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Abstract This paper revisits the comrade matrix approach in finding the greatest com-

mon divisor (GCD) of two orthogonal polynomials. The present work investigates on the
applications of the QR decomposition with iterative refinement (QRIR) to solve certain

systems of linear equations which is generated from the comrade matrix. Besides iterative
refinement, an alternative approach of improving the conditioning behavior of the coeffi-

cient matrix by normalizing its columns is also considered. As expected the results reveal
that QRIR is able to improve the solutions given by QR decomposition while the nor-

malization of the matrix entries do improves the conditioning behavior of the coefficient
matrix leading to a good approximate solutions of the GCD.
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1 Introduction

The greatest common divisor (GCD) of a polynomial set is significant to problems that arise in
applied mathematics and engineering. The work mainly focuses on solving the GCD computa-
tion of two polynomials by using the theoretical approach which has been proposed in several
works of Barnett [1-4]. He made use of companion and congenial matrices such as colleague,
comrade and confederate matrix which can be applied to compute the GCD in the generalized
form. Barnett’s GCD theorem provides an alternative to standard approaches which are based
on Euclidean algorithm (which has been known for centuries in GCD solving via polynomial
division), since the GCD can be calculated in a single step, either symbolically or numerically,or
by solving a system of linear equations.

We consider the problem of computing the GCD of two polynomials

a (x) = a0p0 (x) + a1p1 (x) + . . . + anpn (x)
b (x) = b0p0 (x) + b1p1 (x) + . . . + bmpm (x)

(1)
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with deg {a (x)} = n and deg {b (x)} = m, where n ≥ m and an, bm 6= 0. The polynomials
coefficients are represented in a basis of orthogonal polynomials {pi (x)}n

i=0 defined by the three
recurrence relation such that,

p0 (x) = 1,
p1 (x) = α0x + β0,

pi+1 (x) = (αi (x) + βi (x)) pi (x)− γipi−1 (x) .

(2)

for i = 1, 2, 3, · · · , n − 1 with αi > 0, βi > 0, γi > 0. Without loss of generality, let an = 1 and
m < n. If the values of αi, βi, γi for i = 0, 1, . . . , n− 1 are known, the comrade matrix for a (x)
is an n × n matrix given by
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. (3)

The comrade matrix above is a generalization of the companion matrix and is associated with a
polynomial expressed as a linear combination of an orthogonal basis. By applying the comrade
matrix approach, the degree of the GCD of these polynomials which is equalto the rank loss
of the associate coefficient matrix of certain systems of linear equations, can be determined.
The coefficients of the GCD are then obtained by solving these systems with respect to some
variables.Aris and Rahman [5] and Ahmad [6] have applied the theoretical and analytical re-
sults of Barnett by constructing and implementing symbolic algorithms to compute the GCDs
of polynomials in the orthogonal basis, particularly the Legendre and Chebyshev polynomials.
The work has applied the modular homomorphic image scheme so as to avoid multiprecision op-
erations involving very large integers and rational numbers in the entries of the matrix. Solving
the problem in exact computational environment faces the challenge of applying multiprecision
operations and intermediate expression swell. On the other hand, in the floating point envi-
ronment the coefficient matrix can be ill conditioned. Solving the problem numerically leads to
new challenges not only for the purpose of solving the GCD problem but also to investigate on
the extensiveness of applying appropriate numerical methods for solving ill-conditionedsystems
of linear equations, see in [7,8].

In this paper, the numerical results from using QR Householder method to solve the GCD
of two polynomials in the shifted Chebyshev basis are presented. The process of iterative
refinement is implemented to reach a better approximate solution.In addition when the method
fails to give a correct solution, scaling the coefficient matrix is also investigated in order to reduce
the condition number of the coefficient matrix and consequently finding the desired solution.
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2 General Procedure

Let a (x) and b (x) be two polynomials satisfying relation (2), with deg (a (x)) = n ≥ deg (b (x)) =
m. The method of finding the GCDs of (a (x) , b (x)) using the comrade matrix can be outlined
by the following procedure:

Step 1: Construct the comrade matrix associated with a (x).

Step 2: Construct the corresponding coefficient matrix of certain system of linear equations
using the recurrence relation defined in (2).

Step 3: Determine the rank of the coefficient matrix in Step 2 and solve the augmented systems
of linear equations to obtain the coefficients of the GCD.

2.1 Constructing the System of Equations

If A is the comrade matrix given by (3), define

b (A) = b0I + b1p1 (A) + · · · + bmpm (A) . (4)

The respective rows of b (A) is given by r0 = [b0, b1, . . . , bm, . . . , bn−1] , r1 = r0p1 (A) , . . . , rn−1 =
r0pn−1 (A). Using the recurrence relation defined in (2), the rows of b (A) in terms of the comrade
matrix and recurrence relation such that:

r0 = (b0, b1, . . . , bm, 0, . . . , 0) ,

r1 = r0 (α0A) ,

ri = ri−1 (αi−1A + βi−1I) − γi−1ri−2,

(5)

for i = 2, . . . , n The GCD of polynomials a (x) and b (x), denoted by d (x) = gcd (a, b), is a
polynomial with degree deg {d (x)} ≤ n such that deg {gcd (a, b)} = n − rank [b (A)] such that

d (x) = d0p0 (x) + d1p1 (x) + · · · + pk (x) . (6)

Theorem 1 [4] If c1, c2, . . . , cn are the columns of the coefficient matrix b (A) with rank n− k,
then the last n − k columns, i.e. ck+1, . . . , cn, are linearly independent and every column ci

for i = 1, 2, . . . , k can be written as linear combinations of ck+1, . . . , cn. Then the coefficients
d0, . . . , dk−1 in (6) are given by

ci = di−1ck+1 +
n

∑

k+2

xijcj i = 1, 2, . . . , k. (7)

The k-system of equations in (7) is described by the augmented matrix
(

ck+1
... ck+2

... · · ·
... cn ‖ c1

... · · ·
... ck

)

(8)

which is
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for each i = 1, 2, . . . , k and xi,k+1 = di−1.
The computation of the rank of b (A) and the coefficient of GCD, can be computed simulta-

neously from (9) and (10). The column of matrix b (A) is rearranged to produce a new matrix
so that the jth column of b (A) is the n − (j − 1)

th
column of the new matrix, say L(0) i.e:

l0n−(j−1) = cj for j = 1, 2, . . . , n.

Reducing L(0) to upper row echelon form by s steps gives the matrix

L(s) =
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(10)

such that r = rank
(

L(0)
)

. If k = n−r, the solution to the coefficient of d (x) is given as follows:

dk−1 = l
(s)
r,r+iInv

(

l
(s)
r,r

)

, i = 1, 2, . . . , k,

dk = 1.

3 Mechanization of Comrade Matrix Approach

Due to the stability criterion of the QR decomposition method in solving least square problems
and over-determined system of linear equations, the method is chosen to solve the GCD problem.

3.1 Standard QR

A standard method of obtaining QR factorization is via Gram-Schmidt orthogonalization. But
this method is not as stable as QR via Householder reflectors [9], which we choose to focus in
this work. The coefficient matrix b (A) obtained in (5) can be partitioned into general least
square problem Ax = b once we know the rank. The procedure to the QR factorization are as
followed:

1. QR factorization of A such that A = QR (Householder reflectors).

2. Form d = QT b.

3. Solve Rx = d via backward substitution.

3.2 QR with Iterative Refinement

For a small number of degree polynomials or small number of coefficient integers involved in the
associated matrix, the method is always stable. But as the degree of polynomials increases, the
method is not quite stable, thus requires iterative refinement step so that the initial solution
approaches the desired solution. In iterative refinement a computed solution is corrected in



Siti Nor Asiah binti Isa et al. / MATEMATIKA (Special Issue 2018) 25–32 29

an iterative process. The solution to a linear problem is regarded as an initial approximation
to the true solution of Ax = b. Then the process of iterative refinement can be described as
follow:

1. Set x0 = x̄.

2. For k = 1, 2, . . . , do

i. Compute the residual vector: r(k) = b = Ax(k).

ii. Calculate the correction vector c(k) by solving the system Ac(k) = r(k) using the same
triangularization of A that is used to obtain the initial approximate value, x(0).

iii. Update the solution: x(k+1) = x(k) + c(k).

iv. Test for the convergence if ‖x(k+1)−x(k)‖2

‖x(k)‖2
< ε, where ε is the convergence tolerance.

3. End.

3.3 Normalization

Considering the monic polynomials involved in this work, there is a large disparity in the sizes
of coefficient matrix when the smallest entry of the b (A) matrix is 1 while the largest entry has
at least 10 digits. Such matrix is ill conditioned. To reduce the condition number of the matrix,
we scale the matrix by dividing each entry of the matrix, say aij with the largest number in
each ith rows. Examples are shown as Table 1.

Table 1: Condition Number Before and After Normalization

Test Problem Condition Number

m Before normalization After normalization

9 2.16E+29 2.75E+21

9 1.17E+30 8.47E+20

10 5.71E+30 3.87E+21

10 3.94E+34 1.01E+21

Note: m is the size of the coefficient matrix

4 Result and Discussion

The test polynomials relative to the shifted Chebyshev basis are generated by using C++ pro-
gramming such that the roots are randomly generated integers without repetitions of roots.The
results on the implementation of QR Householder (QR), QR with iterative refinement (QRIR)
and QR with normalization (QRN) algorithms on some test problems using C++ programming
are presented as shown in Table 1, Table 2 and Table 3. In the tables below, m is the degree
of a (x), n is the degree of b (x), k is the degree of the GCD of a (x) and b (x). ‘Digits’ denote
the maximum number of digits obtained from the largest coefficient matrix entry. For the test
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problems, the number of digits that gives the largest coefficient matrix entry is taken to be
between 20 and 32, while the smallest entry in the matrix is always 1, since the polynomials
has to be monic. For digits to be in this range, the size of the polynomial roots and the degree
of the polynomials can be divided into 3 different cases: small roots, degree of a (x) ≤ 10; big
roots, small degree of a (x); and small roots, big degree of a (x). Relative to the multiprecision
integer entries of the coefficient matrix (since digits ≥10), the polynomials are considered of
small degree if the degree is less than or equal to 7 and big degree if its degree is greater than
or equal to 10. Here small roots range between −15 to 15 while large roots range up to 100.

Table 2: Small Roots, Degree a (x) ≤ 10

Test Problem Relative Error

m n k digits QR QRIR QRN

9 8 5 22 3.15E−04 5.17E−07 1.72E−09

9 8 5 21 6.51E−06 6.30E−08 1.32E−10

10 9 4 23 1.12E−02 1.96E−09 1.96E−08

10 9 6 27 1.43E−06 7.34E−10 7.88E−07

In Table 2, it is shown that after some iterative refinement the calculated solutions are closer
to the actual solutions, while by normalizing the coefficient matrix, QRN gives better results
than implementing QR without normalization followed by iterative refinement (QRIR).

Table 3: Big Roots, Small Degree a (x)

Test Problem Relative Error

m n k digits QR QRIR QRN

7 6 3 30 5.19E−04 7.51E−09 5.85E−02

6 5 2 30 1.13E−03 1.23E−09 6.70E−04

It is shown in Table 3 that computations using QRIR gives better solutions compared to
QRN. While in Table 4, when considering polynomials of degree greater than 10 with the
maximum number of digits in the coefficient matrix entries about 32, only QRN is able to
give a good approximate solution. This may be due to the truncation error in the precision
involving multiplications and divisions involving big integers, during the reduction stages of the
QR method.
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Table 4: Small Roots, Big Degree a (x)

Test Problem Relative Error

m n k digits QR QRIR QRN

11 10 7 32 Fail to give solutions Fail to give solutions 6.90E−07

12 11 5 30 Fail to give solutions Fail to give solutions 1.67E−05

12 11 2 30 Fail to give solutions Fail to give solutions 1.89E−03

5 Conclusion

The application of the QR algorithm is not trivial since the matrix involved in finding the
solutions to the GCD is ill-conditioned. There exist limitations to the method such that to a
certain extent the method fails to give the correct solution. In this work the problem can be
overcome by the process of iterative refinement to achieve a better approximate solution or by
the process of normalization of the matrix entries. Normalizing the entries reduce the disparity
in the size of the matrix entries and thus possibly improves the conditioning behavior of the
matrix.
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