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Abstract In distributing funds to customers as credit, multi-finance companies have two

necessary risks, i.e. prepayment risk, and default risk. The default risk can be minimized

by determining the factors that affect the survival of customers to make credit payment,

in terms of frequency of credit payments by customers that are distributed geometry. The

proposed modelling is using Bayesian Geometric Regression and Bayesian Mixture Geo-

metric Regression. The best model of this research is modelling using Bayesian Geometric

Regression method because it has lower DIC values than Bayesian Mixture Geometric Re-

gression. Modelling using Bayesian Geometric Regression show the significant variables

are marital status, down payment, installment length, length of stay, and insurance.
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company.
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1 Introduction

The failure of customers to make credit payment in multi-finance companies is called default
risk. Failure of credit payment is a successful event in a geometry distribution. Therefore,
geometric regression can be used to model and to seek some factors which minimize the default
risk. Geometric regression is a special case of binomial negative regression with dispersion
parameter equal to one. This type of regression cannot be done using ordinary linear modelling,
but must be done using the Generalized Linear Model (GLMs). In GLMs, the response variable
is assumed to be a member of an exponential family distribution [1].

Works by Rachman [2] showed that the factors that cause failure in returning credit are
internal factors and external factors. Internal factors consist of internal debtors and internal
banks. External factors are macroeconomic activities or government policies that cannot be
predicted by banks, disasters and other unexpected events, and competition between bank
institutions. As referred by Hakim [3] down payment has the highest level of significance
compared to other variables. In addition, other variables that influence credit survival are
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regions and interest rates. Other studies related to geometric regression modeling have been
carried out by Iriawan et al. [4] with a case study of a frequency model of cervical cancer
patients in Dr. Soetomo. The study stated that there were no significant parameter estimates
using Bayesian geometry regression, but if approached with a negative binomial distribution,
there were two significant parameters: number of chemotherapy and anemia status.

The pattern of frequency credit payment to be default is indicated having a mixture distri-
bution, so this also a case of mixture geometric regression. The estimation of this model param-
eters cannot use the likelihood method because of the difficulties in the computational mixture
model. Bayesian estimation method would be applied to overcome this problem. Bayesian
would take into account in estimating the parameter of this model based on new information
from observed data (samples) and prior knowledge about the parameters [5]. To simplify the
process of estimation, Bayesian could use the prior of parameters of geometric regression which
is estimated by Maximum Likelihood. It is called as a pseudo prior. Furthermore, the estimation
results of mixture geometric regression and non-mixture geometric regression will be compared
to get the best modelling based on the smallest DIC (Deviance Information Criterion).

2 Geometric Regression

Geometry distribution is one of the exponential family distributions. Based on Agresti [6], a
variable random Y is an exponential family distribution which formulated as follows

fY (y : θ, φ) = exp {(yθ − b (θ)) /a (φ) + c (y, φ)} (1)

where a(.), b(.) and c(.) are certain functions. If φ is known, then equation (1) is an exponential
family with canonical parameter θ. Link function is used to convert GLMs to a linear model.
Link function for geometry distribution can be defined as

f (y, p) = p (1 − p)
y−1

=
p

1 − p
(1 − p)y

=
p

1 − p
exp (y ln (1 − p).) (2)

Therefore, GLMs for geometry distribution is converted to a linear model using link function
ln(1-p), so geometric regression model can be defined as in equation (3). Parameter p is un-
known, so it is estimated based on multiplication of parameter vector and its predictor variable.

ln(1 − pi) = xT
i β

(1 − pi) = ex
T

i
β

pi = 1 − ex
T

i
β (3)

where xi = (x1i
, x2i

, . . . , xpi
) and βT = (β1, β2, . . . , βp).
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3 Mixture Geometric Regression Model

Suppose response variable in regression analysis has more than one distribution, it can be
analyzed using a mixture regression model. Detection of mixture model simply through data
plot. Each sub-population is a constituent component of a mixture model and has varying
proportions for each component. As stated in [7], a mixture model can be defined as

fmix (z |∂, P ) =

M
∑

i=1

Pigi (z |∂i ) , (4)

where fmix (z |∂, P ) is density function of the mixture model, ∂i is parameter vector, k is the
number of constituent component of the mixture model, P is parameter vector proportion,

and Pi is a parameter of mixture component proportion which has property
M
∑

i=1

Pi = 1 and

0 ≤ Pi ≤ 1. Suppose data has M sub-population which each population are distributed
geometry, it can be represented as

fmix (z |P,p ) = PiGeom (z |p1 ) + . . . + PMGeom (z |pM ) . (5)

4 Bayesian Approach

Bayesian statistical approach views β parameter as a random variable that has a distribution
called prior distribution. The prior distribution is used to find posterior distribution so that
Bayesian estimator which is mean or mode of posterior distribution is obtained. Let observation
x has β parameter, the posterior distribution of β parameter by using Bayes theorem can be
defined as

P (β|x) =
l (x|β) P (β)

P (x)
. (6)

Box and Tiao [8] defined prior distribution as preliminary information about parameters. Prior
distribution which is determined based on frequentist elaboration result is called pseudo prior.
Posterior marginal can be obtained by a very complicated and long-term integration process.
Markov Chain Monte Carlo (MCMC) is an approach which can be used to overcome these
problems.

5 Markov Chain Monte Carlo

The basic idea of MCMC is to generate Markov Chain using iterative Monte Carlo simula-
tion, so stationary posterior distribution is obtained [9]. As referred by Ntzoufras [10], the
arrangement of convergent Markov Chain is completed quickly on the target distribution, pos-
terior distribution P (β|x). MCMC generates sample data of β parameter which have certain
distribution using Gibbs sampling. Gibbs sampling will divide the β parameter into several
parts, β = (β1, β2, . . . , βp). Based on [11], full conditional distribution for each parameter
p (β1|x, β2, . . . , βp) , . . . , p (βp|x, β1, . . . , βp−1) or simply can be defined as β(1), β(2), . . . , β(p).



Ikacipta Mega Ayuputri et al. / MATEMATIKA (Special Issue 2018) 103–113 106

6 Significant Parameter

Based on [12], parameter estimation results at significance level α can be called significant if
occupy criteria in Table 1.

Table 1: Parameter Significance Criteria

Credible Interval
Estimation Value

α Median 1-α
+ + + Positive
- - - Negative

The confidence interval of β parameter can be obtained by calculating interval which is
centered on media posterior using formula as follows

P (a ≤ µ ≤ b) = 1 − α. (7)

7 Deviance Information Criterion (DIC)

If there is more than one model which is suitable to use, then need to choose the best model.
Many criteria can be used to determine the best model, one of them is the Deviance Information
Criterion (DIC). DIC considers efficient parameters in the model. The formula for obtaining
deviance value can be defined as

DIC = D (∂) + PD, (8)

where D (∂) is deviance posterior mean and PD is number of efficient parameters in the model.
Model with the smallest DIC is the best model than other alternative models [4].

8 Methodology

8.1 Data

The data that is employed in this research are customer’s data of company X who registered
as default customers since June 2010 until February 2018. Company X is one of the used car
finance companies. Based on credit payment records during the period, it is known that the
data are composed of 334 default customers or unable to pay credit in a pay phase more than
210 days.

8.2 Model

Variables used in this research consisted of the response variable (Y ) and the predictor variable
(X) as follows
Y = frequency of credit payments before customers are declared as default
X1 = age of customers when applying for credit
X2 = gender of customers (1 = man, 0 = woman)
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X3 = marital status of customers is formed by dummy variables d31 and d32.
d31: married

d31 = 1, if marital status is married.
d31 = 0, otherwise.

d32: divorce
d32 = 1, if marital status is divorce.
d32 = 0, otherwise.

X4 = amount of down payment is formed by dummy variables d41, d42, and d43.
d41: 20.1 - 30%

d41 = 1, if amount of down payment between 20.1 - 30%.
d41 = 0, otherwise.

d42: 30.1 - 50%
d42 = 1, if amount of down payment between 30.1 - 50%.
d42 = 0, otherwise.

d43: more than 50%
d43 = 1, if amount of down payment more than 50%.
d43 = 0, otherwise.

X5 = installment time is formed by dummy variables d51 and d52.
d51: 25 – 36 months

d51 = 1, if installment time between 25 – 36 months.
d51 = 0, otherwise.

d52: 37 – 48 months
d52 = 1, if installment time between 37 – 48 months.
d52 = 0, otherwise.

X6 = last education of customers is formed by dummy variables d61, d62, and d63.
d61: junior high school

d61 = 1, if last education is junior high school.
d61 = 0, otherwise.

d62: senior high school
d62 = 1, if last education is senior high school.
d62 = 0, otherwise.

d63: college
d63 = 1, if last education is college.
d63 = 0, otherwise.

X7 = house ownership status of customers (1 = personally, 0 = family).
X8 = time of customers occupies the house (in years).
X9 = time of customers works (in years).
X10 = installment amount is formed by dummy variables d101, d102, and d103.

d101: Rp 2,000,001 – Rp 3,000,000
d101 = 1, if installment amount between Rp 2,000,001 – Rp 3,000,000.
d101 = 0, otherwise.

d102: Rp 3,000,001 – Rp 4,000,000
d102 = 1, if installment amount between Rp 3,000,001 – Rp 4,000,000.
d102 = 0, otherwise.

d103: more than Rp 4,000,000
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d103 = 1, if installment amount more than Rp 4,000,000.
d103 = 0, otherwise.

X11 = insurance premium is formed by dummy variables d111, d112, and d113.
d111: Rp 2,000,001 – Rp 3,000,000

d111 = 1, if amount of insurance between Rp 2,000,001 – Rp 3,000,000.
d111 = 0, otherwise.

d112: Rp 3,000,001 – Rp 4,000,000
d112 = 1, if amount of insurance between Rp 3,000,001 – Rp 4,000,000.
d112 = 0, otherwise.

d113: more than Rp 4,000,000
d113 = 1, if amount of insurance more than Rp 4,000,000.
d113 = 0, otherwise.

X12 = job type of customers is formed by dummy variables d121, d122, d123, d124, d125, d126, d127,
d128, and d129.

d121: teacher
d121 = 1, if job type of customers is teacher.
d121 = 0, otherwise.

d122: private employee
d122 = 1, if job type of customers is private employee.
d122 = 0, otherwise.

d123: civil servant
d123 = 1, if job type of customers is civil servant.
d123 = 0, otherwise.

d124: entrepreneur
d124 = 1, if job type of customers is entrepreneur.
d124 = 0, otherwise.

d125: farmer
d125 = 1, if job type of customers is farmer.
d125 = 0, otherwise.

d126: retired
d126 = 1, if job type of customers is retired.
d126 = 0, otherwise.

d127: student
d127 = 1, if job type of customers is student.
d127 = 0, otherwise.

d128: housewife
d128 = 1, if job type of customers is housewife.
d128 = 0, otherwise.

d129: BUMN employee
d129 = 1, if job type of customers is BUMN employee.
d129 = 0, otherwise.

Mixture geometric regression is using pay endurance variable as a separator. Pay endurance
variable is 0, if customers have a short period of making credit payment to be declared default.
Pay endurance variable is 1, if customers have mid-term of making credit payment to be declared
default. If customers have a long period of making credit payment to be declared default, then
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pay endurance variable is 2. The mixture geometric regression model which has to be estimated
is defined by

f (y |P,x, β ) = P1

[

1

1 − ex
T

1
β1

]

+ P2

[

1

1 − ex
T

2
β2

]

+ P3

[

1

1 − ex
T

3
β3

]

(9)

with P1, P2, and P3 are mixture proportions which have properties P1+P2+P3 = 1. f (y |P,x, β )
represent the probability of customer who is declared a default.

9 Results and Discussion

Detection of mixture distribution shows that there are three geometry distributions in the
response variables with different p parameters. Classification data into three categories of pay
endurance variables is based on the plot of the histogram. Each category of pay endurance
variables has mixture proportion P1 =0.54, P2 =0.32, and P3 =0.14.

Parameter estimation using Bayesian method requires pseudo prior. Pseudo prior is ob-
tained from geometric regression using Maximum Likelihood Estimation (MLE). The result of
geometric regression using MLE shows that there are five significant variables: marital status
(X3), down payment (X4), installment time (X5), time of customer occupy the house (X8),
and insurance premium (X11). Therefore, modeling using Bayesian method will use all of the
significant variables. For Bayesian modeling, we generated 2,000,000 iterations with sampling
every 200 iterations.

9.1 Bayesian Geometric Regression

There are 50 iteration samples, so that the used sample was 9,950 iterations. It aims to avoid
the influence of the initial value. Referring to Table 2, all parameters are significant to the
response variable. It can be known through estimation value for each parameter which does
not exceed zero in the confidence interval of 2.5% to 97.5%.

Assuming other predictor variables are fixed, probability and average credit payment until
declared as default customer based on a marital status variable is shown in Table 3. Referring
to Table 3, customer who is not married has an average frequency of credit payment less than
another marital status. If the customer only pays down payment less than 20% of purchase
price, then the average frequency of credit payment is faster declared as default customer than
other down payment categories. A customer with installment time less than 25 months is
faster declared as default customer than other categories. It may be affected by the installment
with short period make installment amount is greater, so it can be a heavy assessment for the
customer. Probability customer declared as default which occupies the house in one year is
1−e−1.759−0.0473(1) or 0.836. The average frequency of credit payment is 1 to 2 payments. When
customers occupy the house in 10 years, then probability customer declared as default is 0.89.
Therefore, it is known that customer who lives longer, has a greater probability to be declared
as default customers. It might happen if the house owner status is not personal property, thus
allowing customer has a greater probability to be declared as default customers. Customers
with insurance premium more than Rp 4,000,000 have the greatest probability to be declared
as default customers. It may occur when the customer paid the insurance premium comes from
the loan, so it can be other assessment besides this credit payment.
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Table 2: Result of Parameter Estimation using Bayesian Geometric Regression

Parameter Estimation SE 2.5% 97.5%
Constant −1.7590 0.0031 −1.7530 −1.7650
Marital Status (1) 0.0871 0.0032 0.0808 0.0933
Marital Status (2) 0.0536 0.0031 0.0474 0.0598
Down Payment (1) 0.4472 0.0032 0.4409 0.4533
Down Payment (2) 0.5506 0.0032 0.5443 0.5568
Down Payment (3) 0.4846 0.0032 0.4784 0.4910
Installment Time (1) 0.2605 0.0031 0.2544 0.2666
Installment Time (2) 0.4940 0.0032 0.4877 0.5002
Time of Customers Occupy The House −0.0473 0.0001 −0.0475 −0.0470
Insurance Premi (1) −0.1235 0.0031 −0.1296 −0.1172
Insurance Premi (2) −0.0150 0.0031 −0.0212 −0.0089
Insurance Premi (3) −0.1865 0.0032 −0.1926 −0.1802

9.2 Bayesian Mixture Geometric Regression

Similar to non-mixed credit payment modeling, Bayesian mixture geometric regression modeling
was obtained based on geometrical regression modeling with Maximum Likelihood Estimation
(MLE) for each category. The iteration properties of the parameters with MCMC have been
ergodic because they show properties that irreducible, aperiodic and repetitive. Each parameter
is normally distributed and converges to one point. The result of estimation parameters with
Bayesian mixture geometric regression presented in Table 4. Based on Table 4, it shows that all
parameters have a significant effect on each category of credit payments with default customers.
The presumed model 1 represents customers who have short payback resistance, the presumed
model 2 represents customers with anxiety and the presumed model 3 represents customers
with long payback resistance. The proportion of customers with short pay, medium and long is
0.54, 0.32 and 0.14. Therefore, the Bayesian mixture geometric regression model that obtained
as follows

µ̂ =
1

p̂
= 0.54

[

1

1 − exT

1
β

1

]

+ 0.32

[

1

1 − exT

2
β

2

]

+ 0.14

[

1

1 − exT

3
β

3

]

.

9.3 Best Model Selection

The best model was chosen by DIC (Deviance Information Criteria) value. The result of the
DIC value that calculated using geometric regression with Bayesian estimation was shown in
Table 5.

The value of the DIC between the two models is not much different. Bayesian geometric
regression model has a smaller DIC value compared to the Bayesian mixture geometric regres-
sion model, which is a difference of 653. Therefore, it can be said that the Bayesian geometric
regression model is better in modeling the frequency of credit payments. Variables that have
a significant effect between the two models are also the same such as the marital status of
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Table 3: Average Frequency of Credit Payment Based on Marital Status

Variable p̂ µ̂ Ratio

Marital Status

Not Married 0.8278 12.080 -
Married 0.8121 12.314 1.02
Divorce 0.8183 12.221 1.01

Down Payment

≤ 20% 0.8278 12.080 -
20.1 - 30% 0.7307 13.686 1.13
30.1 - 50% 0.7013 14.259 1.18
>50% 0.7204 13.881 1.15

Installment Time

0 - 24 months 0.8278 12.080 -
25 - 36 months 0.7765 12.878 1.07
37 - 48 months 0.7178 13.932 1.15

Time of Customers Occupy The House 0.836 1.196 -

Insurance Premium

≤ 2.000.000 0.8278 12.080 -
2.000.001 - 3.000.000 0.8478 11.795 0.98
3.000.001 - 4.000.000 0.8303 12.043 1
>4.000.000 0.8571 11.667 0.97

the customer at the time of applying for a loan, the large down payment (DP) paid, tenor or
length of installments, the length of time the customer occupies the house and the amount of
insurance premium paid at the beginning.

10 Conclusion

The result of geometric regression with Maximum Likelihood Estimation (MLE) shown that
five variables are significant. Those variables have a significant effect on the frequency of credit
payments before the customer is declared default at α = 10%. Those variables are the marital
status of customer status when applying for credit, the amount of down payment (DP) paid,
installment time, length of time the customer attends the house and the amount of insurance
premium paid in advance. In addition, those variables also have a significant effect on the
significance level of 5% when modeled with Bayesian, both on non-mixture and mixture data.
The Bayesian geometric regression model is better for modeling the frequency of credit payments
because it has smaller DIC value, which is a difference of 653.
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Table 4: Result of Parameter Estimation using Bayesian Mixture Geometric Regression

Category Parameter Estimation SE 2.5% 97.5%

1

Constant −2.022 0.003 −2.016 −2.029
Marital Status (1) 0.039 0.003 0.033 0.046
Marital Status (2) 0.073 0.003 0.067 0.079
Down Payment (1) 0.236 0.003 0.230 0.242
Down Payment (2) 0.412 0.003 0.406 0.418
Down Payment (3) 0.133 0.003 0.127 0.139
Installment Time (1) 0.212 0.003 0.206 0.218
Installment Time (2) 0.483 0.003 0.476 0.489
Time of Customers Occupy The House −0.045 0.000 −0.045 −0.044
Insurance Premi (1) −0.082 0.003 −0.088 −0.075
Insurance Premi (2) −0.110 0.003 −0.116 −0.103
Insurance Premi (3) −0.327 0.003 −0.333 −0.320

2

Constant −1.668 0.003 −1.662 −1.674
Marital Status (1) 0.796 0.003 0.789 0.802
Marital Status (2) 0.355 0.003 0.349 0.361
Down Payment (2) −0.414 0.003 −0.420 −0.408
Down Payment (3) −0.423 0.003 −0.429 −0.416
Installment Time (1) 0.381 0.003 0.375 0.387
Installment Time (2) 0.189 0.003 0.183 0.196
Time of Customers Occupy The House −0.049 0.000 −0.049 −0.048
Insurance Premi (1) −0.188 0.003 −0.194 −0.182
Insurance Premi (2) 0.263 0.003 0.257 0.269
Insurance Premi (3) 0.267 0.003 0.261 0.273

3

Constant −2.544 0.003 −2.538 −2.551
Marital Status (1) −0.155 0.003 −0.161 −0.149
Marital Status (2) 0.275 0.003 0.269 0.282
Down Payment (2) 0.176 0.003 0.169 0.181
Down Payment (3) 0.299 0.003 0.292 0.305
Installment Time (1) 0.568 0.003 0.562 0.574
Installment Time (2) 0.885 0.003 0.879 0.892
Time of Customers Occupy The House −0.087 0.000 −0.087 −0.087
Insurance Premi (1) 0.252 0.003 0.245 0.258
Insurance Premi (2) 0.211 0.003 0.205 0.217
Insurance Premi (3) 0.482 0.003 0.475 0.488
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Table 5: DIC Value of Bayesian Modeling

Model DIC
Bayesian Geometric Regression 6,680,000,000,000
Bayesian Mixture Geometric Regression 6,680,000,000,653
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