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Abstract Recently, oil refining industry is facing with lower profit margin due to un-

certainty. This causes oil refinery to include stochastic optimization in making a decision
to maximize the profit. In the past, deterministic linear programming approach is widely

used in oil refinery optimization problems. However, due to volatility and unpredictability
of oil prices in the past ten years, deterministic model might not be able to predict the

reality of the situation as it does not take into account the uncertainties thus, leads to
non-optimal solution. Therefore, this study will develop two-stage stochastic linear pro-

gramming for the midterm production planning of oil refinery to handle oil price volatility.
Geometric Brownian motion (GBM) is used to describe uncertainties in crude oil price,
petroleum product prices, and demand for petroleum products. This model generates the

future realization of the price and demands with scenario tree based on the statistical
specification of GBM using method of moment as input to the stochastic programming.

The model developed in this paper was tested for Malaysia oil refinery data. The result
of stochastic approach indicates that the model gives better prediction of profit margin.
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1 Introduction

Oil refinery production need to make important decisions such as to determine the right amount
of crude oil to purchase, the products to produce and to optimize the production with the best
use of the existing resources in order to improve the company’s profitability. In the past,
all these decisions do not incorporate uncertainty where the deterministic linear programming
approach is widely used in oil refinery optimization problems. In the year 2008, the crude oil
prices rose to the maximum price and fell to a minimum price in the same year. The drastic
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price changes also affect the petroleum finish product prices as well as demand. Due to volatile
and unpredictable oil price over the past ten years, the deterministic model might not be able
to predict the real situation as it does not take into account the uncertainties that lead to
a non-optimal solution. Thus, this study will develop two-stage stochastic programming for
the midterm production planning of oil refinery to represent the problem using a scenario-
based approach to handle uncertainties such as prices and demand of finish products. This
approach attempts to maximize profit of oil refinery midterm production planning subjected
to uncertainties which is using the geometric Brownian motion (GBM) model. Accurately
incorporating uncertainty into the refinery production planning problem will result in better
decision making and improve refinery expected profit and will lead to increase in country’s
GDP and government’s revenue. A real case study based on Malaysia oil refinery data was
used to test the developed model

The rest of this paper is organized as follows. In the next section, we will present a literature
review for the stochastic optimization of oil refinery. In section 3,we first model and forecast
crude oil price, the price of finish products and demand of finish products following GBM. Then
we discretize continuous probability distribution of forecast values to generate discrete scenario
with binomial scenario tree based on the statistical specification of GBM using first (expected
mean) and second (variance) moment matching method as input to the two-stage stochastic
programming. Then in section 4 and 5 we will discuss the results and conclusions.

2 Literature Review

Leiras et al. [1] made a review for oil refineries planning under uncertainties papers from the
90s to 2010 and only 5 out of 22 papers studied the two-stage stochastic programming. Khor et

al. [2] studied hybrid two-stage stochastic programming and employed sampling method to
construct scenarios for the price, demand of finish products and yield uncertainty. Other stud-
ies also developed two-stage stochastic programming approach with financial risk management
for the real case study of Bangchak Petroleum Public Company Limited production planning
Pongsakdi et al. [3] and found that stochastic model gives higher profit with lower risk where
the number of scenarios for the uncertainties constructed via sampling. The latest paper for the
two-stage model reviewed by Leiras et al. [1] was Ribas et al. [4] paper where the scenarios con-
struction for uncertainties is based on basic scenario ( low-25%, base-50%, high-25%) and they
compared two-stage stochastic programming with robust min-max regret model and max-min
model. However, this basic scenario is not appropriate to represent actual possible realiza-
tion for each source uncertainty due to inconsideration of volatility in actual data. Therefore,
Awudu and Zhang [5] modelled the uncertainties (prices of end products) following the GBM
to solve two-stage stochastic programming for biofuel supply chain. Chung and Yang [6] also
modelled the demand of products as GBM in proposing a scenario based two-stage stochastic
programming model for the control or dummy wafers problem. In this study, simplified repre-
sentation of formulation for the deterministic linear program is based on the study by Khor [7]
and we develop a scenario based two-stage stochastic programming where GBM model is used
to represent uncertainties. Therefore, moment matching method is used to construct a decision
tree for oil price and demand uncertainty as input to the stochastic programming to maximize
the expected profit of midterm production planning of oil refinery. Real data of prices and
demand of Tapis crude oil, gasoline, naphtha, kerosene, diesel, fuel oil from 1990 to 2014 were
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used in this study and was tested for the oil refinery production planning.

3 Model Formulation

3.1 Deterministic Model for Oil Refinery Midterm Production P lanning

In the deterministic model, crude oil price, finish products sales price and demand of finish
products are constant. The mean values from historical data are used. The objective function
is to maximize midterm production planning of oil refinery considered as revenue from products
sales minus raw material cost and operating cost. This study is close to Khoret al.[2] study
where the objective function and constraints are presented below

Maximize profit Z
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subject to
a) Production capacity constraints

xj,t = xj,t−1 + CEj,t∀j ∈ J, (2)

yj,tCEL
j,t ≤ CEj,t ≤ yjtCEU

j,t∀j ∈ J∀t ∈ T, (3)

where
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{
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(4)

b) Demand constraints
Si,t + Li,t = di,t ∀i ∈ I ′, (5)

dL
i,t ≤ Si,t ≤ dU

i,t,s ∀i ∈ I ′. (6)

c) Availability constraints
pL
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t ∀i ∈ I ′. (7)
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e) Material balances

Pt + IS
i,t +

∑

j∈J

bi,jxj,t − Si,t − If
i,t = 0 ∀i ∈ I ′, ∀t ∈ T. (10)

The simplified oil refinery operation based on Khoret et al. [2] study is used to describe a
formulation of the deterministic linear program for midterm production planning as in Figure 1.

Where the decision variables in unit barrel per year are x1 refer to the mass flow rate of
crude oil stream, x2 mass flow rate of gasoline, x3 mass flow rate of naphta, x4 mass flow rate of
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jet fuel or kerosene, x5 mass flow rate of heating oil or diesel,x6 mass flow rate of fuel oil and x14

mass flow rate of cracker feed stream required within objective function. These represent the
crude oil being purchased and finish products being sold while the other variables are present
in constraints.

Figure 1: Simplified Oil Refinery Midterm Production Planning for Formulation of Determin-
istic Linear Model

3.2 Stochastic Model for Oil Refinery Midterm Production Planning

The general formulation for two-stage stochastic linear programming problem is

max CTx + E [Q (x, ζ)]

s.tAx ≤ b, x ≥ 0 (11)

where Q (x, ζ) is the optimal value for the second stage problem,

max qty

s.tTx + Wy ≤ h, y ≥ 0 (12)

The objective function in (11) contains first stage decisions (before the realization of uncer-
tainty) denoted by vector x and the second stage decisions (after the realization of uncertainty)
denoted by y . Matrix A, vector b and vector C are known with certainty. In the second stage
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problem, elements qTW and h are viewed as random and in this study we only consider element
q and h as random due to prices and demand of finish products uncertainty.

The amount of crude oil purchased, amount of finish products sold and production capacity
is the first stage decision variables. After the prices and demand for finish products uncertainty
are revealed, the recourse costs are imposed based on corrective action. These corrective actions
are associated with amount of unsatisfied demand and excess finish products. The recourse costs
are denoted as penalty cost incurred due to shortfall and surpluses in oil refinery production
planning due to the uncertainty of finish products demand. A scenario based approach in this
study refer to the random space is considered as discrete events. The discrete distribution
with finite number of s possible outcomes (scenarios) ζs = (qsTs, W shs) corresponds to the
probability of ps. Hence equation (11) and (12) can be written as large linear programming
model

max CTx +
S

∑

s=1

psq
T
s ys

s.tAx = b

Tsx + Wsys = hs, s = 1, . . . , S

x ≥ 0, ys ≥ 0, s = 1, . . . , S (13)

3.3 Stochastic Parameters Model and Scenario Tree Construction

In the year 2008, crude oil prices rose to the maximum price and fell to a minimum in the same
year. The impact of drastic price changes also affects the petroleum finish product prices as
well as demand. Instability of crude oil price attracted researches to find the best model to
describe the behavior of crude oil price Postali et al. [8], [9] and [10]. Based on that, we consider
that the random variables, the prices and demand of finish products are modelled with GBM

dSt = µStdt + σStdWt (14)

where S is the prices and demands, µ and σ are the drift and volatility and W is a Brownian
motion. Sample path of Brownian motion W are not differentiable so the equation (14) has
the explicit solution

St = S0 exp

[(

µ − σ2

2

)

t + σWt

]

(15)

GBM has a property that the log ratio follows normal distribution

ln

(

St

St−1

)

∼ N
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2

]

t, σ2t

)

(16)

It can be shown that GBM has a Markov process which the future independent of past, given
the present.

In order to generate discrete number of scenarios based on GBM, Jarrow and Rudd [11]
proposed modelis used and the first (drift) and second moment (variance) of binomial steps
are matching with the GBM. The next upward and downward price and probability nodes are
calculated using the measurements as follow.
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Price at the next upward node:
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√
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)

with probability
1 − p = 0.5 (18)

µ and σ are calculated using maximum likelihood estimation.

4 Results

4.1 Stochastic Model

A new reformulated objective function consists of summation of maximization of the expected
profit (considered as revenue from products sales minus raw material cost and operating cost)
and minimization of summation of expected recourse penalty due to shortfall and surpluses in
production.

MaxZ1 = E [Z] −Es,demand (19)

Since the objective function in deterministic model is linear, the expectation objective function
with random price coefficient is given by

E [Z] =
∑

i∈I

∑

s∈S

psCixi, i = {1, 2, 3, 4, 5, 6, 14} ∈ I random
price ⊆ I, s = {1, 2, 3} ∈ S (20)

where ps is the probability of scenario s for prices uncertainty, Ci and xi are vector consisting
of cost coefficients and production flow rate of products type i. The corresponding expected
recourse penalty due to uncertainties in demand for the second stage cost is given by

Es,demand =
∑

i∈I

∑

s∈S

ps

(

c+
i z+

i,s + c−i z−

i,s

)

, i = {2, 3, 4, 5, 6} ∈ I ⊆ I, s = {1, 2, 3} ∈ S (21)

where ps is the probability of scenario s for demand uncertainty, z+
i,s and z−

i,s are an amount of
under production and overproduction of product type i per realization of scenario s and c+

i and
c−i are penalty costs for shortfall and surplus in production of product type i. Subject to first
stage constraints; limitation on plant capacity, mass balances (fixed yields, fixed blends and
unrestricted balances) and second stage constraints; demand constraints. In the second stage
constraints, the demand deterministic constraints are replaced by the new constraints to model
the number of generated scenarios in the stochastic model. Thus the new demand constraints
are

xi+z+
i,s−z−i,s = di,s, i = {2, 3, 4, 5, 6} ∈ I random

demand ⊆ I, s = {1, 2, 3} ∈ S (22)
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where di,s is demand of finish products i in scenario s. In this study, the formulation for two-
stage stochastic programming is close to Khor et al. [2] study however we model the uncertain
parameters as GBM.

4.2 Scenario Tree

In this study, we consider seven uncertain parameters for prices uncertainty and five parameters
for finish products demand uncertainty. Each parameter takes on two values, high value which
is denoted as H and low value which is denoted as L as shown in Table 1 and Table 2. The
probability of each occurring high and low value is 0.5. We obtain 128 scenarios (27) with
the probability of occurrence of each scenario is 0.0078 by multiplying the probabilities of
uncertain parameter in each scenario as presented in the scenario tree in Figure 2. For example,
in scenario 1, {H,H,H,H,H,H,H} is a set of event sequences denotes as high prices for Tapis,
Gasoline, Naphta, Kerosene, Diesel, Fuel oil and Cracker feed. While for demand scenario tree,
32 scenarios (25) were constructed with the probability of occurrence of each scenario is 0.03125
as presented in Figure 3.

Table 1: Simplified Oil Refinery Midterm Production Planning for Formulation of Deterministic
Linear Model

Item High price ($/barrel) Low price ($/barrel)

Tapis Crude Oil 115.76 104.07
Gasoline 128.01 106.57
Naphta 111.55 88.18
Kerosene 127.34 110.15
Diesel 131.86 107.72
Fuel Oil 103.41 74.24
Cracker feed 15 5

Table 2: High and Low Values for the Uncertain Prices

Item High demand (barrel/year) Low demand (barrel/year)

Gasoline 97348862 95682387
Naphta 160747 140042

Kerosene 160747 140042
Diesel 75519186 74764408

Fuel Oil 1863729 1489348

First and second stage programming model can be summed up to the large linear program-
ming model by taking all possible scenarios for prices and all scenarios for demand uncertainty.
The objective function equation is extended to large scale linear programming model and there
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Figure 2: High and Low Values for the Uncertain Demands

Figure 3: Scenario Tree for Prices Uncertainty



Norshela Mohd Noh et al. / MATEMATIKA (Special Issue 2018) 45–55 53

are 160 new constraints for demand uncertainty. R was used to generate scenarios and con-
struct the scenario tree. Meanwhile, the deterministic and stochastic programming model was
implemented using GAMS.

We found that stochastic model gives higher expected profit compared to deterministic
model as in Table 3.

Table 3: Scenario Tree for Demand of Finish Products Uncertainty

Model Deterministic ($/year) Stochastic ($/year)

Profit 24655770 26762972

In this study, value of stochastic solution (VSS) is used to evaluate the stochastic model.

V SS = TSP − EEV (23)

Where TSP refer to the objective value of two-stage stochastic programming model and EEV

refer to expected solution of deterministic model. Therefore, the stochastic model gained 8.54%
more than deterministic model.The result indicates that the stochastic model gives better
prediction of oil refinery midterm production planning profit margin.

5 Conclusions

This paper presents a study to maximize the profit of midterm production planning of oil re-
finery profit with price and demand uncertainty. Each price and demand follows the GBM.
Hence, we generate the future realization of the price and demands with scenario tree based
on the statistical specification of GBM using method of moment. A scenario-based two-stage
stochastic programming with recourse was developed and test with Malaysian oil refinery data.
The result shows that the stochastic model gives higher expected profit compared to the deter-
ministic model. It indicates that the stochastic model gives a better prediction of oil refinery
midterm production planning profit margin.
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Appendix

Set and Indices

I
′

set of material or products i

J set of processes j

S set of scenarios s

First-stage Decision Variable

Pt amount of crude oil purchase in period t

xj,t production capacity of process j during period t

Si,t amount of product i sold in period t

Li,t amount of lost demand for product i in period t

Hi,t amountof product ito be outsourced in period t
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Recourse Parameters

c+
i fixed penalty cost per unit demand di,s of under production product i per real-

ization of scenario s

c−i fixed penalty cost per unit demand di,s of under production product i per real-
ization of scenario s

Deterministic Parameters

bi,j stoichiometric coefficient for material i in process j

Cj,t operating cost of process j in period t

di,t,sd
L
i,t,sd

U
i,t,s demand for product i in period t per realization of scenario s with its corre-

sponding constant lower and upper bounds

If min
i,t If max

i,t minimum and maximum required amount of inventory for material i at the end
of period t

hi,t unit cost of outsourcing the production of product type i in period t

Pt amount of crude oil purchase in period t

pL
t pU

t lower and upper bounds of the availability of crude oil during period t

rtot labour cost for per man-hour of regular and overtime in period t

αj,t cost coefficient for the investment cost of capacity expansion of process j in
period t

βj,t fixed cost charge for capacity expansion investment cost of process j in period t

γi,t unit sales price of product type i in period t

γ̃i,t value of the final inventory of material i in period t

λi,t unit purchase price of crude oil type i in period t

λ̌i,t value of the starting inventory of material i in period t

Stochastic Parameters

ps probability of scenario s

λt,s unit purchase price of crude oil in period t per realization of scenario s

γi,s,t unit sales price of product type i in period t per realization of scenario s

di,s,t demand for product i in period t per realization of scenario s

Second-stage Decision Variables

z+
i,s amount of underproduction of product type i per realization of scenario s

z−

i,s amount of overproduction of product type i per realization of scenario s


