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Abstract The proposed modified methods of Cramer’s rule consider the column vector

as well as the coefficient matrix concurrently in the linear system. The modified methods

can be applied since Cramer’s rule is typically known for solving the linear systems in WZ

factorization to yield Z-matrix. Then, we presented our results to show that there is no

tangible difference in performance time between Cramer’s rule and the modified methods

in the factorization from improved versions of MATLAB. Additionally, the Frobenius

norm of the modified methods in the factorization is better than using Cramer’s rule

irrespective of the version of MATLAB used.
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1 Introduction

If a linear system is defined by
Bx = c, (1)

then the unique solutions x = (x1, x2, ..., xn)
T , where B is the coefficient matrix of the system

and c the column vector, to equation (1) can be obtained from an old method called Cramer’s

rule [1]. Cramer’s rule has many drawbacks: fails when the coefficient matrix is singular,
requires (n+1) determinants in its computation and has high computational time [2]. Cramer’s
rule and Gaussian elimination (GE) requires about the same amount of arithmetic for finding
the solution of 2 × 2 linear systems. Moler [3] expressed that Cramer’s rule is unsatisfactory
even for 2× 2 linear systems because of round off errors. However, Dunham [4] gives a counter
example to the statement to show that Cramer’s rule is satisfactory. Thus, accurate methods
to evaluate determinants make Cramer’s rule numerically stable [5]. Notwithstanding its high
computational complexity, Cramer’s rule is truly intriguing and it is of hypothetical significance
for solving linear systems [6]. One of the advantages of Cramer’s rule is its application in
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WZ factorization or quadrant interlocking factorization (QIF ) to check if the matrix being
factorized has non-singular inner submatrix (centro-nonsingular) and to solve its linear systems
[7, 8].

WZ factorization is first proposed by Evans and Hatzopoulos [9]. During WZ factorization
of non-singular matrix B, Z-matrix exists together with W -matrix [10], such that

B = WZ. (2)

The matrix norm of WZ factorization is the Frobenius norm of matrix B given as

||B||F = ‖B −WZ‖.

WZ factorization is known for the adaptability of its direct method for solving linear systems
on shared memory parallel computers with many integrated core, see [11–14] and the references
therein. WZ factorization has been shown to be better than the GE and LU factorization ir-
respective of the number of processors used and is also better on Intel processors than AMD
processors, see [15, 16]. WZ factorization is extensively applied in finding the numerical so-
lutions of Markov chains [17, 18]. Though, the efficiency of WZ factorization depends on an
efficacious use of the memory echelon because computational cost often relies on both the total
number of arithmetic operations used and the data transferring time between different memory
levels [19]. For the WZ factorization, we compute w∗(k)

i,k and w∗(k)

i,n−k+1 from equation (3) by
solving its 2× 2 linear systems via Cramer’s rule for every update of matrix B,

{

z
(k−1)
k,k w∗(k)

i,k + z
(k−1)
n−k+1,kw

∗(k)

i,n−k+1 = −z
(k−1)
i,k

z
(k−1)
k,n−k+1w

∗(k)

i,k + z
(k−1)
n−k+1,n−k+1w

∗(k)

i,n−k+1 = −z
(k−1)
i,n−k+1,

(3)

where k = 1, 2, ..., bn

2
c; i = k + 1, ..., n− k. Then, we update matrix B for every computed ith

to the (n− 1)th element of the (i− 1)th and (n− i + 1)th column of W -matrix, see [20].
In Section 2, we propose two modified methods from Cramer’s rule and show how they

are equivalent to classical Cramer’s rule. While Section 3 applies the proposed methods of
Cramer’s rule in WZ factorization. To obtain the matrix norm of the factorization, we eval-
uate the Frobenius norm of the applied modified methods and Cramer’s rule. Furthermore,
the performance time of the proposed methods and Cramer’s rule in the factorization were
compared. Due to the lack of parallel computer or mesh multiprocessors, the MATLAB codes
application of this article are limited to Intel processor (Core i7-4600U 2.1GHz).

2 Modified Cramer’s Rule

Theorem 1 (Cramer’s rule) Let Bx = c be an n × n system of linear equation and B an

n× n non-singular matrix, then the unique solution x = (x1, x2, ..., xn)
T to the linear system is

given by

xi =
det(Bi|c)

det(B)
. (4)

Where Bi|c is the matrix obtained from B by substituting the column vector c to the ith column

of B, for i = 1, 2, ..., n.
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It is a well-established theorem that if the ith column of matrix B is the sum or difference of
the ith column of matrix C and the ith column of matrix D and all other columns in C and D
are equal to the corresponding columns in B. Then

det(B) = det(C)± det(D). (5)

In addition, if for i = 1, 2, ..., n, the column matrix B is replaced with the row sum of its matrix
to obtain a new matrix Bαi with all other columns in B and Bαi remain the same, then the
determinant of the matrix and the obtained matrix are equal [21]. That is,

det(B) = det(Bαi). (6)

Now, we can deduce that if column vector c is added to or subtracted from the ith column of
matrix Bαi (i.e the ith column of matrix B where its row sum replaced), then we can re-write
equation (5) via (6) as

det(Bαi

i±c) = det(Bαi)± det(Bαi

i|c), (7)

where Bαi

i±c is the matrix obtained from Bαi by adding (or subtracting) the column vector c to
(or from) the ith column of Bαi, Bαi

i|c is the matrix obtained from Bαi by substituting column
vector c to the ith column of Bαi. While Bαi is the matrix obtained from matrix B, where
the ith column of matrix B is replaced by its row sum. It is important to note note that if
det(B) = det(Bαi), then

det(Bi|c) = det(Bαi

i|c). (8)

2.1 Method I

Corollary 1 Let Bx = c be an n × n system of linear equation and B a square matrix of x,

then the ith entry xi of the unique solution x = (x1, x2, ..., xn)
T to the linear system is given by

xi =
det(Bαi

i+c)

det(Bαi)
− 1, (9)

where Bαi

i+c is the matrix obtained from Bαi by adding the column vector c to the ith column of

Bαi and Bαi is the matrix obtained from B with its ith column being replaced by the row sum

of B, for i = 1, 2, ..., n.

Proof First, we assume that matrix B is non-singular. Now, we consider only the positive
part of equation (7) to prove Corollary 1. We have

det(Bαi

i+c) = det(Bαi) + det(Bαi

i|c). (10)

Then, we solve for det(Bαi

i|c) from equation (10) and substitute it in equation (8) to have

det(Bi|c) = det(Bαi

i+c)− det(Bαi). (11)

Now, substitute equation (11) and equation (6) in equation (4) to get

xi =
det(Bαi

i+c)− det(Bαi)

det(Bαi)

=
det(Bαi

i+c)

det(Bαi)
− 1.

2
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2.2 Method II

Corollary 2 Let Bx = c be an n × n system of linear equation and B a square matrix of x,

then the ith entry xi of the unique solution x = (x1, x2, ..., xn)
T to the linear system is given by

xi = 1−
det(Bαi

i−c)

det(Bαi)
, (12)

where Bαi

i−c is the matrix obtained from Bαi by subtracting the column vector c from the ith
column of Bαi and Bαi is the matrix obtained from B with its ith column being replaced by the

row sum of B for i = 1, 2, ..., n.

Proof Now, we consider the negative part of equation (7) based on Corollary 2 assumption
to have

det(Bαi

i−c) = det(Bαi)− det(Bαi

i|c). (13)

Then, we solve for det(Bαi

i|c) from equation (13) and substitute it in equation (8) to get

det(Bi|c) = det(Bαi)− det(Bαi

i−c). (14)

Then, we substitute equation (14) and equation (6) in equation (4) to have

xi =
det(Bαi)− det(Bαi

i−c)

det(Bαi)

= 1−
det(Bαi

i−c)

det(Bαi)
.

2

We give the steps for implementing Method I and Method II in Algorithm 1, while their
MATLAB codes are provided in Listings 1 and 2 respectively.

Listing 1: MATLAB Code of Method I

1 function x=methodI(B,c)

2 B=input('matrix B =');

3 c=input('vector c =');

4 n=size(B,1);

5 m=size(B,2);

6 if n˜=m

7 Error('The matrix is not square.');

8 x=[];

9 else

10 if det(B)˜=0

11 x=zeros(n,1);

12 k1=sum(B,2);

13 k2=k1+c;

14 for j=1:n

15 if j˜=1 && j˜=n

16 Bc=[B(:,1:j−1) k2 B(:,j+1:n)];

17 D=[B(:,1:j−1) k1 B(:,j+1:n)];
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Algorithm 1 Modified Cramer’s rule algorithm

1: procedure Modified Cramer’s rule

2: B ← n× n coefficient matrix
3: c← column vector
4: xi ← solutions of linear system
5: for i do1n
6: D ← row sum of B
7: E ← D ± c.
8: Fi ← replace ith column of B with E.
9: Si ← replace ith column of B with D.

10: det(S)← determinant of Si .
11: det(F )← determinant of Fi.
12: if E ← D + c then
13: xi ← 1− (det(F )/det(S))
14: else
15: xi ← (det(F )/det(S))− 1
16: end if
17: end for
18: end procedure

18 elseif j==1

19 Bc=[k2 B(:,2:n)];

20 D=[k1 B(:,2:n)];

21 elseif j==n

22 Bc=[B(:,1:n−1) k2];

23 D=[B(:,1:n−1) k1];

24 end

25 detD=det(D);

26 x(j)=(det(Bc)/detD)−1;
27 end

28 else

29 Error('Matrix B is singular.');

30 x=[];

31 end

32 end

Listing 2: MATLAB Code of Method II

1 function x=methodII(B,c)

2 B=input('matrix B =');

3 c=input('vector c =');

4 n=size(B,1);

5 m=size(B,2);

6 if n˜=m

7 Error('The matrix is not square.');

8 x=[];

9 else

10 if det(B)˜=0
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11 x=zeros(n,1);

12 k3=sum(B,2);

13 k4=k3−c;
14 for j=1:n

15 if j˜=1 && j˜=n

16 Bc=[B(:,1:j−1) k4 B(:,j+1:n)];

17 E=[B(:,1:j−1) k3 B(:,j+1:n)];

18 elseif j==1

19 Bc=[k4 B(:,2:n)];

20 E=[k3 B(:,2:n)];

21 elseif j==n

22 Bc=[B(:,1:n−1) k4];

23 E=[B(:,1:n−1) k3];

24 end

25 detE=det(E);

26 x(j)=1−(det(Bc)/detE);
27 end

28 else

29 Error('Matrix B is singular.');

30 x=[];

31 end

32 end

Proposition 1 Let Bx = c be an n× n system of linear equation, where B is an n × n non-

singular matrix of x for the distinct solution of x = (x1, x2, ..., xn)
T and c the column vector.

If xi = 1−
det(B

αi

i−c
)

det(Bαi)
when the column vector c is subtracted from the column of matrix Bαi and

xi =
det(B

αi

i+c
)

det(Bαi)
− 1 when the column vector c is added to the column of matrix Bαi. Then

1−
det(Bαi

i−c)

det(Bαi)
=

det(Bi|c)

det(B)
=

det(Bαi

i+c)

det(Bαi)
− 1, (15)

where Bi|c is the matrix obtained from B by substituting the column vector c to the ith column

of B and Bαi is the matrix obtained from B from its ith column being replaced by the row sum

of B for i = 1, 2, ..., n.

Proof We begin by substituting equation (10) in equation (9) of Corollary 1 to obtain

xi =
det(Bαi) + det(Bαi

i|c)

det(Bαi)
− 1. (16)

Substitute equation (6) and equation (8) in equation (16) to have Cramer’s rule

xi =
det(Bi|c)

det(B)
. (17)

Similarly, substitute equation (13) in equation (12) to get

xi = 1−
det(Bαi)− det(Bαi

i|c)

det(Bαi)
. (18)
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We will obtain Cramer’s rule if equation (6) and equation (8) are substituted in equation (18).
Thus, equations (16) and (18) are equivalent. 2

It is apparent that Cramer’s rule has better computational time than its modifications due
to less computation operations. The modified methods may only be compared with Cramer’s
rule, such as their residual error measurements, but our objective is to apply the methods in
WZ factorization. Moreover, the advantage of these methods like Cramer’s rule over direct
methods (such as GE or LU decomposition) is that they indicate if a system is incompatible
or indeterminate without completely solving the systems. This specific advantage is useful in
solving the 2× 2 linear systems in WZ factorization.

3 Application of Modified Cramer’s Rule in WZ Factorization

The MATLAB code to compute the elements of W -matrix and Z-matrix is given in [20].
However, for future research of interested readers, we give the complete MATLAB code of WZ
factorization in Listing 3.

Listing 3: MATLAB Code for WZ Factorization

1 function Z = WZfactorization(B,W,Z)

2 % step of elimination − from B to Z

3 B=input('matrix B =');

4 n = size(B, 1);

5 W = zeros(n);

6 for k = 1:ceil((n−1)/2)
7 k2 = n − k + 1 ;

8 determinant = B(k,k) * B(k2,k2) − B(k2,k) * B(k,k2);

9 if determinant == 0

10 exitflag = 0;

11 for i1 = k:k2

12 for i2 = i1:k2

13 determinant = B(i1,k) * B(i2,k2) − B(i2,k) * B(i1,k2);

14 if determinant ˜= 0

15 tmp = B(i1,k:k2);

16 B(i1,k:k2) = B(k,k:k2);

17 B(k,k:k2) = tmp;

18 tmp = B(i2,k:k2);

19 B(i2,k:k2) = B(k2,k:k2);

20 B(k2,k:k2) = tmp;

21 exitflag = 1;

22 break

23 end % end if determinant ˜= 0

24 end % end of i2

25 end % end of i1

26 if exitflag == 0

27 Z = B;

28 return

29 end

30 end % end if determinant == 0

31 % finding elements of W

32 W(k+1:k2−1,k)=(B(k2,k2)*B(k+1:k2−1,k)−B(k2,k)*B(k+1:k2−1,k2))/determinant;
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33 W(k+1:k2−1,k2)=(B(k,k2)*B(k+1:k2−1,k)−B(k,k)*B(k+1:k2−1,k2))/determinant;
34 for m=1:n

35 W(m,m)=1;

36 W(m,n+1−m);
37 % updating B

38 B(k+1:k2−1,k) = 0;

39 B(k+1:k2−1,k2) = 0;

40 B(k+1:k2−1,k+1:k2−1) = B(k+1:k2−1,k+1:k2−1) + W(k+1:k2−1,k)* B(k,k+1:k2−1)
41 + W(k+1:k2−1,k2) * B(k2,k+1:k2−1);
42 Z = B;

43 end

To apply the modified methods of Cramer’s rule in WZ factorization, we begin by expressing
equation (3) like equation (1) as

[

z
(k−1)
k,k z

(k−1)
n−k+1,k

z
(k−1)
k,n−k+1 z

(k−1)
n−k+1,n−k+1

][

w∗(k)

i,k

w∗(k)

i,n−k+1

]

=

[

−z
(k−1)
i,k

−z
(k−1)
i,n−k+1

]

(19)

and then compute w∗(k)

i,k and w∗(k)

i,n−k+1 using method I and method II respectively. To do this,

we first apply Corollary 1 to compute w∗(k)

i,k and w∗(k)

i,n−k+1 in equation (19) as

w∗(k)

i,k =

det

(

[

w∗(k)

i,k

]α1

1+c

)

det (zα1)
− 1 and w∗(k)

i,n−k+1 =

det

(

[

w∗(k)

i,n−k+1

]α2

2+c

)

det (zα2)
− 1, (20)

where

det (zα1) = det (zα2) =− z
(k−1)
n−k+1,kz

(k−1)
k,n−k+1 + z

(k−1)
n−k+1,n−k+1z

(k−1)
k,k

det

(

[

w∗(k)

i,k

]α1

1+c

)

=z
(k−1)
n−k+1,kz

(k−1)
i,n−k+1 + z

(k−1)
n−k+1,kz

(k−1)
n−k+1,n−k+1 − z

(k−1)
n−k+1,kz

(k−1)
k,n−k+1

+ z
(k−1)
n−k+1,n−k+1z

(k−1)
k,k − z

(k−1)
n−k+1,n−k+1z

(k−1)
i,k − z

(k−1)
n−k+1,n−k+1z

(k−1)
n−k+1,k

=z
(k−1)
n−k+1,kz

(k−1)
i,n−k+1 − z

(k−1)
n−k+1,n−k+1z

(k−1)
i,k − z

(k−1)
n−k+1,kz

(k−1)
k,n−k+1 + z

(k−1)
n−k+1,n−k+1z

(k−1)
k,k

det

(

[

w∗(k)

i,n−k+1

]α2

2+c

)

=z
(k−1)
k,k z

(k−1)
k,n−k+1 − z

(k−1)
i,n−k+1z

(k−1)
k,k − z

(k−1)
n−k+1,kz

(k−1)
k,n−k+1

+ z
(k−1)
n−k+1,n−k+1z

(k−1)
k,k − z

(k−1)
k,n−k+1z

(k−1)
k,k + z

(k−1)
k,n−k+1z

(k−1)
i,k

=z
(k−1)
k,n−k+1z

(k−1)
i,k − z

(k−1)
i,n−k+1z

(k−1)
k,k − z

(k−1)
n−k+1,kz

(k−1)
k,n−k+1 + z

(k−1)
n−k+1,n−k+1z

(k−1)
k,k .

The W ∗-matrix obtained from equation (20) will be referred to as W m1-matrix and its coun-
terpart Z-matrix as Zm1-matrix. The W m1Zm1 factorization is the factorization obtained from
using Corollary 1. For the MATLAB code of W m1Zm1 factorization, we replace line 32 and line
33 in Listing 3 with line 2 to line 5 of Listing 4.

Listing 4: MATLAB Code for W m1Zm1 Factorization

1 %finding elements of W

2 W(k+1:k2−1,k)=((B(k2,k)*B(k+1:k2−1,k2)−B(k2,k2)*B(k+1:k2−1,k)
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3 −B(k2,k)*B(k,k2)+B(k2,k2)*B(k,k))/determinant)−1;
4 W(k+1:k2−1,k2)=((B(k,k2)*B(k+1:k2−1,k)−B(k+1:k2−1,k2)*B(k,k)
5 −B(k2,k)*B(k,k2) +B(k2,k2)*B(k,k))/determinant)−1;

Furthermore, if we apply Corollary 2 to compute w∗(k)

i,k and w∗(k)

i,n−k+1 in equation (19) then

w∗(k)

i,k = 1−

det

(

[

w∗(k)

i,k

]α1

1−c

)

det (zα1)
and w∗(k)

i,n−k+1 = 1−

det

(

[

w∗(k)

i,n−k+1

]α2

2−c

)

det (zα2)
, (21)

where

det (zα1) = det (zα2) =− z
(k−1)
n−k+1,kz

(k−1)
k,n−k+1 + z

(k−1)
n−k+1,n−k+1z

(k−1)
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)

=z
(k−1)
n−k+1,n−k+1z

(k−1)
n−k+1,k + z

(k−1)
n−k+1,n−k+1z

(k−1)
k,k − z

(k−1)
n−k+1,kz

(k−1)
i,n−k+1

+ z
(k−1)
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i,k − z
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(k−1)
n−k+1,kz

(k−1)
k,n−k+1
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(k−1)
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(k−1)
n−k+1,n−k+1z

(k−1)
k,k − z

(k−1)
n−k+1,kz
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i,n−k+1 − z

(k−1)
n−k+1,kz

(k−1)
k,n−k+1

det

(
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w∗(k)

i,n−k+1

]α2

2−c

)

=z
(k−1)
k,n−k+1z

(k−1)
k,k + z

(k−1)
n−k+1,n−k+1z

(k−1)
k,k − z

(k−1)
k,n−k+1z

(k−1)
i,k

+ z
(k−1)
i,n−k+1z

(k−1)
k,k − z

(k−1)
k,k z

(k−1)
k,n−k+1 − z

(k−1)
n−k+1,kz

(k−1)
k,n−k+1

=z
(k−1)
i,n−k+1z

(k−1)
k,k + z

(k−1)
n−k+1,n−k+1z

(k−1)
k,k − z

(k−1)
k,n−k+1z

(k−1)
i,k − z

(k−1)
n−k+1,kz

(k−1)
k,n−k+1.

The W ∗-matrix obtained from equation (21) will be referred to as W m2-matrix and its Z-matrix
as Zm2-matrix. The W m2Zm2 factorization is the factorization obtained from using Corollary
2. For the MATLAB code of W m2Zm2 factorization, we replace line 32 and line 33 in Listing
3 with line 2 to line 5 of Listing 5.

Listing 5: MATLAB Code for W m2Zm2 Factorization

1 %finding elements of W

2 W(k+1:k2−1,k)=1−((B(k2,k2)*B(k+1:k2−1,k)+B(k2,k2)*B(k,k)
3 −B(k2,k)*B(k+1:k2−1,k2) −B(k2,k)*B(k,k2))/determinant);
4 W(k+1:k2−1,k2)=1−(B(k+1:k2−1,k2)*(B(k,k)+B(k2,k2)*B(k,k)
5 −B(k,k2)*B(k+1:k2−1,k)−B(k2,k)*B(k,k2))/determinant);

The algorithms of WZ, W m1Zm1 and W m2Zm2 factorization are implemented on Intel pro-
cessor (Core i7-4600U 2.1GHz) with standard hardware. Then, we investigate the performance
time of WZ, W m1Zm1 and W m2Zm2 factorization on different versions of MATLAB (R2013b,
R2015b and R2017b respectively) and the results were recorded in Table 1.

In Figure 1, 2 and 3, the performance time of W m1Hm1 and W m2Hm2 factorization are
similar but higher than performance time of WH factorization for all the versions of MATLAB
used. However, the performance time of WH, W m1Hm1 and W m2Hm2 factorization reduces
as the versions of MATLAB improve. The performance time of WH, W m1Hm1 and W m2Hm2

factorization decreases about 16% for MATLAB R2015b and decreases about 32% for MAT-
LAB R2017b. Figure 3 shows the performance time of W m1Hm1 and W m2Hm2 factorization
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Table 1: Performance Time of WZ, W m1Zm1 and W m2Zm2 Factorization

Matrix size
MATLAB R2013b MATLAB R2015b MATLAB R2017b

WZ W
m1Z

m1 W
m2Z

m2 WZ W
m1Z

m1 W
m2Z

m2 WZ W
m1Z

m1 W
m2Z

m2

500× 500 7.26 9.65 9.45 5.29 6.56 7.06 2.25 2.76 3.15

1000× 1000 19.95 28.24 27.45 17.01 19.51 18.93 14.28 13.88 14.26
1500× 1500 48.93 63.98 70.26 41.43 42.56 41.91 40.12 40.40 40.21
2000× 2000 135.84 198.15 205.88 117.33 123.84 127.10 88.32 89.66 86.22

2500× 2500 271.03 342.54 351.46 226.01 249.14 253.93 163.83 173.24 181.21
3000× 3000 498.27 552.89 563.01 423.54 441.34 448.34 281.44 294.72 301.69

3500× 3500 673.90 749.30 762.91 593.56 623.16 631.90 439.30 458.97 462.56
4000× 4000 968.43 1032.40 1051.13 882.23 921.57 927.67 656.59 672.19 679.41

4500× 4500 1643.64 1730.84 1753.39 1394.23 1430.55 1436.01 998.10 1013.20 1019.08
5000× 5000 2239.65 2305.10 2329.12 1739.87 1809.54 1820.47 1263.74 1274.60 1281.69
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Figure 1: Execution Time of WZ, W m1Zm1 and W m2Zm2 Factorization on MATLAB R2013b
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Figure 2: Execution Time of WZ, W m1Zm1 and W m2Zm2 Factorization on MATLAB R2015b
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Figure 3: Execution Time of WZ, W m1Zm1 and W m2Zm2 Factorization on MATLAB R2017b
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approaches WH factorization. In spite of more arithmetic operations used in W m1Hm1 and
W m2Hm2 factorization as a result of applying Corollary 1 and Corollary 2 respectively, we can
deduce that a better version of MATLAB in the near future will show that there would be no
tangible difference in performance time between WH, W m1Hm1 and the W m2Hm2 factorization.

In Table 2, we only display our result from MATLAB R2017b because our background anal-
ysis shows that irrespective of the version of MATLAB used, the Frobenius norms of W m1Zm1

and W m2Zm2 factorization are better than WZ factorization, see Figure 4. More so, the Frobe-
nius norms of WZ, W m1Zm1 and W m2Zm2 factorization increase as the size of their matrices
increase.

Table 2: Matrix Norm of WZ, W m1Zm1 and W m2Zm2 Factorization on MATLAB R2017b

Matrix size (N) ‖B −WZ‖ ‖B −W m1Zm1‖ ‖B −W m2Zm2‖
500× 500 5.33E-14 4.92E-14 4.91E-14

1000× 1000 1.18E-13 0.92E-13 0.90E-13
1500× 1500 5.67E-13 4.76E-13 4.76E-13
2000× 2000 7.89E-13 6.73E-13 6.71E-13
2500× 2500 1.28E-12 0.97E-12 0.94E-12
3000× 3000 1.39E-12 0.95E-12 0.96E-12
3500× 3500 3.06E-12 2.36E-12 2.36E-12
4000× 4000 3.93E-12 2.71E-12 2.73E-12
4500× 4500 5.51E-12 4.83E-12 4.80E-12
5000× 5000 6.52E-12 5.25E-12 5.26E-12
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Figure 4: Matrix Norms of WZ, W m1Zm1 and W m2Zm2 Factorization on MATLAB R2017b
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4 Conclusion

Like Cramer’s rule, the modified methods may be impracticable and inappropriate for higher
linear systems. However, we pointed out their advantage over Cramer’s rule in quadrant in-
terlocking factorization even though they are theoretically equivalent. The Frobenius norm of
the applied modified Cramer’s rule over classical Cramer’s rule in the factorization shows that
W m1Zm1 and W m2Zm2 factorization would be better in numerical solution of Markov chains.
Therefore, we passionately advocate that W m1Zm1 and W m2Zm2 factorization should be com-
pared with WZ factorization on parallel computer or mesh multiprocessors such as Intel Xeon
Phi, Sunway Taihulight or OLCF-4.
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