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Abstract VARX and GSTARX models are an extension of Vector Autoregressive (VAR)
and Generalized Space-Time Autoregressive (GSTAR) models. These models include

exogenous variable to increase the forecast accuracy. The objective of this research is to
develop and compare the forecast accuracy of VARX and GSTARX models in predicting

currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara that
contain multiple calendar variations effects. The exogenous variables that are used in

this research are holidays in those three locations, i.e. EidFitr, Galungan, and Nyepi.
The proposed VARX and GSTARX models are evaluated through simulation studies on
the data that contain trend, seasonality, and multiple calendar variations representing the

occurrence of EidFitr, Galungan, and Nyepi. The criteria for selecting the best forecasting
model is Root Mean Square Error (RMSE). The results of a simulation study show that

VARX and GSTARX models provide similar forecast accuracy. Furthermore, the results
of currency inflow and outflow data in Bali, West Nusa Tenggara, and East Nusa Tenggara

show that the best model for forecasting inflow and outflow in these three locations are
VARX and GSTARX (with uniform weight) model, respectively. Both models show that

currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara have
a relationship in space and time, and contain trends, seasonality and multiple calendar

variations.

Keywords VARX, GSTARX, inflow, outflow, multiple calendar variations.
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1 Introduction

In the case of inflows and outflows in Indonesia, local socio-cultural factors such as EidFitr,
Chinese New Year, Nyepi, Galungan, Christmas, and Easter, are important influences in mod-
eling it. Considering that Indonesia is a country with majority of Muslims, it causes a lot of
economic data to have seasonal patterns which are influenced by two types of calendar, namely
the Gregorian and the Hijri calendar. The effect of Gregorian calendar causes inflow and out-
flow become high or low in a certain month. Moreover, the Hijri calendar affects highly inflows
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and outflows in the month around the EidFitr holidays. This effect is called the holiday effect
[1,2,3]. This holiday effect cannot be identified as a seasonal effect because the EidFitr holidays
occur at various dates and months in the Gregorian calendar from year to year.

The effects of local socio-cultural factors to the fluctuation of inflows and outflows also occur
in both Bali and Nusa Tenggara island. These two islands consist of three provinces namely
Bali, West Nusa Tenggara (NTB), and East Nusa Tenggara (NTT). Data from Bank Indonesia
in Bali Province showed that the highest outflow during the period January 2003 to December
2016 was 2976.89 billion rupiah which occurred in July 2015. Whereas, the highest inflow in
the same period was 2201.82 billion rupiah which occurred in July 2016. July 2015 is the month
of the Galungan and EidFitr festivals, while July 2016 is the month of the EidFitr holiday [4].
The explanation about this high fluctuation of inflow and outflow at Bali and Nusa Tenggara
island on EidFitr and Galungan holidays could be seen in [4,5,6].

NTB Province is located between Bali Province and NTT Province. The three provinces
are in one corridor namely corridor V. The regions of Bali and Nusa Tenggara develop tourism
products as one of the regional revenues through foreign exchange generated. Tourism prospects
of Bali, NTB, and NTT as corridor V in the Masterplan for the Acceleration and Expansion
of Indonesian Development (MP3EI) since 2011 recorded rapid growth [7]. The proximity of
the locations of the three Provinces has caused many domestic and foreign tourists to continue
their tour from Bali to NTB and NTT. Moreover, results of the May 2013 survey conducted by
Bank Indonesia (BI) showed that 60% of tourists vacationing in Bali wanted to continue their
tour to NTB and NTT [8]. Domestic and foreign tourists continue their tour from Bali to NTB
and NTT due to the Nyepi holiday celebrated by Hindus in Bali.

Previous research on inflow and outflow in the Bali and NTT regions showed that modeling
using calendar variations had better results [5]. This study used univariate time series methods
such as ARIMA, ARIMA with exogenous variables (ARIMAX), time series regression (TSR),
Transfer Function, and TBATS. The exogenous variables used in the study were EidFitr and
Galungan. Furthermore, the method was developed into a more complex method using a
hybrid model [4,6,9]. The purpose of using a more complex method is to get a model with
better forecast accuracy. Nevertheless, these studies still have many weaknesses, particularly
the lack of accurate forecasting results. The weakness is probably due to the method used
in the study can only explain the relationship between of time and not involve the location
relationship that supposedly occurred at these three provinces.

To overcome the relationship between location, this study proposes modeling inflow and
outflow at BI in Bali and Nusa Tenggara regions that can handle the interrelationship between
time and location. The methods are VAR and GSTAR models. Bowerman and O’Connel [10]
stated there are three main components that are often used in time series regression modeling,
i.e. trends, seasonal factors, and calendar variations. Calendar variations used in this study are
EidFitr, Galungan, and Nyepi holidays or known as multiple calendar variations. Hence, the
pattern components involved in this study are trend, seasonal, and multiple calendar variations.
Moreover, VAR and GSTAR models that involving exogenous variables are known as VARX
and GSTARX, respectively. Thus, the aim of this study is to propose VARX and GSTARX
modeling to overcome trend, seasonal, and multiple calendar variations both using simulation
study and real data about inflow and outflow at the BI in Bali and Nusa Tenggara regions.
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2 Calendar Variation Model

The calendar variation model is a time series model used to forecast data based on seasonal
patterns with varying periods [11]. Calendar variation model can be modeled using time series
regression. In general, the calendar variation model is based on the regression method if there
is a trend, seasonal, and dummy component of the effects of calendar variations with the effect
on the week g (e.g EidFitr effect) on the data, then the inflow model can be written as:

Zi,t = δ1 t+δ2D1,t+δ3D2,t+δ4 tD1,t+δ5 tD2,t+
12
∑

m=1

γmSm,t+
4
∑

g=1

υgLg,t+
4
∑

g=1

ϕgLg,t+1+Ni,t (1)

whereas, the calendar variation model for outflow data is written as follows:

Zi,t = δ1 t+δ2D1,t+δ3D2,t+δ4 tD1,t+δ5 tD2,t+
12
∑

m=1

γmSm,t+
4
∑

g=1

υgLg,t+
4
∑

g=1

νgLg,t−1 +Ni,t, (2)

where δ is a linear trend parameter, S1,t, S2,t, ..., S12,t is a seasonal dummy variable (in this
study is the month), υ,ϕ, and ν are parameters of calendar variation for EidFitr effect (in the
study are the month when EidFitr occurs, one month after and before the EidFitr occurrence).

3 VAR Model

One of the modeling in multivariate time series analysis is vector autoregressive (VAR). In time
series modeling, before identifying the appropriate model for time series data, the data must
be stationary first, both in the mean and variance. If time series data is not stationary in the
variance, Box-Cox transformations are required. Whereas if the data is not stationary in mean
then differencing is done on the data. In general, the equation of the VAR model with an order
or vector AR(p) can be written as follows [12]

(1 − ϕ1B − ...− ϕpB
p)Zt = ϕ0 + αt. (3)

If there is differencing on the seasonal VAR model, then the equation becomes [13]:

(I − ϕB)(I −ΦBs)(1 − B)(1 − B)sŻt = αt, (4)

where

ϕp = matrix m×m of the p-parameter

Φ = matrix m×m of the seasonal p-parameter

αt = vector error m× 1 of residual at time t

Żt = vector m× 1 of data at time t.

After the time series data fulfills stationary condition, the next step in forming a VAR model
is to identify the appropriate model. The identification of this model can be done by observing
the pattern of the sample Matrix of Cross Correlation Function (MCCF) and the Matrix of
Partial Cross Correlation (MPCCF).
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4 GSTAR Model

The GSTAR model is a generalization of the Space-Time Autoregressive (STAR) model which
is also a specification of the Vector Autoregressive (VAR) model. GSTAR is a time series
model that reveals linear dependencies of space and time, expressed by spatial weight (W). Let
{Z(t) : t = 0,±1,±2, · · · , T} is a space-time data of N locations, then the GSTAR model with
time order p and spatial order λ1, λ2, · · · , λp or referred to as GSTAR (p;λ1, λ2, · · · , λp) can be
written as follow [11, 14]:

Z (t) =

p
∑

k=1

(

Φk0 +

λk
∑

l=1

ΦklW
(l)

)

Z(t− k) + a(t), (5)

where Φk0 = diag
(

φ1
k0, . . . , φ

N
k0

)

, Φ11 = diag
(

φ1
kl, . . . , φ

N
kl

)

and a(t) is a residual model that
satisfies identically, independently, distributed with mean 0 and variance Σ. For example,
GSTAR model for time and spatial order one is as follows:

Z(t) = Φ10Z(t− 1) + Φ11W
(1)Z(t− 1) + a(t). (6)

There are several matrices of spatial weights (W) in the GSTAR model. The weighted value

selected meets the requirements w
(k)
ii = 0and

N
∑

j 6=i

w
(k)
ij = 1. In this research used four spatial

weights, i.e. uniform weight, weight based on an inverse of the distance between locations,
weight based on normalization of cross-correlation, and weight based on normalization of partial
cross-correlation inference.

5 Research Methodology

This research was conducted in two studies, i.e. simulation study and application on monthly
data inflow and outflow at BI area of Bali and Nusa Tenggara. Simulation studies were con-
ducted by generating data that have trend, seasonal, and multiple calendar variations patterns
as well as linear noise series. Multiple calendar variations consisted of three feast days in Bali
and Nusa Tenggara regions, i.e. EidFitr, Galungan and Nyepi. The linear noise series followed
GSTAR(11) or VAR(1) model with the parameters fulfilled the stationary conditions, i.e. the
eigenvalue is less than 1, or |λI − Φ| = 0, |Φ| = |λI| , with |λi| < 1. The parameters of this
model is

Φ1 =





0.45 025 0.25
0, 15 0.40 0.15
0.20 0.20 0.35



 .

Simulation data was generated by assuming there were three locations with residuals sat-
isfied multivariate normal distribution. Simulation studies were generated using six scenarios
of residual covariance matrix. The residual covariance matrix that be used to generate six
simulation data were as follows:

1. No correlation between residuals at three locations (1st scenario): the residual covariance
matrix is

µ =





0
0
0



 , Σ =





1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00



 .
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2. No correlation between residuals at three locations with lower variance (2nd scenario):
the residual covariance matrix is

µ =





0
0
0



 , Σ =





0.40 0.00 0.00
0.00 0.50 0.00
0.00 0.00 0.60



 .

3. All residuals at three locations were correlated (3rd scenario): the residual covariance
matrix is

µ =





0
0
0



 , Σ =





1.00 0.50 0.45
0.50 1.00 0.55
0.45 0.55 1.00



 .

4. Not all residuals at three locations were correlated (4th scenario): the residual covariance
matrix is

µ =





0
0
0



 , Σ =





1.00 0.50 0.45
0.50 1.00 0.00
0.45 0.00 1.00



 .

5. All residuals at three locations were correlated with lower variance (5th scenario): the
residual covariance matrix is

µ =





0
0
0



 , Σ =





0.45 0.30 0.40
0.30 0.50 0.35
0.40 0.35 0.60



 .

6. Not all residuals at three locations were correlated with lower variance (6th scenario): the
residual covariance matrix is

µ =





0
0
0



 , Σ =





0.45 0.30 0.40
0.30 0.50 0.00
0.40 0.00 0.60



 .

Furthermore, the inflow and outflow data that be used as case study is secondary data
obtained from Bank Indonesia. The period of data from January 2003 to December 2016 is
used as in-sample dataset and from January to October 2017 as out-of-sample dataset. The
research variables in this study are shown in Table 1.

Some dummy variables are used in this study, i.e. dummy for trend, seasonal, and multiple
calendar variations. Multiple calendar variations represent about EidFitr, Galungan and Nyepi.
Moreover, these dummy variables are shown in Table 2.

6 Simulation Study

The simulation study was conducted to find out the performance of the methods used in
modeling data that have trend, seasonal, multiple calendar variations, and linear noise series.
The data in the simulation study is obtained from the following equation:

Z
(i)
t = T

(i)
t + S

(i)
t + IF

(i)
t +Gl

(i)
t +Ny

(i)
t +N

(i)
t , (7)

where i = 1, 2, 3 indicate the locations and
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Table 1: Research Variables (Billion IDR)

Inflow Outflow

Variable Description Variable Description

Z1,t Bank Indonesia Bali Z1,t Bank Indonesia Bali
Z2,t Bank Indonesia NTB Z2,t Bank Indonesia NTB
Z3,t Bank Indonesia NTT Z3,t Bank Indonesia NTT

1. T
(i)
t is a component for trend, where T

(i)
t = δ(i)t. The coefficients for trends used in all

scenarios are the same, i.e. δ(1) = 0.45, δ(2) = 0.35, δ(3) = 0.25.

2. S
(i)
t are the seasonal components obtained from the following equation

S
(i)
t = β

(i)
1 S1,t + β

(i)
2 S2,t + ...+ β

(i)
12S12,t, (8)

where:

S
(1)
t = 25S1,t + 28S2,t + 30S3,t + 28S4,t + 25S5,t + 21S6,t + 16S7,t + 13S8,t

+ 9S9,t + 13S10,t + 16S11,t + 21S12,t.

S
(2)
t = 22S1,t + 24S2,t + 27S3,t + 24S4,t + 22S5,t + 17S6,t + 13S7,t + 10S8,t

+ 6S9,t + 10S10,t + 13S11,t + 17S12,t.

S
(3)
t = 17S1,t + 21S2,t + 24S3,t + 21S4,t + 17S5,t + 12S6,t + 9S7,t + 6S8,t

+ 4S9,t + 6S10,t + 9S11,t + 12S12,t.

The equation of simulation study for multiple calendar variations consisting of EidFitr, Galun-
gan, and Nyepi in three locations is as follows:

1. IF
(i)
t is the calendar variation for EidFitr that following

IF
(i)
t = υ

(i)
1 IF1,t + · · · + υ

(i)
4 IF4,t + ν

(i)
1 IF1,t−1 + · · · + ν

(i)
4 IF4,t−1. (9)

where:

IF
(1)
t = 51IF1,t+55IF2,t+59IF3,t+63IF4,t+61IF1,t−1+57IF2,t−1+ 54IF3,t−1+49IF4,t−1.

IF
(2)
t = 49IF1,t+53IF2,t+57IF3,t+61IF4,t+60IF1,t−1+55IF2,t−1+51IF3,t−1+47IF4,t−1.

IF
(3)
t = 48IF1,t+52IF2,t+56IF3,t+60IF4,t+59IF1,t−1+54IF2,t−1+50IF3,t−1+46IF4,t−1.

2. Gl
(i)
t is the calendar variation for Galungan that following

Gl
(i)
t = ς

(i)
1 Gl1,t + · · · + ς

(i)
4 Gl4,t + ζ

(i)
1 Gl1,t−1 + · · · + ζ

(i)
4 Gl4,t−1. (10)

where:

Gl
(1)
t = 34Gl1,t +41Gl2,t +47Gl3,t +53Gl4,t +52Gl1,t−1 +46Gl2,t−1 +40Gl3,t−1 +33Gl4,t−1.
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Table 2: Dummy Variables

Dummy Variables Description

Trend t, with t =1,2,...,n

Seasonal

S1,t =

{

1, January in the t-th period
0, otherwise

...

S12,t =

{

1, December in the t-th period
0, otherwise

Eid Fitr

IFi,t =

{

1, month when Eid Fitr (period t) occurs in week-i, with i=1,2,3
0, otherwise

IFi,t−1 =

{

1, month before Eid Fitr (period t) in week-i,with i=1,2,3

0, otherwise

IFi,t+1 =

{

1, month after Eid Fitr (period t) in week-i, with i=1,2,3
0, otherwise

Galungan

GLi,t =

{

1, month when Galungan (period t) occurs in week-i, with i=1,2,3

0, otherwise

GLi,t−1 =

{

1, month before Galungan (period t) in week-i,with i=1,2,3

0, otherwise

GLi,t+1 =

{

1, month after Galungan (period t) in week-i, with i=1,2,3
0, otherwise

Nyepi

Nyi,t =

{

1, month when Nyepi (period t) occurs in week-i, with i=1,2,3
0, otherwise

Nyi,t−1 =

{

1, month before Nyepi (period t) in week-i,with i=1,2,3
0, otherwise

Nyi,t+1 =

{

1, month after Nyepi (period t) in week-i, with i=1,2,3
0, otherwise
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3. Ny
(i)
t is the calendar variation for Nyepi that following

Ny
(i)
t =ω

(i)
1 Ny1,t + · · · + ω

(i)
4 Ny4,t + ψ

(i)
1 Ny1,t−1 + · · · + ψ

(i)
4 Ny4,t−1. (11)

where:

Ny
(1)
t =27Ny1,t+32Ny2,t+36Ny3,t+40Ny4,t+39Ny1,t−1+35Ny2,t−1+30Ny3,t−1+26Ny4,t−1.

Ny
(2)
t =22Ny1,t+26Ny2,t+31Ny3,t+36Ny4,t+35Ny1,t−1+29Ny2,t−1+24Ny3,t−1+21Ny4,t−1.

4. Components for noise series used in simulation studies are linear noise series. The linear
noise series equation used is

N
(i)
t = φ

(i)
1 N1,t−1 + φ

(i)
2 N2,t−1 + φ

(i)
3 N3,t−1 + a

(i)
t , (12)

where:
N

(1)
t = 0, 45N

(1)
t−1 + 0, 25N

(2)
t−1 + 0, 25N

(3)
t−1 + a

(1)
t ,

N
(2)
t = 0, 15N

(1)
t−1 + 0, 40N

(2)
t−1 + 0, 15N

(3)
t−1 + a

(2)
t ,

N
(3)
t = 0, 20N

(1)
t−1 + 0, 20N

(2)
t−1 + 0, 35N

(3)
t−1 + a

(3)
t .

The time series plot of the trend, seasonal, and multiple calendar variations are shown in
Figure 1. Furthermore, identification of noise series is shown through the matrix plot between
noise at the time t (Nt) and noise at the time t− 1 (Nt−1) for each location as shown in Figure
2. Based on the matrix plot of the residuals at scenario 1 to 6 in Figure 2, it can be seen that
the relationship between Nt and Nt−1 is a linear pattern. Each scenario is replicated 10 times,
and all simulation data is analyzed using VARX and GSTARX.

Figure 1: Time Series Plot of (a) Trend, (b) Seasonal, and (c) Multiple Calendar Variations

After implementing the VARX and GSTARX models to each simulation data scenario,
comparison of forecast accuracy was carried out. The best model was determined based on
the smallest RMSE value at the out-of-sample dataset. The RMSE value of simulation data at
scenario 1 to 6 were replicated 10 times and can be seen in Figure 3 to 8.

Figure 3 to 8 show that the VARX and GSTARX models give the same forecast results. It
can be seen from the mean and median of RMSE at out-of-sample dataset in all three locations
for the six simulation studies are relatively the same. These results prove that GSTAR model,
particularly GSTAR(11) is a special form of VAR(1) model, and imply the results of these both
models are the same. The theoretical explanation about the relationship between GSTAR(11)
and VAR(1) could be found in Borovkova, Lopuhaa, and Ruchjana [15].
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Figure 2: Scatter Plot between Nt and Nt−1 from Linear Noise at (a) Scenario 1, (b) Scenario
2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6

Figure 3: Box-Plot of RMSE in Three Locations at Scenario 1
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Figure 4: Box-Plot of RMSE in Three Locations at Scenario 2

Figure 5: Box-Plot of RMSE in Three Locations at Scenario 3

Figure 6: Box-Plot of RMSE in Three Locations at Scenario 4
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Figure 7: Box-Plot of RMSE in Three Locations at Scenario 5

Figure 8: Box-Plot of RMSE in Three Locations at Scenario 6
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7 Forecasting Inflow and Outflow with VARX and GSTARX

Outflow and outflow have high values around EidFitr, Galungan, and Nyepi events. EidFitr,
Galungan, and Nyepi which occur in different weeks will affect differently on increasing inflows
and outflows. The fluctuation of currency inflow and outflow in the Bali and Nusa Tenggara
regions from 2003 to 2017 at each BI in Bali and Nusa Tenggara are presented in Figure 9.

Inflow and outflow modeling in the regions of Bali and Nusa Tenggara are carried out in two
stages. The first stage is modeling trend patterns, seasonal, and multiple calendar variations
using Time Series Regression (TSR) with the GLS estimation method. Multiple calendar
variations in applied studies are the same as in simulation studies namely EidFitr, Galungan,
and Nyepi. The use of calendar variations in all three locations or Provinces is adjusted to the
third celebration of holidays in each Province. The second stage is residual modeling from the
first stage using the VAR and GSTAR methods. Modeling in the second stage will be carried
out like a simulation study, i.e the inflow and outflow data are modeled using the full model
and restricted model.

Modeling of inflow and outflow at BI in Bali and Nusa Tenggara regions are carried out
in two stages. The first stage is modeling trend, seasonal, and multiple calendar variations
patterns using Time Series Regression (TSR) by implementing Generalized Least Square or
GLS method for estimating the parameters due to the correlation between residuals. Moreover,
multiple calendar variations in this case study are the same as in simulation study, i.e. EidFitr,
Galungan, and Nyepi. The use of calendar variations in all these three locations is justified by
the fact that there is celebration periodically for these three holidays in each province. The
second stage is modeling of residuals from the first stage using VAR and GSTAR methods.
Modeling process in this second stage was carried out as at a simulation study, i.e. the inflow
and outflow data are modeled by using the full and restricted (by eliminating insignificant
parameters) of VAR and GSTAR model.

8 Comparison of VARX and GSTARX

The comparison of forecast accuracy between VARX and GSTARX is done after modeling
the residual of inflow and outflow data at the second stage. The results of forecast accuracy
comparison between VARX and GSTARX (with certain spatial weight) for forecasting inflow at
outflow data at BI in Bali and Nusa Tenggara regions are shown at Table 3 and 4, respectively.

Based on the RMSE criteria at out-of-sample dataset for selecting the best model, the results
show that VARX([1,12]) model on full parameters (without considering significance) yield the
smallest RMSE compared to the other methods for forecasting inflow data at BI in Bali and
Nusa Tenggara regions. Otherwise, the GSTARX([2,12]1) model on restricted parameters (only
involving significance parameters) with uniform spatial weight give the most accurate forecast
at out-of-sample dataset for forecasting outflow data at BI in Bali and Nusa Tenggara regions.
These results in line with the conclusion from two previous forecasting competitions, i.e. M3
and M4 competition, stated that the complex models do not necessary yield better forecast
than the simpler one [16,17].
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Figure 9: Time Series Plot of Inflow (Left) and Outflow (Right) at BI in Bali and Nusa Tenggara
Regions
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Table 3: The Results of Forecast Accuracy Comparison between VARX and GSTARX Models
for Inflow Data at BI in Bali and Nusa Tenggara Regions

Significant
Model (Type of Spatial Weight)

RMSE at Out-of-Sample

Parameter Bali NTB NTT

Full Model

VARX 298.77 223.777 119.965
GSTARX (uniform) 318.40 228.071 134.742
GSTARX (Inverse of the distance) 336.43 231.352 137.111
GSTARX (Normalization of Cross Correlation) 309.144 227.767 123.611
GSTARX (Normalization Partial Cross Correlation Inference) 319.458 231.685 134.219

Restrict

VARX 300.796 225.665 127.316
GSTARX (uniform) 316.658 231.644 133.837
GSTARX (Inverse of the distance) 332.888 234.809 135.971
GSTARX (Normalization of Cross Correlation) 315.386 230.689 126.468
GSTARX (Normalization Partial Cross Correlation Inference) 317.352 232.356 134.319

Table 4: The Results of Forecast Accuracy Comparison between VARX and GSTARX Models
for Outflow Data at BI in Bali and Nusa Tenggara Regions

Significant Model (Type of Spatial Weight)
RMSE at Out-of-Sample

Parameter Bali NTB NTT

Full Model

VARX 508.627 328.876 263.096
GSTARX (uniform) 488.374 323.089 239.677
GSTARX (Inverse of the distance) 492.392 320.010 239.522
GSTARX (Normalization of Cross Correlation) 505.284 327.615 241.576
GSTARX (Normalization Partial Cross Correlation Inference) 514.767 331.516 244.393

Restrict

VARX 517.823 334.614 271.494
GSTARX (uniform) 484.667 323.766 238.337
GSTARX (Inverse of the distance) 489.910 323.721 247.288
GSTARX (Normalization of Cross Correlation) 503.532 329.576 237.093
GSTARX (Normalization Partial Cross Correlation Inference) 516.823 334.251 253.799
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9 Conclusion

Based on the results of simulation study, it could be concluded that VARX and GSTARX models
at two stage modeling could capture well the data patterns, i.e. trend, seasonal, multiple
calendar variations, and linear noise patterns, and produce relatively similar forecast errors.
Moreover, the results of case study about inflow and outflow at BI in Bali and Nusa Tenggara
regions showed that the best model for forecasting inflow and outflow are VARX([1,12]) model
on full parameters and GSTARX([2,12]1) model on restricted parameters with uniform spatial
weight, respectively. In general, these results in line with two previous competition forecasting
results, i.e. M3 and M4 competition, that showed complex models did not necessary produce
more accurate forecast than the simpler one [16,17]. Furthermore, due to the simulation study
was replicated 10 times as preliminary study, further research by running more replication is
needed to validate these results. Additionally, the criteria evaluation for selecting the best model
in this research is only using RMSE. Hence, further research could be done by implementing
more forecasting accuracy criteria to select the best model for evaluating the robustness of the
results.

Acknowledgement

This research was funded by a LPPM-ITS under scheme of “Penelitian Pascasarjana”, project
No. 1337/PKS/ITS/2018. The authors thank to the ITS and General Director of DIKTI for
funding and to anonymous referees for their useful suggestions.

References

[1] Liu, L. M. Identification of time series model in the presence of calendar variation. Inter-

national Journal of Forecasting 1986. 2: 357-372.

[2] Sullivan, R, Timmermann, A., White, H. Dangers of data mining: The case of calendar
effects in stock returns. Journal of Econometrics. 2001. 105: 249-286.

[3] Seyyed, F. J., Abraham, A., Al-Hajji, M. Seasonality in stock returns and volatility: The
Ramadhan effect. Research in International Business and Finance. 2005. 19: 374-383.

[4] Reganata, G. P. Forecasting Currency Inflow and Outflow using Multi Input Transfer

Function and Hybrid ARIMA-Artificial Neural Network in Bali Province, Unpublished
MSc Thesis, Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya:
ITS. 2015.

[5] Dana, I. M. G. M. Forecasting Inflow and Outflow as Projection of Currency Demand in

Bali Province using Transfer Function, TBATS, ARIMA, and ARIMAX, Unpublished
Final Project, Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya:
ITS. 2016.

[6] Wijayanti, D. G. P. Forecasting Currency Inflow and Outflow in Bali Province using Hybrid

ARIMAX-Neural Networks-GARCH, Unpublished Final Project, Department of Statistics,
Institut Teknologi Sepuluh Nopember, Surabaya: ITS. 2017.

[7] http://kip.sloka.or.id/wp-content/uploads/2011/05/Bali.pdf retrieved on 19 August 2017



Suhartono et al. / MATEMATIKA (Special Issue 2018) 57–72 72

[8] https://beritabali.com/read/2013/08/27/201308270007/60-Persen-Wisman-di-Bali-Ingin-
Lanjutkan-Wisata-ke-NTB-dan-NTT.html retrieved on 19 August 2017

[9] Puka, A. O. B. Hybrid ARIMAX-QR and QRNN Model for Forecasting Currency Inflow

and Outflow at Bank Indonesia in NTT Province and National, Unpublished MSc Thesis,
Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya: ITS. 2017.

[10] Bowerman, B. L., O’Connel, R. T. Forecasting and Time Series: An Applied Approach

(3rd ed.). Belmont, CA: Duxbury Press. 1993.

[11] Lee, M. H., Suhartono, Hamzah, N. A. Calender variation model based on ARIMAX for
forecasting sales data with Ramadhan effect. In Proceedings of the Regional Conference on

Statistical Science. 2010. 349-361.

[12] Wei, W. W. S. Time Series Analysis: Univariate and Multivariate Methods (2nd ed.). New
York: Addison Wesley. 2006.

[13] Tsay, R. S. Multivariate Time Series Analysis. University of Chicago: John Wiley & Sons,
Inc. 2014.

[14] Wutsqa, D. U., Suhartono, Ulama, B. S. Generalized Space-Time Autoregressive Modeling.
The 6th IMT-GT Conference on Mathematics, Statistics and its Application (ICMSA),
Kuala Lumpur, Malaysia. 2010. 752-761.

[15] Borovkova, S., Lopuhaa , H. P., dan Ruchjana, B. N. Consistency and asymptotic normality
of least squares estimators in generalized STAR models. Statistica Neerlandica. 2008. 62:
482-508.

[16] Makridakis S, Hibon M. The M3 competition: result, conclusions and implications. Inter-

national Journal of Forecasting. 2000. 16: 451-476.

[17] Makridakis, S., Spiliotis, E., Assimakopoulos, V. The M4 competition: results, findings,
conclusions and way forward. International Journal of Forecasting. 2018. 34: 802-808.


