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Abstract A mechanistic model has been used to explain the effect of radiation. The
model consists of parameters which represent the biological process following ionizing
radiation. The parameters in the model are estimated using local and global optimiza-

tion algorithms. The aim of this study is to compare the efficiency between local and
global optimization method, which is Pattern Search and Genetic Algorithm respectively.

Experimental data from the cell survival of irradiated HeLa cell line is used to find the
minimum value of the sum of squared error (SSE) between experimental data and sim-

ulation data from the model. The performance of both methods are compared based on
the computational time and the value of the objective function, SSE. The optimization

process is carried out by using the built-in function in MATLAB software. The parameter
estimation results show that genetic algorithm is more superior than pattern search for

this problem.

Keywords Parameter estimation; Genetic Algorithm; Pattern Search; Double-Strand
Break (DSB); Linear-Quadratic formulation.

Mathematics Subject Classification 92B05, 62F10, 65L99.

1 Introduction

Radiation helps a lot in improving human health. In cancer treatment, radiation therapy
works well along with surgery and chemotherapy. The first cancer treatment using radiation
was recorded in 1896, six months after X-rays was discovered [1]. Since then, the radiotherapy
has been evolved in line with time and technology.

However, exposure of cells to radiation can alter the deoxyribonucleic acid (DNA) structures
such as breakage on the DNA strand or base missing in the DNA backbone. It will subsequently
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cause damage to living cells and causing death. An individual cell can suffer a million alterations
of DNA in a day due to DNA strand breakage [2].

The most toxic lesions produced by radiation is double-strand breaks (DSBs). This lesion
formed at both sides of the DNA double helix and must be repaired to preserve the chromosomal
integrity [3].

In clinical practice, Linear Quadratic (LQ) formulation has been used to determine the
survival of targeted cells affected by radiation [4]. The relation of cell survival fraction with
respect to radiation dose is given as

S(D) = e−(αD−βD2) (1)

where S(D) is the survival fraction of cells with respect to dose,D, α is a constant that describes
the initial slope of the cell survival curve and β is a constant that describes the quadratic
component of cell killing. Equation 1 can be written in logarithmic form as follows:

lnS = −αD − βD2 (2)

The value of α/β ratio is fundamental to the LQ formulation. From a biological point of view,
the ratio of α/β is related to the ability of the cell to repair. A tissue with low α/β ratio has
a higher capacity for self-repair than one with a high ratio [5,6].

2 Mathematical Modelling

In radiobiology, many models have been established and well studied to explain the radiation
effect [7,8]. For example, Wentz et al. [9] presented a mathematical model that describes the
effect of acute radiation exposure on thrombopoiesis in the human body.

In 2016, Siam et al. [10] developed a mechanistic model of ionizing radiation damage to
DNA. The model considered cell population with a different number of double-strand break
(DSB) and the misrepair cell due to ionizing radiation. The model then fitted to the LQ
formulation to estimate the ratio of α/β. Next, they continue their work with parameter
estimation using Nelder-Mead (NM) simplex and Genetic Algorithm (GA) method [11]. From
their results, Nelder-Mead simplex provides the lowest value of the objective function compared
to Genetic Algorithm.

2.1 Curve Fitting and Parameter Estimation

In general, most mechanistic models in system biology are dynamical system. Dynamical sys-
tems usually depend on parameters provide physical meaning, which can explain the behavior
of the system, such as the death rate of a cell population, the repair rate of the double-strand
breaks (DSBs) damage and many more.

Model parameters involve in the biology especially in radiobiology are essential in radio-
therapy planning and radiotherapy safety. For example, in the early step in preparing a patient
for treated with Ionizing Radiation (IR), the radiation oncologist has to determine the specific
parameter, so that the patient received an effective therapy.

One of the challenges in computational modelling of biological system is to determine the
value of model parameters. Often, the parameter can be evaluated experimentally. However,
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there are some parameters which cannot be measured from the experimental directly. These
parameters can be estimated through the curve fitting process.

There are two common approaches in estimating parameter: maximum likelihood and least
square. In this research, we only considere the least square method since the probability
distribution of the experimental data is unknown. Least square criterion assumed that the best
fit line of the experiments data is the line which has the smallest value of the least square error
(or sum of the squares of the deviation) from the given data.

In this research, optimization is implemented to find the best fit between experimental
data and model data. Objective function is used to represent the sum of squares error (SSE).
Optimization is employed in order to find the minimum value of the objective function.

The objective function is the sum of the square error (SSE) between experimental data and
simulation data which is given below

SSE =
n∑

i=1

[y−f(x, θ)]2 (3)

where y is the experimental data and f(x, θ) is the surviving fraction from the mathematical
model that contain parameters. In order to minimize the SSE, two types of optimization
methods which are in the category of local and global optimizer are employed.

Local search optimization is a direct solution that moves to its neighborhood iteratively. A
new solution is found at each step they are moving. The way of choosing the new solution is
to pick up the best one in the neighborhood and replace the current solution and the search
continues. For example, f(x) will be a new solution if the value of f(x) > f(xn+1) where f(x)
is the value of objective function. The search will quit when the current solution does not have
any improvement. The example of local search optimization is Nelder-Mead simplex [12], and
Pattern Search [13].

In contrast, global search optimization use gradient of the objective function to determine
the direction. It searches solution among all the possible solution which is not restricted to
the neighbourhood region only. The example of well-known global optimization is Simulated
Annealing [14], Genetic Algorithm [15] and Particle Swarm Optimization [16].

Parameter estimation is performed either using one or two optimization methods simultane-
ously. For example, Costa et al. focused on global optimization method, Simulated Annealing
to estimate parameters value in thermodynamic models [17] as well as Özsoy et al. focused on
Particle Swarm Optimization [18].

On the other hands, some researchers perform two different optimization methods to com-
pare and determine which method best fit to experimental data [19,20]. For example, research
by Ruf et al. [21] applied both local and global optimization methods to estimate parameter’s
value. In their work, local optimization is able to find the best solution between experimental
data and their model compared to global approach [21]. Then in 2016, Siam et al. [10] compare
the performance between local and global optimization method, Nelder-Mead Simplex and
Genetic algorithm respectively. From their result, local optimization method, Nelder-Mead
simplex provides the smallest objective function value, sum square error, SSE which indicates
the best solution to the problem [11].

A mathematical model of radiation effects to the cell was developed by Siam et al. [10]
is employed as a referenced model in this study. As previously mentioned, they compared
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the performance of optimization method between Genetic Algorithm (GA) and Nelder-Mead
Simplex method [11]. However, in this study, the parameters in the model will be estimated by
using local and global optimization, Genetic Algorithm and Pattern Search (PS) respectively.
Both Nelder-Mead Simplex and Pattern Search are categorized in local optimization method.
However, the algorithm differs to each other. In Pattern Search method, the objective function
is updated around their neighborhood points, while Nelder-Mead Simplex method updating
their objective function by comparing the value at the three vertices of a triangle. Besides
that, the experimental data used in this study is different from [22]. Hence we have surviving
fraction cell of HeLa cell which are treated with radio sensitizer. There are evidences showing
that the used of radio sensitizer increase the number of cell killing in radio theraphy [23,24].

The aim of this method is to minimize the sum of square error (SSE) between experimental
data and simulation data. The performances of both algorithms are compared based on the
value of SSE and computational time.

3 Optimization Procedure

3.1 Genetic Algorithm

Genetic Algorithm was first proposed by John Holland [25]. This method generates solutions to
optimize problem using techniques inspired by natural evolution, such as inheritance, mutation,
selection, and crossover. Besides that, Genetic Algorithm is an adaptive heuristic method and
successfully applied to solve the optimization problem. It is a reliable and accurate method
of an optimization problem with a series of natural process involved [26]. For example, Lee
et al. [27] applied Genetic Algorithm to estimate parameter in the mesoscale meteorological
model in order to improve the quantitative precipitation for heavy rainfall case in Korea [27]
as well as Mart́ınez-Cañada et al. who used Genetic Algorithm to estimate parameter in the
neuron model [28].

The solution generated by this method is called chromosome. The chromosome is repre-
sented as a set of parameters that defines the solution to the problem. Gene is joined to form
a chromosome, while population refers to a group of the chromosome. Its value is in binary
string, 0 and 1.

Crossover is the most important part in Genetic Algorithm where the offspring is created.
It involves two individual parents mating with each other to produce two new offsprings. The
process keeps repeating in order to generate a high quality offspring. The process terminates
after the value converged to a certain value. The basic terminologies in Genetic Algorithm, as
well as the main step to estimate the parameter for every model can be presented in Figure 1
and summarized as follows:

1. Generate initial population for individual’s chromosome (parameters).

2. Evaluate the fitness of each chromosome.

3. Create new chromosome (offspring) by mating current chromosome using a suitable op-
erator. There are four operators of Genetic Algorithm:

i. Selection

ii. Crossover

iii. Mutation
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iv. Reproduction

4. Place the new chromosome in the new population

Figure 1: The Framework in Optimizing using Genetic Algorithm

3.2 Pattern Search

Pattern Search (PS) also known as Hooke-Jeeves method is a free derivatives method in search-
ing minimum value [28]. This method works by creating a set of search direction iteratively.
It relies on the value of f(x) on a sequence x1, ..., xn. The value of objective function,f(x) ,is
compared to search the minimum value. In 2003, Honkela employed Pattern Search for param-
eter estimation [30]. Later, Emary et al. [31] use Pattern Search to optimize the segmentation
of retinal vessels based on multi-objective segmentation [31].

It involves two types of move: exploratory move and pattern move. Exploratory move is
the initial move that looks for an improving direction to move. This is done by perturbing the
current point by a small amount in each variable direction and the objective value is observed.
Pattern move require two points, the current point and another point that has a better value
of objective function. This will give the pattern move an improving direction to move in.

The method proceeds by a sequence of exploratory and pattern move from a base point. If
an exploratory move leads to a decrease in the value of f(x) it is called a success, otherwise, it
is called a failure. The algorithm for pattern search method as well as the flowchart is shown
in Figure 2 and summarized below:

Step 1: Selection of initial condition which includes:

i. Initial points: x(0)
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ii. Increment vector: ∆i = (0.5, ..., N)

iii. Reduction vector: α = 2

iv. Termination parameter.: ε = 10−3

Step 2: Perform the iteration with the starting point,x(0).Three points are set as the function
value. Calculate

i. f+ = f(x + ∆)

ii. f = f(x)

iii. f− = f(x − ∆)

Step 3: Findfmin = min(f+, f, f−) if fmin < f(x) then f(x) is replaced by fmin otherwise, retain
f(x).

Step 4: Repeat step 2 for the second iteration until the minimum value of the function is
reached.

Figure 2: The Framework in Optimizing using Pattern Search

3.3 Parameter Estimation Procedures using GA and PS

3.3.1 Genetic Algorithm

Step 1: Set the initial parameters value.

Step 2: Based on the initial value in Step 1, the objective function (SSE) is calculated by using
GA technique

Step 3: Estimated parameters value are obtained.
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3.3.2 Pattern Search

Step 1: Set the initial parameters value.

Step 2: Based on the initial value in Step 1, the objective function (SSE) is calculated by using
PS technique

Step 3: Estimated parameters value are obtained.

Both results are then compared. The comparison between these two optimization techniques
are based on the value of the objective function, SSE and computational time.

4 Results and Discussion

An experimental data from [32] is utilized for the purpose of parameter estimation. The experi-
mental data is a treatment of HeLa cell treated with 29 nm of platinum nanodentride (PtNDs),
a type of radiosensitizer and the cells is irradiated with a 6 MV photon beam for this purpose.
It is a compound used to increase the effect of ionizing radiation. There are evidences show that
the use of radiosensitizer can cause double-strand break (DSB), the most lethal DNA damage
[33,34]. The experimental data points are plotted in Figure 3. The experimental data is fitted
to the LQ formulation ln S = −0.0593D−0.0342D2 where αexp = 0.0593 and β = 0.0342 using
GA method.

Figure 3: The Survival Curve of HeLa Cell treated with 29nm of Platinum Nanodentride
(PtNDs), Combined with a 6 MV Photon Beam
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The experimental data in Figure 3 is fitted to the LQ formulation ln S = −0.0593D −
0.0342D2 where αexp = 0.0593 and β = 0.0342 using GA method. In this study, the initial
value of six parameters of the model δ, α1, α2, ρ, Vmax, KM are set randomly. The description of
each parameter is shown in Table 1.

In this study, the built-in optimization toolbox in MATLAB is used, which are ga for Ge-
netic Algorithm and patternsearch for Pattern Search. The performance of both optimization
methods are evaluated based on the value of SSE and computational time. The results of
parameter estimation for 50 runs are shown in Table 2.

Table 1: Parameter’s Description

Parameter Meaning
δ Radiosensitivity of cell
α1 Death rate due to misrepair DSB
α2 Death rate due to lethal aberration of DSBs
ρ Probability of correctly repair

Vmax Maximum repair rate
KM Michaelis-Menten constant

Table 2: The Estimated Parameter Values (Mean), Standard Deviation, the Sum of Square
Error (SSE) and Correlation of GA and PS Method

Method Parameter Estimated Parameter Standard SSE r
2

Value (Mean) Deviation

GA

δ 3.0565 1.05044

0.00055 0.97344

α1 8.0296 6.7686
α2 0.0019 0.00152
ρ 0.9799 0.01084
Vmax 1.1943 0.8296
KM 3.7539 1.42786
αmodel 0.0509 0.01301
βmodel 0.04543 0.00748

PS

δ 3.3446 1.59674

0.00460 0.9520

α1 3.1575 7.1922
α2 0.00236 0.00175
ρ 0.8384 0.25477
Vmax 1.47429 1.23482
KM 3.67729 1.55588
αmodel 0.06064 0.02742
βmodel 0.03995 0.01669

Table 2 presents the mean of estimated parameter value by GA and PS. From the table, it
can be seen that SSE value for GA is smaller than PS value. The value of SSE for GA is close
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to 0 which correspond to an excellent fit between model and experimental data. The value of
the standard deviation of each parameter is also provided in the table. Standard deviation is
a measure of variation about the mean of parameters value. It is observed, the large value of
standard deviation indicates more spread out of data [35]. In this study, the value of the sample
standard deviation of the estimated value for δ, α1, Vmax and KM given by GA are larger than
the other parameter. This means that these parameters are insensitive to the model.

From the result, it is found that GA is more superior than PS method in terms of in providing
the smallest value of SSE. This result is supported by the computational of correlation, r,
between real data and simulation data provided by GA which is close to 1. The value which
is close to 1 indicates an excellent fit between model and the experimental data. Figure 4
provides the plot between experimental and simulation data, which explain the good fit between
experimental and simulation data.

The computational time is also taken into consideration in order to compare the performance
of both optimizers. The time refers to the time taken for optimizer methods to converge to the
objective function to a minimum value. The time taken for both optimizers are presented in
Table 3.

Figure 4: The Computational Time in Minimizing the Objective Function (SSE) using GA
and PS
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Table 3: The Computational Time in Minimizing the Objective Function (SSE)

Method Time(s)

GA 684.2272

PS 528.852

From Table 3, it shows that the time taken for GA to minimize the objective function is
longer than PS method. As discussed in Section 4, GA algorithm is more complicated compared
to PS method. Genetic Algorithm generates a solution based on the chromosome culture. It
involves two parents chromosomes in creating two new chromosomes. The process ends after
the value of the selected gene in the chromosome changed from 1 to 0 and vice versa. Therefore,
the process consumes a long time to converge to a minimum value. However, GA manages to
obtain the smallest SSE value which is 0.00055. Thus, it is concluded that in our case, GA is
more superior than PS.

Next, the computational of 95% confidence interval (CI) of each parameter in the model are
provided. The confidence interval gives the interval value of each parameter around its mean
value. In this study, we use 95% CI which means that it is 95% true the value of parameters is
within the interval. The confidence interval for GA is computed and shown in Table 4.

Table 4: The 95% Confidence Interval for the Six Parameters of the Model using GA Method

Method Parameter Confidence Interval (C.I)

GA

δ (2.7654,3.3477)
α1 (6.1534,9.9057)
α2 (0.0015,0.0023)
ρ (0.9769,0.9829)

Vmax (0.9644,1.4242)
KM (3.3582,4.1497)

αmodel (0.0472,0.0545)
βmodel (0.0433,0.0475)

5 Conclusion

The aim of this study is to estimate parameter’s value in the model using survival data of HeLa
cell treated with a combination of radiation and radiosensitizer. The used of radiosensitizer in
radiotherapy is to enhance the number of cell killing. Parameter estimation is carried out to
determine the descriptive measure of cell response toward radiosensitizer and radiation dose.
Local and global optimization have been used for this purpose. The results of parameter
estimation between GA and PS are compared to determine which method is more efficient for
this study. The results showed that, GA provides the smallest value SSE compared to PS. On
the other hand, the computational time consumed by GA is longer than PS method due to
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the complexity of GA algorithm. However, GA managed to get the smallest SSE value despite
the longer computational time. Besides that, the correlation between experimental data and
simulation provided by GA is close to 1 which indicates an excellent fit.
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