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Abstract The commutativity degree is an invariant used to measure the probability

that two arbitrarily chosen group elements commute. This concept was generalized by

many authors in different ways. One of these generalizations involves the action degree of

finite groups, which is the probability that a random group element fixes a random element

from a nonempty set. In this paper, we present some properties and important inequalities

about the action degree and give a relationship between the action degree of a finite group

and that of the kernel subgroup of this action. In addition, we show that the action degree

play an important role to determine some information about the cardinality of the set of

all fixed points. On the other hand, we introduce in this paper a new definition for

the action degree of finitely generated groups. This definition generalizes another recent

definition of the commutativity degree of finitely generated groups. Furthermore, some

boundaries with respect to this degree are presented.
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1 Introduction

There has been a growing interest in recent years on the use of the probability in group theory.
One of the most important aspects which have been studied extensively is the probability that
a selected random pair of elements (x, y) in a group G commute, denoted as cd(G). In fact, the
determination of the commutativity degree of a group yields a wealth of information about the
group’s structure and properties. This concept was introduced in 1968 by Erdos and Turan [1],
where they worked on symmetric groups.

Gustafson [2] showed that this probability can be computed using conjugacy classes and
MacHale [3] computed it using 0,1-Table. Numerous researches have been done on the com-
mutativity degree and many results have been achieved. In 1975, Sherman [4] defined the
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probability that a random element from a group G fixes a random element from a non-empty
set S. We refer to this probability as the action degree of groups, adS(G). Sherman [4] studied
the probability that an automorphism fixes a group element, which gives commutativity degree
in a special case. He considered only the case for which G is a finite abelian group and A is its
group of automorphisms.

Omer et al. [5] generalized the commutativity degree by introducing the probability of an
element g in G to fix a set X and G acts on the set of all subset of commuting elements in G of
size 2. Moreover, the probability is used on different group structures namely dihedral group,
quaternion group and alternating group. The probability was found for some symmetric groups
in [6] in the case that a group acts on a set regularly and by conjugation. In 2015, El-sanfaz et
al. [7] found the probability that a group element fixes a set under regular action for metacyclic
2-groups of positive type of nilpotency class of at least three.

In the first part of this paper, the general definition of action degree (the probability that a
random element from a group G fixes a random element from a non-empty set S) is considered
where some inequalities and bounds on the action degree of finite groups are determined.

In 2017, Antolin et al. [8] defined the commutativity degree of finitely generated groups
and proved that there is a generalization of Gustafson’s result on the bound of commutativity
degree of finite groups. Inspired by their work, we generalize the definition of the action degree
of finite groups and define the action degree of finitely generated groups. Furthermore, some
bounds and limiting conditions on this degree are obtained.

2 Some Basic Concepts

The aim of this section is to briefly recall some definitions and preparatory results that are
needed throughout this article.

In the following we recall the formal definitions of the commutativity degree and some
of its generalizations which are related to this research and we begin with the concept of
commutativity degree.

Definition 1 [2]
Let G be a group, the commutativity degree is the probability that two random elements (x, y)

in G commute, defined as:

cd (G) =
|{(x, y) ∈ G×G | xy = yx}|

|G|2
.

The action degree of finite groups is defined as follows:

Definition 2 [4]
The probability that a random element from a group G fixes a random element from the

non-empty set S is defined as:

adS (G) =
|{(x, s) ∈ G× S | xs = s}|

|S| · |G|
.

Remark:

Let G be a finite group acts on a finite set S.
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1. The probability adS (G) = 1 if and only if gs = s for all g ∈ G and s ∈ S.

2. If G acts on itself by conjugation, gs = gsg−1, then in this case, adS (G) = cd (G) , the
commutativity degree of G.

It is useful to recall some basic concepts regarding the action of groups. Given a finite group
G acting on a finite set S, the stabilizer of an element s ∈ S is the subgroup Gs of G defined
by Gs = {g ∈ G | gs = s}. By definition of the stabilizer, it is clear that the action degree can
be defined as:

adS (G) =

∑

s∈S
|Gs(G)|

|S| · |G|
.

The orbit of an element s in S is the subset o(s) of G defined as o (s) = {gs | g ∈ G} . The
relation ∼ on S defined by s ∼ t if s = gt for some g ∈ G is an equivalent relation. Furthermore,
the equivalent class of any s ∈ S is the orbit o (s) . The number of distinct equivalent classes
of this relation is denoted by ks (G) .

The following is a result by Sherman [4] that can simplify the computation of the action
degree. It is also needed to prove Corollary 1.

Proposition 1 [4]

Let G be a finite group acts on a finite set S. Then ads (G) = ks(G)
|S|

, where ks (G) denotes
the number of distinct equivalent classes.

The focus in Sherman’s research [4] was on the probability that an automorphism fixes a
group element. He considered PA(G), where G is a finite abelian group and A is its group of
automorphisms where he obtained some bounds and limiting conditions on this probability.
In this paper, we provide some bounds and relations between the action degree of groups, the
set of fixed points of the action and the kernel of action. Meanwhile, the class equation of group
action is used to prove some of these relations. We recall these concepts in the following.

If G is a finite group that acts on a finite set S, the set

S0 (G) = {s ∈ S | gs = s for all g ∈ G}

is called the fixed point set of the action. It may also be viewed as the union of all single
element orbits. Suppose a group G is acting on a finite set S. If {o (s1) , o (s2) , . . . , o (sk)} is
the set of distinct orbits of G on S. Then

|S| =
k

∑

i=1

|o(si)| .

If I = {1 ≤ i ≤ n such that |o(s)| > 1}, then

|S| = |S0 (G)| +
k

∑

i=1

|o(si)| .

Let G be a finite group that acts on a finite set S, the set

Zs (G) = {g ∈ G | gs = s ∀ s ∈ S}
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is known as the kernel of action and it is a normal subgroup of G.
One main objective of this research is to determine some bounds on the probability that a

random element from a group G fixes a random element from the non-empty set S that was
presented by Sherman [4]. As mentioned earlier, we refer to this probability by the action
degree of groups.

The other main objective of this article is to extend the work on action degree of finite
groups to the finitely generated groups. Thus, the following part presents some basic concepts
and earlier studies on the degree of commutativity of finitely generated groups.

Let G be a group and S a generating set for G. The set of inverses of elements of S is
denoted by S−1. The length function lS : G → N gives the smallest integer n such that there
exist s1, s2, . . . , sn ∈ S∪S−1 with g = s1, s2, . . . , sn. It is then often written |g| = n. The notion
of the growth of a finitely generated group was introduced by Schwarz [9] and independently by
Milnor et al. [10]. The definition is given as follows: Let G be a finitely generated group and S
a finite set of generators for G. The growth function of the group G with respect to S, denoted
as BS(n) is the set of elements in G that can be written as a word on S having length at most
n. If S and T are two finite generating sets for G, then the growth functions with respect to S
and T are equivalent. So for each group G the growth type, defined to be the equivalence class
of one of its growth functions is distinct and independent of any generating set.

Some bounds on the action degree of finitely generated groups in the current research are
only applied to groups of subexponential growth. Accordingly, this concept needs to be clarified.

By Grigorchuk [11], the limit limn→∞ |BS(n)|
1

n always exists and it is called the exponential
growth rate of G with respect to S. Moreover, this limit depends on the set of generators S
but the fact of being 1 or larger than 1 does not depend on S. Therefore, it is an invariant of
the group G. A group is said to have exponential growth when its exponential growth rate is
larger than one, and subexponential growth when the exponential growth rate is one.

In 2017, Antolin et al. [8] defined the commutativity degree of finitely generated groups as
follows:

Definition 3 [8] Let G be a finitely generated group and X a finite generating set. The degree
of commutativity of G with respect to X, denoted cdX (G) , is defined as:

cdX (G) = lim
n→∞

sup

∣

∣

{

(g, h) ∈ (BX (n))2
∣

∣ gh = hg
}
∣

∣

|BX(n)|2

where BX (n) = {g ∈ G : lX(g) ≤ n} for every generating set X of G.

The next lemma is needed to prove some bounds on the action degree of finitely generated
groups.

Lemma 1 [12] Let G be a finitely generated group with subexponential growth, and let X be a
finite generating set for G. For every finite index subgroup H of G and every g ∈ G, we have:

lim
n→∞

|gH ∩ BX(n)|

|BX(n)|
=

1

[G : H]
.

The present paper introduces a similar definition of the action degree of finitely generated
groups. Further, some useful bounds and inequalities regarding this probability are provided.
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3 Results and Discussion

The main results of this paper are presented in this section where some inequalities and limiting
conditions on the action degree of finite groups are provided. Moreover, the definition and some
properties of the action degree of finitely generated groups are presented.

3.1 Action Degree of Finite Groups

Given a finite group G acting on a finite set S, we define a set AS (G) that consists of all
ordered pairs (x, s) in G × S where the element x ∈ G fixes s ∈ S,precisely, AS (G) =
{(x, s) ∈ G× S | xs = s} .

Therefore

adS (G) =
AS (G)

|S| · |G|
.

Throughout this paper, we use this formula or the formula of the stabilizers of elements to
prove our results.

Lemma 2 Let G be a finite group that acts on a finite set S. Then

adS (G) ≥
1

|G|
.

Proof Since 1s = s for all s ∈ S, then
{1} × S ⊆ AS (G) .

Therefore
|S| ≤ |AS (G)| .

Dividing by |S| · |G| , we get the result. 2

Proposition 2 Let G be a finite group that acts on a finite set S and H a subgroup of G.
Then:

adS (H) ≤ [G : H] adS (G) .

Proof For all s ∈ S, we have
Gs (H) ⊆ Gs (G) .

Then,
∑

s∈S

|Gs(H)| ≤
∑

s∈S

|Gs(G)| .

From this inequality and since |H| = |G| [G : H]−1, we get

1

|H|

∑

s∈S

|Gs(H)| ≤
[G : H]

|G|

∑

s∈S

|Gs(G)| .

That means
adS (H) ≤ [G : H] adS (G) . 2

Applying Proposition 1, we obtain the following corollary:
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Corollary 1 Let G be a finite group that acts on a finite set S and H a subgroup of G. Then

ks (H) ≤ [G : H] ks (G) .

This corollary is a generalization of a result proved by Ernest [13] in the case when k(G) is the
number of conjugacy classes of G.

Proposition 3 Let H and K be two finite groups acting respectively on finite sets S1 and S2

such that S1 ∩ S2 = ∅. Then
adS1×S2

(H ×K) = adS1
(H) · adS2

(K) .

Proof First recall that the group H ×K acts naturally on S1 × S2 via:

(h, k) (s1, s2) = (hs1, ks2) .

We know that
|H ×K| = |H| · |K|

and
|(S1 × S2)| = |S1| · |S2| .

To prove
adS1×S2

(H ×K) = adS1
(H) · adS2

(K) ,

we need to show that:
|AS1×S2

(H ×K)| = |AS1
(H)| · |AS2

(K)| .

Consider the following function

ψ : AS1×S2
(H ×K) → AS1

(H) × AS2
(K)

defined by:
ψ ((h, k) , (s1, s2)) = ((h, s1) , (k, s2)) .

Remark that this function is well-defined and it is a bijection. Then

|AS1×S2
(H ×K)| = |AS1

(H) ×AS2
(K)|

= |AS1
(H)| · |AS2

(K)| .

So,

adS1×S2
(H ×K) =

|AS1×S2
(H ×K)|

|S1 × S2| · |H ×K|

=
|AS1

(H)| · |AS2
(K)|

|S1| · |S2| · |H| · |K|

=

(

|AS1
(H)|

|S1| . |H|

) (

|AS2
(K)|

|S2| . |K|

)

= adS1
(H) · adS2

(K) . 2
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Before proceeding to the next theorem, recall that the kernel of action

Zs (G) = {g ∈ G | gs = s ∀ s ∈ S} ,

is a normal subgroup of G. In addition, G/Zs(G) acts on the set S by (gH) s = gs and this
action is well defined.

Before proceeding to the next theorem, recall that the kernel of action

Zs (G) = {g ∈ G | gs = s ∀ s ∈ S} ,

is a normal subgroup of G. In addition, G/Zs(G) acts on the set S by (gH) s = gs and this
action is well defined.

Theorem 1 Let G be a finite group that acts on a finite set S and H = Zs (G) . Then adS (G) =
adS(G/H).

Proof Since gs = s if and only if gHs = s, we have:
|AS(G)| = |H| · |AS(G/H)| .

Then

adS(G/H) =
|AS(G/H)|

|G/H| · |S|

=
|AS(G)|

|H| . |G/H| · |S|

=
|AS (G)|

|G| · |S|

= adS (G) . 2

Proposition 4 Let G be a finite group that acts on a finite set S. Then

adS (G) ≥
|Zs (G)|

|G|
.

Proof Recall that
AS (G) = {(x, s) ∈ G× S | xs = s} .

Clearly, for all g ∈ Zs (G) , we have {g} × S ⊆ AS (G) which shows that:
Zs (G) × S ⊆ AS (G) .

Therefore

adS (G) ≥
|Zs (G) × S|

|S| · |G|

=
|Zs (G)| · |S|

|S| · |G|

=
|Zs (G)|

|G|
. 2
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Proposition 5 Let G be a finite group that acts on a finite set S. Then

adS (G) ≤
1

2
+

|S0 (G)|

2 |S|
.

Proof Consider the class equation:

|S| = |S0 (G)| +

ks(G)
∑

i=|S0(G)|+1

|o(si)| .

Then
|S| ≥ |S0 (G)| + 2 (ks (G) − |S0 (G)|) .

Therefore
|S| ≥ 2ks (G) − |S0 (G)| .

Solving for ks (G) yields

ks (G) ≤
|S| + |S0 (G)|

2
.

Therefore

adS (G) ≤
1

2
+

|S0 (G)|

2 |S|
. (2)

Proposition 6 Let G be a finite group that acts on a finite set S. Then

adS (G) ≥
|S0 (G)|

|S|
. (1)

Proof Let t be a fixed point of this action. Then (x, t) ∈ AS(G) for all x ∈ G. Hence
G× S0 (G) ⊆ AS(G).

From this we can show that:

adS (G) ≥
|S0 (G)|

|S|
. 2

Corollary 2 If adS (G) > 1
2

, then there is at least one fixed point.

Proof Assume that adS (G) > 1
2
. By using the inequality (1), we get

|S0 (G)|

|S|
> 0.

This shows that |S0 (G)| > 0, and hence the set S0 (G) is not empty. 2

Remark that if the action has a fixed point, then adS (G) is not necessary greater than
1
2
, which means that the opposite of Corollary (2) is not always true. For an example, let G

be a group acting on itself by conjugation. Then the action of G on itself in this case is the
commutativity degree of G and sg = gsg−1 = s ∀g ∈ G. Then gs = sg ∀g ∈ G. Therefore
s ∈ Z(G) is a fixed point of this action while the action degree (commutativity degree in this
case) of the group can be less than 1

2
as in the symmetric group S4 for instance.
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Theorem 2 Let G be a finite group that acts on a finite set S. Let a = |Zs(G)|
|G|

and b =
|S0(G)|

|S|
. Then

adS (G) ≥ a + b− ab.

Proof We know that:

(Zs (G) × S) ∪ (G× S0 (G)) ⊆ AS (G) .

So
|AS(G)| ≥ |Zs (G) × S|+ |G× S0 (G)| − |Zs (G) × S0 (G)| .

Therefore
|AS(G)| ≥ |Zs (G)| · |S| + |G| · |S0 (G)| − |Zs (G)| · |S0 (G) | .

Finally

adS (G) ≥
|Zs (G)|

|G|
+

|S0 (G)|

|S|
−

(

|Zs (G)|

|G|

) (

|S0 (G)|

|S|

)

. 2

In the following, the definition of the action degree of finitely generated groups is presented
along with some bounds and inequalities.

3.2 Action Degree of Finitely Generated Groups

So far, this paper has focused on finite groups. The following part moves on to finitely generated
groups. We begin with the definition of the action degree of finitely generated groups.

Definition 4 Let G be a finitely generated group and X a finite generating set of G. Assume
that G acts on a finite set S. We define the action degree of G with respect to X, denoted as
adS(G,X) as:

adS (G,X) = lim
n→∞

sup
|{(g, s) ∈ BX (n) × S | gs = s}|

|BX(n)| . |S|

where BX (n) = {g ∈ G : lX(g) ≤ n} for every generating set X of G.

If G acts on itself by conjugation gs = gsg−1, then:

cdX (G) = lim
n→∞

sup
|{(g, h) ∈ (BX (n))2 | gh = hg}|

|BX(n)|2

and this is the degree of commutativity of infinite groups presented by Antolin et al. in [8].

Proposition 7 If G is a finite group, then adS (G,X) = adS (G) for every generating set of G.
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Proof Assume that G is finite, then there exists n0 such that for all n ≥ n0, BX (n) = G.
So

|{(g, s) ∈ BX (n) × S | gs = s}|

|BX(n)| . |S|
=

|{(g, s) ∈ G× S | gs = s}|

|G| . |S|
,

for all n ≥ n0. Passing to limit when n→ ∞, we get adS (G,X) = adS (G) . 2

Note that if X and Y are two generating sets of G, then adS (G,X) = adS (G, Y ). This
follows directly from the fact that the growth functions with respect to X and Y are equivalent.
Now, let us determine some inequalities on the action degree of finitely generated groups.

Theorem 3 Let S0 (G) = {s ∈ S | gs = s for all g ∈ G} . Then

adS (G,X) ≥
|S0|

|S|
.

Proof Consider the set
AS(G,X)n = {(g, s) ∈ BX (n) × S | gs = s} .

Clearly
BX(n) × S0(G) ⊆ AS(G,X)n.

So
|AS(G,X)n| ≥ BX (n) × S0 (G) = |BX (n)| · |S0 (G)| .

Therefore, for all n ≥ 1.
|AS(G,X)n|

|S| · |BX (n)|
≥

|BX (n)| · |S0 (G)|

|S| . |BX (n)|
=

|S0 (G)|

|S|
.

Passing to limit when n→ ∞, we obtain the result. 2

Theorem 4 Let G be a finitely generated group that acts on a finite set S and let X be a finite
generating set for G. Suppose that G has subexponential growth. Then for every finite index
normal subgroup H of G contained in Zs (G) ,

adS(G,X) ≤ ad
S
(G/H).

Proof Since H is a finite index normal subgroup of G, then

adS(G/H) =
|AS(G/H)|

|S| · [G : H]
.

Then the set AS(G/H) can be written as:

AS(G/H) =
r

⋃

i=1

{(g
i
H, si)},

for some gi ∈ G and si ∈ S. Consider the set
AS(G,X)n = {(g, s) ∈ BX (n) × S | gs = s} .

Remark that for every element (g, s) ∈ AS(G,X)n, we have:

(g, s) ∈ (gH ∩BX (n)) × {s} .
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Since (gH, s) is an element in AS(G/H), we obtain
(g, s) ∈ (giH ∩BX (n)) × {si} , for some i = 1, . . . , r. This shows that

AS(G,X)n ⊆
r

⋃

i=1

(giH ∩BX (n)) × {si}.

Therefore

|AS(G,X)n| ≤
r

∑

i=1

|giH ∩ BX (n)| .

Hence
|AS(G,X)n|

|S| · |BX (n)|
≤

∑

r

i=1 |giH ∩BX (n)|

|S| · |BX (n)|

≤
1

|S|

r
∑

i=1

|giH ∩BX (n)|

|BX (n)|
.

Passing to limit when n→ ∞ we get by using Lemma 1:

adS(G,X) ≤
1

|S|

r
∑

i=1

lim
n→∞

|giH ∩ BX (n)|

|BX (n)|

≤
1

|S|

r
∑

i=1

1

[G : H]

=
|AS(G/H)|

|S| · [G : H]

= adS(G/H). 2

4 Conclusion

In this paper, the probability that an element of a group fixes a set is further studied for finite
groups. Several results concerning the action degree are presented along with some limiting
conditions and inequalities. Moreover, the work on action degree of finite groups is extended
to finitely generated groups which generalizes previous results on the commutativity degree of
finitely generated groups.
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