B {An+, B} {B, Bm+}

An+ {A, An+} {An+, B} An+ {An+, Bm+}

Bm+ {An+, B} {Bm+, B} {An+, Bm+} Bm+

The authors proved Theorems 1 and 2 by changing the names from A, B, An+, Bm+ to
a, b, c, d respectively.

Remark 1 The authors proved in [9] that (H,⊕1) and (H,⊕2) are isomorphic Hv-semigroups.
First, we present a ternary hyperstructure associated with Galvanic cells. Consider H =

{a, b, c, d} and define the ternary hyperoperation f obtained from ⊕1 as f(x, y, z) = x⊕1(y⊕1z).
We may think of f(x, y, z) as the products resulting from a possible reaction between x and
one of the products resulting from a possible reaction between y and z in a Galvanic cell. Since
f(x, y, z) = f(x, z, y) as y ⊕1 z = z ⊕1 y then we may present (H, f) by the four symmetric
tables: Table 6, Table 7, Table 8 and Table 9.

Table 6: f(a,−,−)

f(a,−,−) a b c d

a a {a, b} {a, c} {a, d}

b {a, b} {a, d} {a, b, d}

c {a, c} {a, c, d}

d {a, d}

Table 7: f(b,−,−)

f(b,−,−) a b c d

a {a, b} {a, b} {a, b, d} {a, b, d}

b b {a, b, d} {b, d}

c {a, d} {a, b, d}

d {b, d}
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Table 8: f(c,−,−)

f(c,−,−) a b c d

a {a, c} {a, c, d} {a, c} {a, c, d}

b {a, d} {a, c, d} {a, c, d}

c c {c, d}

d {c, d}

Table 9: f(d,−,−)

f(d,−,−) a b c d

a {a, d} {a, b, d} {a, c, d} {a, d}

b {b, d} {a, d} {b, d}

c {c, d} {c, d}

d d

Theorem 4 (H, f) is a ternary Hv-semigroup.

Proof It is clear from Tables 6, 7, 8 and 9 that (H, f) is a ternary hypergroupoid. We
need to show that (H, f) is weak associative. Let x1, x2, x3, x4 and x5 ∈ H. It is clear from
Tables 6, 7, 8 and 9 that if x1 = a or d then x1 ∈ f(f(x1, x2, x3), x4, x5)∩f(x1, f(x2, x3, x4), x5)∩
f(x1, x2, f(x3, x4, x5)). Simple computations show that if x1 = b or c then f(f(x1, x2, x3), x4, x5)∩
f(x1, f(x2, x3, x4), x5)∩f(x1, x2, f(x3, x4, x5)) 6= ∅. Therefore, (H, f) is a ternary Hv-semigroup.

2

Proposition 1 (H, f) admits two neutral elements.

Proof Let x ∈ H. Having that

f(a, a, x) = f(a, x, a) = a ⊕1 (a ⊕1 x) = a ⊕1 {a, x} = {a, x},

f(x, a, a) = x ⊕1 (a ⊕1 a) = x⊕1 a = {a, x},

f(d, d, x) = f(d, x, d) = d ⊕1 (d ⊕1 x) = d ⊕1 {d, x} = {d, x},

f(x, d, d) = x ⊕1 (d ⊕1 d) = x ⊕1 d = {d, x}

implies that a, d are two neutral elements of (H, f). One can easily see that b, c are not neutral
elements of (H, f).

Proposition 2 (H, f) is weak commutative.
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Proof Let x, y, z ∈ H. Since f(x, y, z) = f(x, z, y), it suffices to show that f(x, y, z) ∩
f(y, x, z) ∩ f(z, x, y) 6= ∅. We have four cases for x: x = a, x = b, x = c and x = d.
It is clear from the tables of (H, f) (Tables 6, 7, 8 and 9) that if x = a or x = d then
x ∈ f(x, y, z)∩f(y, x, z)∩f(z, x, y) 6= ∅. Simple computations show that f(b, y, z)∩f(y, b, z) 6= ∅
and f(c, y, z) ∩ f(y, c, z) 6= ∅. 2

Remark 2 (H, f) is not commutative as f(a, b, c) = {a, d} 6= f(b, a, c) = {a, b, d}.

Remark 3 (H, f) is neither a ternary semihypergroup as f(f(a, a, a), b, c) = {a, d} 6= f(a, f(a, a, b), c) =
{a, c, d} nor a ternary quasi-hypergroup as f(H, b, b) = {a, b, d} 6= H.

Proposition 3 (H, f) has three proper ternary Hv-subsemigroups up to isomorphism.

Proof It is clear that ({a}, f), ({a, b}, f) and ({a, c, d}, f) are the only proper ternary Hv-
subsemigroups of (H, f) up to isomorphism. 2

Remark 4 The ternary Hv-subsemigroups presented in the proof of Proposition 3 are ternary
hypergroups.

Next, we present a ternary hyperstructure associated with Electrolytic cells.
Consider H = {a, b, c, d} and define the ternary hyperoperation f1 obtained from ⊕2 as
f1(x, y, z) = x ⊕2 (y ⊕2 z). We may think of f1(x, y, z) as the products resulting from a
possible reaction between x and one of the products resulting from a possible reaction between
y and z in an Electrolytic cell.

Theorem 5 (H, f1) is a ternary Hv-semigroup that is isomorphic to (H, f).

Proof The proof results from having (H,⊕1) ∼= (H,⊕2) and having (H, f) a ternary Hv-
semigroup. 2

4 Ternary Hyperstructures in Galvanic/Electrolytic Cells

In this section, we present a ternary hyperstructure related to Galvanic/Electrolytic cells and
investigate its properties. The authors in Al-Tahan and Davvaz [9] considered the set H =
{A, B, An+, Bm+} and defined a binary hyperoperation ⊕ on H as follows:

x ⊕ y is the result of a possible reaction between x and y in either a Galvanic cell
or in an Electrolytic cell. If x and y neither react in a Galvanic cell nor in an
Electrolytic cell then we set x ⊕ y = {x, y}.

All possible spontaneous/non-spontaneous redox reactions of {A, B, An+, Bm+} in a Gal-
vanic/Electrolytic cell are summarized in Table 10.

The authors proved Theorem 3 by changing the names from A, B, An+, Bm+ to a, b, c, d

respectively.
Consider H = {a, b, c, d} and define the ternary hyperoperation g obtained from ⊕ as

g(x, y, z) = x ⊕ (y ⊕ z). We may think of g(x, y, z) as the products resulting from a possible
reaction between x and one of the products resulting from a possible reaction between y and z

either in a Galvanic cell or in an Electrolytic cell.
Since g(x, y, z) = g(x, z, y) as y⊕z = z⊕y then we may present (H, g) by the four symmetric

tables: Table 11, Table 12, Table 13 and Table 14.
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Table 10: Redox Reactions in Galvanic/Electrolytic Cells

⊕ A B An+ Bm+

A A {A, B} {A, An+} {An+, B}

B {A, B} B {A, Bm+} {B, Bm+}

An+ {A, An+} {A, Bm+} An+ {An+, Bm+}

Bm+ {An+, B} {Bm+, B} {An+, Bm+} Bm+

Table 11: g(a,−,−)

g(a,−,−) a b c d

a a {a, b} {a, c} {a, b, c}

b {a, b} {a, b, c} {a, b, c}

c {a, c} {a, b, c}

d {b, c}

Theorem 6 (H, g) is a ternary Hv-semigroup.

Proof It is clear from the tables of (H, g) (Tables 11, 12, 13 and 14) that (H, g) is a ternary
hypergroupoid. Simple computations show that for all x1, x2, x3, x4, x5 ∈ H,

g(g(x1, x2, x3), x4, x5) ∩ g(x1, g(x2, x3, x4), x5)) ∩ g(x1, x2, g(x3, x4, x5) 6= ∅.

As a simple example of how to calculate weak associativity, we present the following case:

g(g(d, a, a), a, a) = g({b, c}, a, a) = {a, b, c},

g(d, g(a, a, a), a) = g(d, a, a) = {b, c}

and
g(d, a, g(a, a, a)) = g(d, a, a) = {b, c} 2

Proposition 4 (H, g) admits no weak neutral elements.

Proof We have that a, b, c, d are not weak neutral elements of (H, g) as d, c, b, a are not
elements in g(a, a, d), g(b, b, c), g(c, c, b), g(d, d, a) respectively. 2
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Table 12: g(b,−,−)

g(b,−,−) a b c d

a {a, b} {a, b} {a, b, d} {a, b, d}

b b {a, b, d} {b, d}

c {a, d} {a, b, d}

d {b, d}

Table 13: g(c,−,−)

g(c,−,−) a b c d

a {a, c} {a, c, d} {a, c} {a, c, d}

b {a, d} {a, c, d} {a, c, d}

c c {c, d}

d {c, d}

Table 14: g(d,−,−)

g(d,−,−) a b c d

a {b, c} {b, c, d} {b, c, d} {b, c, d}

b {b, d} {b, c, d} {b, d}

c {c, d} {c, d}

d d

Proposition 5 (H, g) is weak commutative.

Proof The proof is similar to that of Proposition 2. 2

As a simple example of how to calculate weak commutativity, we consider the following
case:

g(a, c, d) = {a, b, c}, g(c, a, d) = {a, c, d} and g(d, a, c) = {b, c, d}.

Remark 5 (H, g) is not commutative as g(a, b, c) = {a, b, c} 6= g(b, a, c) = {a, b, d}.

Remark 6 (H, g) is neither a ternary quasi-hypergroup as g(H, a, a) = {a, b, c} 6= H nor a
ternary semihypergroup as g(a, a, a), b, c) = {b, c} 6= g(a, g(a, a, b), c) = {a, b, c}.

Remark 7 Using Proposition 1 and Theorem 5, one can easily see that (H, g) is not isomorphic
to (H, f) nor to (H, f1).

Proposition 6 (H, g) has two proper ternary Hv-subsemigroups up to isomorphism.
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Proof It is clear that ({a}, g) and ({a, b}, g) are the only proper ternary Hv-subsemigroups
of (H, g) up to isomorphism. 2

Remark 8 The ternary Hv-subsemigroups presented in the proof of Proposition 6 are ternary
hypergroups.

5 Conclusion

Chemical reactions are examples of the phenomena when composition of two elements is a
set of elements. This paper provided a new ternary chemical hyperstructure associated with
electrochemical cells that is not equivalent to any of the studied chemical hyperstructures before.
We observed that electrochemical cells are experimental verifications of ternary hyperstructures.
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