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Abstract Subsea cable laying process is a difficult task for an engineer due to many

uncertain situations which occur during the operation. It is very often that the cable being
laid out is not perfectly fit on the route being planned, which results in the formation of

slack. In order to control wastages during installation, the slack needs to be minimized
and the movement of a ship/vessel needs to be synchronized with the cable being laid out.

The current problem was addressed using a mathematical model by considering a number
of defining parameters such as the external forces, the cable properties and geometry. Due

to the complexity, the model is developed for a steady-state problem assuming velocity
of the vessel is constant, seabed is flat and the effect of wind and wave is insignificant.

Non-dimensional system is used to scale the engineering parameters and grouped them
into only two main parameters which are the hydrodynamic drag of the fluid and the
bending stiffness of the cable. There are two solutions generated in this article; numerical

and asymptotic solutions. The result of these solutions suggests that the percentage of
slack can be reduced by the increase of the prescribed cable tension, and also the increase

in either the drag coefficient of the sea water or the bending stiffness of the cable, similarly
will result in lower slack percentage
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1 Introduction

Subsea cable laying is one of the important tasks for an engineer to install cables and pipelines
under the sea [1]. This operation is done slowly by using ships that carry the submarine cable
on board and based on the plans given by the cable operator.

34:2 (2018) 173–186 | www.matematika.utm.my | eISSN 0127-9602 |



Ahmad Razin Zainal Abidin et al. / MATEMATIKA 34:2 (2018) 173–186 174

Vessel of opportunity is used in the operation of submarine cable laying. The modular and
easy transportation by commercial logistics for the tools used in this operation facilitate the
working of vessel of opportunity. The mechanical cable engine is one of these modular tools.
This engine is used to maintain the correct amount of speed and to residual tension for subsea
laying cable

Depending on the sea conditions, the seabed in the area of cable laying, the equipment used
in the operation and the typeof plough, the slack can be occurred when deploying the cable. The
slack formation is one of the significant challenges that can be faced by the subsea cable laying
where it will increase the possibility of laying too long cable along the route. Consequently, the
detection of cable break location will be inaccurate and the cable break instances will increase
as well (cable is laid not exactly on the route planned). The problem of uncontrolled slack leads
also to the wastage of budget where the length of the cable laid is more than what is planned

To control the wastages, it is required to minimize the slacks and synchronize the movement
of vessel with the cable being laid out. To achieve this, a mathematical model is developed in
this article to determine the optimal speed of cable roller engine during the cable deployment
and to control the residual tension of the cable. The model is solved numerically by using
MATLAB software and analytically in a special case.

The model is developed for a steady-state case so as to get the final configuration of a cable
during the laying down of the cable on the sea bed. This configuration of the cable can be used
to guide the engineers to control the prescribed tension during the deployment of the cable
from the vessel

The speed of cable roller engine is calculated by considering the speed of vessel lay, the
vessel position and the depth of water. Since, for any sudden swell detected, a false slack might
occurred. Therefore the pitch and roll of the vessel position is included in the model formulation
to eliminate the false slack

2 The Mathematical Modelling

By wide increase of using the cables in deep-ocean around the world [2-6], determining the
configuration of cables become an important parameters in the submarine cable laying process.
In this article, a mathematical model is developed for the operation of subsea cable laying
from a vessel under a steady-state condition as shown in Figure 1. Howison [7] discussed this
problem by using the Euler–Bernoulli model for the displacement of a slender nearly straight
beam.

The model is determined by the cable shape from the point at the vessel where the cable
passes through a ‘tensioner’ to the touching point for the cables with the seabed. The initial
tension T0 of the cable is applied at the vessel. The arc-length (s) is assumed 0 and −L at the
vessel and seabed respectively (where L is the actual cable length).

The depth of the sea is denoted by h and θ(s) represents the angle between x-axis and the
cable curve so that

dX

ds
= cos θ,

dY

ds
= sin θ,

dθ

ds
= κ, (1)

where κ is the curvature. Assuming small elements of beam with length δs for each element
as illustrated in Figure 2. The forces acting on the ends of the element are simply the internal
elastic forces. The body force has components fx and fy per unit length in x and y direction
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Figure 1: Layout of the Cable

respectively. The elastic forces at the ends of our elements are written as Fx and Fy in x and
y direction respectively. Based on the equilibrium principal, the difference between the forces
must be zero, and therefore, the equilibrium equations are

dFx

ds
= fx,

dFy

ds
= fy

dM

ds
− Fx sin θ + Fy cos θ = 0,

(2)

where M is the internal bending moment which is generated to balance the moment of internal
forces.

Figure 2: Forces and Moments on an Element of a Beam [1]

The external forces on the cable are the drag force, fd and a buoyancy force, fb, which are
written as follows [7]:

fd = CdAρwU2sin(θ)

fb = gA∆ρ,
(3)
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where ρw is the sea water density, ∆ρ is the difference of the water density and cable, U is the
object speed relative to the fluid, A is the cross sectional cable area, Cd is the drag coefficient,
and g is the gravitational acceleration. In this model, the two forces fd and fb is considered to
be equal fx and fy respectively.

The constitutive equation for a beam that is started moving from straight and bent into a
curve is given as

dM

ds
= EI

d2θ

ds2
, (4)

with EI is the cable bending stiffness. Based on Equations (2),(3) and (4), the governing
equation for this particular problem can be written as:

EI
d2θ

ds2
− Fx sin θ + Fy cos θ = 0 (5a)

dFx

ds
= CdAρwU2 sin θ (5b)

dFy

ds
= gA∆ρ (5c)

dX

ds
= cos θ (5d)

dY

ds
= sin θ. (5e)

The unknown parameters in Equations 4 and 5(a-e) are θ, Fx, Fy, X and Y with the following
boundary conditions

at s = 0; θ = θ0, Y = 1, X = 0 T = T0

at s = −1; θ = 0,
dθ

ds
= 0, Y = 0.

(6)

2.1 Non-dimensional Governing Equations

To simplify the governing equation, it is convertedinto a scaled or non-dimensionalised system.
For example, consider Equation (5c), having a scale of

Fy ∼ f0F̂y, Fx ∼ f1F̂xs ∼ s0ŝ, f0 = f1 = gAh∆ρ and s0 = Lh (7)

where F̂y and ŝ are the non-dimensional variables, while f0, f1 and s0 are the scaling factor so
that

1

L

dF̂y

ds
= 1 and

1

L

dF̂x

ds
= α sin θ. (8)

Therefore, all Equations (5a–e), can be converted into the following dimensionless equations
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where the symbol ( ˆ ) is removed to simplify the equation:

1

L2
βθ,ss − Fx sin θ + Fy cos θ = 0

1

L
Fx,s = α sin θ

1

L
Fy,s = 1

1

L
F,s = cos θ

1

L
X,s = cos θ

(9)

in which

α =
CdAρwU2

∆ρgA
(hydrodynamic drag) and

β =
EI

∆ρgAh3
(bending stiffness)

(10)

(a subscript variable with a comma at the behined ( , s) means a derivative with respect to the
variable). Now, the dimensionless boundary conditions become

at s = 0 θ = θ0, Y = 1, X = 0 T = T0

at s = −1; θ = 0,
dθ

ds
= 0, Y = 0

(11)

2.2 Numerical solution

The governing Equation (9)-(11) can be solved via a numerical approach except that the second
order term makes the solution rather complicated. Consider an extra equation

γ =
1

L

dθ

ds
=⇒ θ,s = Lγ. (12)

So, the governing equation becomes:

γ,s =
L2

β
(−Fx sin θ + Fy cos θ)

Fx,s = Lα sin θ

Fy,s = L

X,s = L cos θ

Y,s = L sin θ

(13)

This set of equations was solved numerically using MATLAB software as shown in ap-
pendix A
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2.3 Asymptotic solution

The governing Equations in (9)-(11) can be further simplified by considering an asymptotic
solution, for example in the case where the bending stiffness coefficient is very small so that
the effect can be neglected. Consider the first three Equations in (9)

βθ, ss−Fx sin θ+Fy cos θ= 0, (14a)

Fx ,s=α sin θ, (14b)

Fy ,s= 1 =⇒ Fy=F0+s. (14c)

If β� 1, then Equation (14a) becomes

Fx tan θ=Fy. (15)

Substituting Equation (14c) into Equation (15) yields

Fx tan θ=F 0+s (16)

Differentiating both sides and rearranging them, leads to

Fx ,s= − (F0+s) csc2 (θ) θ,s+cot θ (17)

By substituting Equation (14b) into Equation (17) gives

α sin θ= − (F0+s) csc2 (θ) θs+cot θ

=⇒ (F0+s) θ,s= −α sin3 θ+cos θ sin θ.
(18)

Let s=Lζ and suppose F0=L. Then Equation (18) can be transformed into

(1+ζ) θ,ζ= −α sin3 θ+ cos θ sin θ. (19)

Equation (19) is considered as the equation of slack with ζ= 1,θ= 0 , and
∫

0

−1
sin θdζ= 1

L
.

Equation (19) is a separable equation where:

(1+ζ)
dθ

dζ
= −α sin3 θ+ cos θ sin θ

=⇒ 1

−α sin3 θ+ cos θ sin θ
dθ=

1

1+ζ
dζ

(20)

Integrate both sides of Equation (20) gives

∫ θ

0

1

−α sin3 θ+cos θ sin θ
dθ=

∫ ζ

−1

1

1+ζ
dζ. (21)

The right integral can be calculated directly by

∫ ζ

−1

1

1+ζ
dζ= log (1+ζ)ζ

−1
. (22)
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To solve the left integral, a substitution of u=cos θ is used

∫ θ

0

1

−α sin3 θ+cos θ sin θ
dθ=

∫ θ

0

1

sin θ(−α sin2 θ+ cos θ)
dθ

=

∫ θ

0

1

sin θ(α cos2 θ+ cos θ−α)
dθ =

∫ θ

0

sin θ

(1 − cos2 θ)(α cos2 θ + cos θ − α)
dθ (23)

Let u = cos θ, then du = − sin θ dθ. Therefore

∫ θ

0

sin θ

(1 − cos2 θ)(α cos2 θ + cos θ − α)
dθ =

∫

cos θ

1

−1

(1 − u2)(αu2 + u − α)
du

=

∫

cos θ

1

−1

(1 − u)(1 + u)(u + r1)(u + r2)
du (24)

where r1 and r2 are the roots of αu2 + u − α = 0.
By using integration by partial fractions approach to solve the previous integral leads to

−1

(1 − u)(1 + u)(u + r1)(u + r2)
=

A

1 − u
+

B

1 + u
+

C

u + r1

+
C

u + r2

(25)

where A, B, C and D are constants, which can be solved analytically to obtain

A =
−1

2
, B =

1

2
, C = −α − αr2 − 1

r1 − r2

, D =
αr2 − 1

r1 − r2

. (26)

Then Equation (24) becomes:

∫

cos θ

1

−1

(1 − u)(1 + u)(u + r1)(u + r2)
du =

∫

cos θ

1

A

1 − u
+

B

1 + u
+

C

u + r1

+
C

u + r2

du

= −1

2
log(1 − u) +

1

2
log(1 + u) −

(

α +
αr2 − 1

r1 − r2

)

log(u + r1) +
αr2 − 1

r1 − r2

log(u + r2)

= −1

2
log(1 − cos θ) +

1

2
log(1 + cos θ) + C log(cos θ + r1) + D log(cos θ + r2)

= log

[

√

(1 + cos θ) cos θ + r1)
C(cos θ + r2)

D

√

(1 − cos θ

]θ

0

. (27)

Finally, by substituting back the values of integral from Equations (22) and (27) into Equa-
tion (21) gives

log

[

√

(1 + cos θ)(cos θ + r1)
C(cos θ + r2)

D

√

(1 − cos θ

]θ

0

= log[1 + ζ]ζ
−1

. (28)

Equation (28) relates the angle θ with arc cable length ζ . This equation has two singularities at
0 and −1. Subsequently, the space variable (X and Y ) can be determined using Equations (5d)
and (5e). Nonetheless, it is important to note that this asymptotic solution is only accurate
when β� 1 as mentioned earlier.
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3 Results and Discussion

The numerical solution developed by using MATLAB program for Equations (12) and (13)
give the values of θ, Fx, Fy, X, Y and also L. For calculation purposes, and to let the analysis
becomes easier, a presumed value is set to the two parameters α and β (without comparing to
any engineering parameters). We only need to have a general idea about the cable behaviour
as the changes of defining parameters.

Figure 1 shows the cable shape in 2D domain from the point (0,1) at the vessel to the point
(-X,0) at the sea bed. The values of α and β are assumed to be equal 1, and the initial angle
θ0 is assumed 1 radian. The prescribed tension T0 value is taken to be varied from 0 to 20 so
we can observe the effect on the cable shape. It is found that higher tension makes the cable
being suspended are longer. Although the high tension of the cable gives more control of the
cable laying, the extremely high tension may lead to the cable damage

Figure 3: Shape of Cables in Different Prescribed Tension

In this particular study, the slack S is defined as the difference between the straight distance
from (0,1) to (−X, 0) and the actual cable length (L), as follows

S =

(

L√
X2 − Y 2

− 1

)

× 100% (29)

in which X is the maximum horizontal distance from the origin and Y is the sea depth which
is 1. Figures 3–6 show the influence of different parameters on the slack percentage. It is
noticed that increasing the controlled tension from the vessel reduce the percentage of the slack
as discussed earlier. Also, the high tension makes the suspended cable becomes longer and this
gives nearly straight shape, and consequently reduces slack as well. The other two figures show
a similar result where increasing the coefficients gives lower slack percentages. For α, increasing
the ‘positive’ drag force (in the normal direction to the curve) serves as an ‘uplift’ force to the
cable. Thus we can avoid the cable to be further sagging. For β, it may explained due to the
cable stiffness EI. By considering that the cable already has the curve shape, it is difficult at
the higher rigidity of the cable to change its shape to a straight line unless higher tensile force
is applied
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Figure 4: The Effect of Prescribed Tension on the Slack

Figure 5: The Effect of Hydrodynamic Drag on the Slack
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Figure 6: The effect of Cable Bending Stiffness on the Slack

4 Conclusion

This article provides a mathematical model for a steady-state subsea cable laying problem based
on Euler–Bernoulli equation derived by Howison [7]. This equation can predict the layout of
the laying cable at a particular time by knowing the fluid well as the fluid behavior. The
model assumes that the vessel velocity is constant and as the seabed is flat. The model neglect
the effect of waves and wind. The non-dimensional set of equations that are developed for the
model leads to only two defining parameters, which are basically related to the bending stiffness
of the cable and hydrodynamic drag of the fluid

The governing equations are solved by numerical solution conducted in MATLAB program,
and also by asymptotic solution obtained via analytical calculation. The results show the cable
shape in 2D domain. It is also found that increasing the prescribed cable tension can reduce
the slack percentage. Moreover, increasing the drag coefficient or bending stiffness parameter
can also reduce the slack percentage as well. The model results are good enough to extend it
to consider a time-dependent problem, in which the effect of waves and seabed surface shape
are now significant
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Appendix A
MATLAB Coding for Subsea Cable Laying Solution
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