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Abstract It is well known the descriptor systems have a wide application field. Usually

it appear as a mathematical model of a real problem, mainly the model that involves the

input output relationship. It is well known that a descriptor linear system has an unique

solution if the pencil matrix of the system is regular. However, there are some systems

that are not regular. Moreover, even though the system is regular the solution can contain

the noncausal behavior. Therefore, it is necessary to normalize the descriptor system so

as it has well behavior. In this paper, we propose a feedback to normalize a discrete

descriptor system under disturbance. Furthermore, we establish a sufficient condition in

order for the discrete descriptor system under disturbance can be normalized positively.

Keywords Normalization; discrete descriptor system; disturbance.

Mathematics Subject Classification 39A06, 93C55.

1 Introduction

Let us consider the following linear discrete descriptor system under disturbance

Exi+1 = Axi + Bui + Cωi, i ∈ Z+

yi = Dxi

(1)

where xi ∈ Rn is the state, yi∈ R
p is the output, ui∈ R

m is the control, ωi∈ R
q is the

disturbance, E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×q , D ∈ Rp×n, Z+ is the set of nonnegative
integer number and rank(E) = r < n. It is well-known if the system (1) is regular, namely
det (γE − A) 6= 0 for some γ ∈ C, the system (1) has an unique solution. As shown in [1], any
regular pencil of index ν can be reduced in to the following Cronecker form

Q1 (γE − A)P1 = γ

[

Ir O
O N

]

−

[

J O
O In−r

]

, (2)
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for some nonsingular matrices Q1, P1 ∈ Rn×n where J ∈ Rr×r is a Jordan Canonic form and
N ∈ R(n−r)×(n−r) is a Nilpotent matrix. Therefore, under transformation

q =P−1
1 x =

[

q1

q2

]

, (3)

the system (1) can be written as

q1,i+1 = Jq1,i + B1ui + C1ωi

Nq2,i+1 = q2,i + B2ui + C2ωi

yi = D1q1,i + D2q2,i,
(4)

where
[

B1

B2

]

= Q1B,

[

C1

C2

]

= Q1C and
[

D1 D2

]

= DP1,

with B1 ∈ Rr×m, C1 ∈ Rr×q, B2 ∈ R(n−r)×m, C2 ∈ R(n−r)×q, D1 ∈ Rp×r, D2 ∈ Rp×(n−r). The
solution of (4) is given by [1]

q1,i = J iq1,0 +
i−1
∑

j=0

J i−j−1(B1,iui + C1ωi) (5)

q2,i = −

ν−1
∑

j=i

N j(B2,iui + C2ωi), (6)

where ν =ind(E). Different to the normal system, i.e. in the case E = I , the discrete desciptor
system may posses noncausal behavior, i.e. the solution may depend on future values of the
sequences qi,ui, ωi. This behavior is shown by (6). This noncausal behavior constitutes an
unwanted behaviour because it may cause degradation in performance or even destroy the
system. Therefore, it is important to eliminate this noncausal behavior. One of the way for
eliminating the noncausal behavior of descriptor system is by normalization. As stated in [2]
and [3] that the noncausal behavior of the system (1) can be eliminated using a state feedback
of the form ui = −Kxi, i ∈ Z+, and the sufficient and necessary condition for freenes the
noncausal behavior of the system (1) is rank

[

E B
]

= n.
In the application fields in which the system (1) appears as a model of some real problems,

the non-negativeness of the state variable is a must. The system (1) without disturbance is
called positive if for all i ∈ Z+ we have xi ∈ Rn

+ and yi ∈ R
p
+ for any control ui ∈ Rm

+ [4]. For the
normal system, the positiveness is defined similarly. It well known that if rank(E) = n, system
(1) without disturbance is positive iff E−1A ∈ R

n×n
+ , E−1B ∈ R

n×m
+ and D ∈ R

p×n
+ . In this

paper we investigate the problem of positive normalization for descriptor system (1) using the
difference output feedback such that the resultant closed loop system is positive. Furthermore,
we establish a sufficient condition in order for the discrete descriptor system under disturbance
can be normalized positively.
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2 Problem Formulation

We are interested in the problem of positive normalization for descriptor system (1) using the
following difference output feedback

ui = −K(yi+1 − yi), (7)

where K ∈ Rm×p is the gain matrix to be determined. Applying the feedback (7) to the system
(1), it is obtained the following resultant closed loop system:

(E + BKD)xi+1 = (A+ BKD)xi + Cωi. (8)

Definition 1 System (1) is called normalizable positively if a difference feedback controller (7)
can be found such that the resulted closed loop system (8) is normal, i.e.

det(E + BKD) 6= 0,

and the system (8) is positive.

It is obvious that if the matrix det(E + BKD) 6= 0 then the system (1) is noncausal.
Consequently, our task now is to establish the criteria to ensure the system (1) is noncausal
and the resultant closed loop system (8) to be positive under the assumption C ∈ R

n×q
+ and

ωi∈ R
q
+, i ∈ Z+.

To fulfill our task, we need the following results.

Definition 2 A matrix A∈ R
n×n is said to be monotone if it is non-singular and A−1 ∈

R
n×n
+ . A matrix M∈ R

n×n
+ is said a monomial matrix if in every row and column of M there

is exactly one nonzero entry [5].

It has been proved in [5] that A−1 ∈ R
n×n
+ if and only if A is monomial.

Definition 3 [5]

1. Two matrices M ∈ R
n×n
+ and S ∈ R

n×n
+ are said positively equivalent if there exist two

monomial matrices P and Q such that S = QMP.

2. A matrix M ∈ R
n×n
+ with rank(M) = s is said s−monomial if it is positively equivalent

to the matrix diag(Ms, O) , where Ms is monomial.

The s−monomial matrices have the following properties.

Theorem 1 [5]

1. The matrix M is s−monomial iff M has n − s rows and columns with all entries equal

to zero and s rows and columns with only one entry different to zero.

2. If the matrix M is s−monomial, then it is positively equivalent to the matrix diag(Is, O) .
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3 Main Result

First, let us generate the matrix K ∈ Rm×p such that det(E + BKD) 6= 0. Assume that the
matrix E is positively equivalent to s−monomial matrix M, that is

QEP =

[

Ms O
O O

]

, (9)

for some monomial matrices Q and P. Moreover, let

QAP =

[

A1 A2

A3 A4

]

, QB =

[

B1

B2

]

and DP =
[

O D2

]

, (10)

where A1 ∈ Rs×s,A2 ∈ Rs×(n−s) ,A3 ∈ R(n−s)×s,A4 ∈ R(n−s)×(n−s),B1 ∈ Rs×m,B2 ∈ R(n−s)×m,D2 ∈
R

p×(n−s) Assume that D2 has full rank. The condition rank
[

E B
]

= n is equivalent to B2

has full row rank. Choose K =(D2B2)
ᵀ, we have

E + BKD = Q−1

[

Ms O
O O

]

P−1 + Q−1QBKDPP−1

= Q−1

([

Ms O
O O

]

+

[

B1

B2

]

Bᵀ

2D
ᵀ

2

[

O D2

]

)

P−1

= Q−1

([

Ms O
O O

]

+

[

O B1B
ᵀ

2D
ᵀ

2D2

O B2B
ᵀ

2D
ᵀ

2D2

])

P−1

= Q−1

[

Ms B1B
ᵀ

2D
ᵀ

2D2

O B2B
ᵀ

2D
ᵀ

2D2

]

P−1.

Since B2 and D2 have full rank, the matrix B2B
ᵀ

2D
ᵀ

2D2 is nonsingular. This implies det(E +
BKD) 6=0.

Furthermore, we construct the conditions such that the matrix (E + BKD)−1 ∈ R
n×n
+ and

(A + BKD) ∈ R
n×n
+ . Note that

(E + BKD)−1 = P

[

Ms B1B
ᵀ

2D
ᵀ

2D2

O B2B
ᵀ

2D
ᵀ

2D2

]

−1

Q

= P

[

M−1
s −M−1

s B1B
ᵀ

2D
ᵀ

2D2(B2B
ᵀ

2D
ᵀ

2D2)
−1

O (B2B
ᵀ

2D
ᵀ

2D2)
−1

]

Q

= P

[

M−1
s O

O I

][

I −B1B
ᵀ

2D
ᵀ

2D2(B2B
ᵀ

2D
ᵀ

2D2)
−1

O (B2B
ᵀ

2D
ᵀ

2D2)
−1

]

Q.

It is obvious that M−1
s ∈ R

s×s
+ (based on the Definition 3) and one can see that if (B2B

ᵀ

2D
ᵀ

2D2)
−1 ∈

R
(n−s)×(n−s)
+ and B1B

ᵀ

2D
ᵀ

2D2 ∈ R
s×(n−s)
−

, then (E + BKD)
−1

∈ R
n×n
+ .
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Moreover,

A + BKD = Q−1

[

A1 A2

A3 A4

]

P−1 + Q−1QBKDPP−1

= Q−1

([

A1 A2

A3 A4

]

+

[

B1

B2

]

Bᵀ

2D
ᵀ

2

[

O D2

]

)

P−1

= Q−1

([

A1 A2

A3 A4

]

+

[

O B1B
ᵀ

2D
ᵀ

2D2

O B2B
ᵀ

2D
ᵀ

2D2

])

P−1

= Q−1

[

A1 A2 + B1B
ᵀ

2D
ᵀ

2D2

A3 A4 + B2B
ᵀ

2D
ᵀ

2D2

]

P−1.

Once more we can see that if QAP ∈ R
n×n
+ such that (A2 + B1B

ᵀ

2D
ᵀ

2D2) ∈ R
s×(n−s)
+ and

(A4 + B2B
ᵀ

2D
ᵀ

2D2) ∈ R
s×(n−s)
+ , then (A + BKD) ∈ R

n×n
+ .Thus we have proved the following

Theorem that constitutes the main result of this paper. Compare with the results in [6].

Theorem 2 Consider the system (1) with E,A,B and D are given in (9) and (10) where D2

have full rank. Then the system of (1) can be normalized positively if the following conditions

hold :

1. (B2B
ᵀ

2D
ᵀ

2D2)
−1 ∈ R

(n−s)×(n−s)
+

2. B1B
ᵀ

2D
ᵀ

2D2 ∈ R
s×(n−s)
−

3. QAP ∈ R
n×n
+ such that (A2+B1B

ᵀ

2D
ᵀ

2D2) ∈ R
s×(n−s)
+ and (A4+B2B

ᵀ

2D
ᵀ

2D2) ∈ R
(n−s)×(n−s)
+

4. C ∈ R
n×q
+ .

As an illustration, let us consider the system (1) where

E =













2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 4 0 0
0 0 0 0 0













,A =













6 3 2 1 1
3 1 2 1 1
1 1 0 4 1
1 1 5 1 1
1 1 3 0 1













,B =













−1/2 0
0 0
0 1
0 0
2 0













, C =













2
0
1
0
1













(11)

and

D =

[

0 0 0 0 1
0 0 0 1 0

]

.

It is clear that det (sE − A) 6= 0. Using the matrices

Q =













1/2 0 0 0 0
0 1 0 0 0
0 0 0 1/3 0
0 0 0 0 1
0 0 1 0 0













, P =













1/2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













,
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the matrix E is positive equivalent to the matrix

M3 =





1/2 0 0
0 1 0
0 0 4/3



 .

Furthermore, we have

QB =













−1/4 0
0 0
0 0
2 0
0 1













, DP =

[

0 0 0 0 1
0 0 0 1 0

]

and

QAP =













3/2 3/2 1 1/2 1/2
3/2 1 2 1 1
1/6 1/3 5/3 1/3 1/3
1/2 1 3 0 1
1/2 1 0 4 1













∈ R
5×5
+ .

Observe that

(B2B
ᵀ

2D
ᵀ

2D2)
−1 =

(

1
4

0
0 1

)

∈ R
2×2
+ , B1B

ᵀ

2D
ᵀ

2D2 =





−1
2

0
0 0
0 0



 ∈ R
3×2
−

,

A2 + B1B
ᵀ

2D
ᵀ

2D2 =





0 1
2

1 1
1
3

1
3



 ∈ R
3×2
+ , A4 + B2B

ᵀ

2D
ᵀ

2D2 =

(

4 1
4 2

)

∈ R
2×2
+ .

Therefore, using

K =

[

0 2
1 0

]

,

we have

(E + BKD)−1 =













1/2 0 0 0 1/8
0 1 0 0 0
0 0 0 1/4 0
0 0 0 0 1/4
0 0 1 0 0













and (A + BKD) =













6 3 2 0 1
3 1 2 1 1
1 1 0 4 2
1 1 5 1 1
1 1 3 4 1













that shown the system (11) can be normalized positively.

4 Conclusion

We have already established a sufficient condition in order for the discrete descriptor system
under disturbance can be normalized positively using the difference output feedback. The
conditions are generated using the concept of positive equivalent for two square matrices.
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