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Abstract Heat and mass transfer of MHD boundary-layer flow of a viscous incompress-

ible fluid over an exponentially stretching sheet in the presence of radiation is investi-
gated. The two-dimensional boundary-layer governing partial differential equations are
transformed into a system of nonlinear ordinary differential equations by using similarity

variables. The transformed equations of momentum, energy and concentration are solved
by Homotopy Analysis Method (HAM). The validity of HAM solution is ensured by com-

paring the HAM solution with existing solutions. The influence of physical parameters
such as magnetic parameter, Prandtl number, radiation parameter, and Schmidt num-

ber on velocity, temperature and concentration profiles are discussed. It is found that
the increasing values of magnetic parameter reduces the dimensionless velocity field but

enhances the dimensionless temperature and concentration field. The temperature dis-
tribution decreases with increasing values of Prandtl number. However, the temperature

distribution increases when radiation parameter increases. The concentration boundary
layer thickness decreases as a result of increase in Schmidt number.

Keywords Heat and mass transfer; MHD; stretching sheet; radiation; homotopy analysis

method.
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1 Introduction

Heat and mass transfer play a huge role in industry and manufacturing processes such as the
making of glass-fiber, cooling of electronic equipment, filtration, and atomic power plants [1].
Numerous studies have been conducted to analyze the effects of heat and mass transfer in
boundary layer flow. Heat and mass transfer in magnetohydrodynamics flow over an exponen-
tially stretching sheet in a thermally stratified medium was investigated by [2]. Mori et al. [3]
analyze the effects of convective heat and mass transfer under the laminar flow past a flat plate
of finite thickness. The study of the characteristics of heat and mass transfer in a viscoelastic
boundary layer flow over an exponentially stretching sheet has been conducted by Sanjayanand
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and Khan [4]. Serna [5] examined the nanofluid boundary layers with heat and mass transfer
properties.

Boundary layer flow on stretching sheet has applications in industry and technology pro-
cesses. For instance, polymer extrusion in melt spinning process, annealing and tinning of
copper wires, and production of metallic sheets. In these processes, the rate of heat transfer
from the structure of boundary layer past a sheet influences the property of the desired product.
Authors that studied flow over a stretching sheet includes [6-9].

The involvement of MHD in boundary layer flow is to control the flow of the fluid as it
involves the connection between fluid flow and magnetic fields [10]. The MHD viscous flow
contributes in process of engineering applications such as cooling of nuclear reactors, modern
metallurgical and metal-working. These processes are mainly depending on the application of
magnetic field. Mabood et al. [11] studied the MHD flow over exponentially stretching sheet
using HAM. MHD flow under different physical conditions has been investigated by [12-15].

Manufacturing processes at high temperatures involved radiation and the understanding
of radiation heat transfer are important in designing pertinent equipments [16]. The impact
of radiation on hydromagnetic boundary layer flow of a viscous incompressible fluid over a
stretching sheet has been investigated by Seini and Makinde [17]. Kothandapani and Prakash
[18] analyzed the effects of thermal radiation parameter in Williamson nanofluid. Nayak et

al. [19] studied the influences of radiation in heat and mass transfer effects on boundary layer
flow over a stretching sheet.

The homotopy analysis method was developed by Shijun Liao in 1992 that includes some
unique concepts such as providing a great freedom to adjust and control the convergence region
of solution series [20]. HAM able to provides an analytical approximation solution on nu-
merous nonlinear problems such as nonlinear ordinary differential equations in boundary-layer
flow problems, nonlinear fractional differential equations, homogeneous and nonhomogeneous
nonlinear differential equations, and higher-order nonlinear differential equations as in [21-25].

The purpose of this present study is to include the heat and mass transfer MHD boundary
layer flow over an exponentially stretching sheet with the presence of radiation. Using similarity
transformations, the governing partial differential equations are transformed to a system of
nonlinear ordinary differential equations. The transformed governing equations are then solved
using HAM. HAM will be used to study the flow characteristics of the fluid.

2 Mathematical Formulation

This study considers a steady, two-dimensional MHD flow of viscous incompressible fluid over
stretching sheet in the presence of radiation. It is assumed that the surface is stretched with
velocity Uw along the x-axis, keeping the origin fixed with the y-axis normal to the x-axis.
The sheet with surface temperature Tw and concentration Cw are placed in an inactive fluid
of uniform ambient temperature T∞ and concentration C∞. A variable magnetic field B (x) =
B0e

x/2L is applied normally to the stretching sheet, where B0 is a constant. The governing
boundary layer equations following [2] and [11] are:
Continuity equation:

∂u

∂x
+

∂v

∂y
= 0, (1)
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Momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= γ

∂2u

∂y2
−

σB2

ρ
u, (2)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
−

1

ρcp

∂qr

∂y
, (3)

Concentration equation:

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
, (4)

where uand v are the components of the velocity in the x-, y-directions respectively, γ is the
kinematic viscosity, B is magnetic field, α is thermal diffusivity, T is the fluid temperature
in the boundary layer, ρ is fluid density, qr is the radiative heat flux, cp is the specific heat
at constant pressure, C is the concentration in the boundary layer, and D is the molecular
diffusivity of chemically reactive species.

According to [17], the Rosseland approximation for radiation in (3) can be written as:

qr = −
4σ

3k∗

∂T 4

∂y
, (5)

where σ is Stefan-Boltzmann constant, and k∗ is the absorption coefficient. It is assumed that
the temperature difference within the flow is significantly small such that T 4 can be written as
a linear function of temperature and after expanding in Taylor series about T∞ and ignoring
higher-order terms resulted in:

T 4 ≈ 4T 3
∞
− 3T 4

∞
. (6)

Hence, based on (5) and (6), the equation (3) becomes:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

16σT 3
∞

3ρcpk∗

∂2T

∂y2
. (7)

The associated boundary conditions for the governing boundary layer equations are:

u = Uw (x) , v = 0, T = Tw = T∞ + T0e
x/2L, C = Cw = C∞ + C0e

x/2L, at y = 0,

u → 0, T → Tw, C → Cw, as y → ∞, (8)

where Uw (x) = U0e
x/L is the stretching velocity, U0 is the reference velocity, Tw is the variable

temperature at the sheet with T0 being a constant, Cw is the variable concentration on the
sheet with C0 being a constant and L is the characteristic length.

To simplify the mathematical analysis, dimensionless similarity variables are introduced as
shown below:

η = y

√

U0

2γL
e
x/2L, u = U0e

x/Lf ′ (η) , v = −

√

γU0

2L
e
x/2L {f (η) + ηf ′ (η)} ,

θ (η) =
T − T∞

Tw − T0
, φ (η) =

C − C∞

Cw −C0
, (9)
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where η is the similarity variable, f is the dimensionless stream function, θ is the dimensionless
temperature, φ is the dimensionless concentration and prime indicates differentiation with
respect to η.

Using (9), the nonlinear ordinary differential equations obtained are:

f ′′′ (η) + f (η) f ′′ (η) − 2 (f ′ (η))
2
−Mf ′ (η) = 0, (10)

θ′′ (η)

(

1 +
4

3
R

)

+ Pr (f (η) θ′ (η) − f ′ (η) θ (η)) = 0, (11)

φ′′ (η) + Sc (f (η)φ′ (η) − f ′ (η)φ (η)) = 0. (12)

The new boundary conditions are

f (0) = 0, f ′ (0) = 1, θ (0) = 1, φ (0) = 1, at η = 0,

f ′ (∞) → 0, θ (∞) → 0, φ (∞) → 0, as η → ∞ (13)

where M = (2σB2
0L)/ρU0 indicates magnetic parameter, R = (4σT 3

∞
)/k∗ρcpα is the thermal

radiation parameter, Pr = γ/α is the Prandtl number and Sc = γ/D indicates the Schmidt
number.

The physical quantities involved in this study are local skin-friction coefficient, Cf , local
Nusselt number, Nux and local Sherwood number, Shx which are

Cf =
2τw

ρU2
w

, Nux = −
xqw

Tw − T∞

, Shx = −
xmw

Cw − C∞

, (14)

where τw denoted as the wall shear stress, qw denoted as the rate of heat transfer and mw as
mass flux, which are given by

τw = µ

(

∂u

∂y

)

y=0

, qw = −

(

∂T

∂y

)

y=0

, mw = −

(

∂C

∂y

)

y=0

. (15)

Using (9), the local skin-friction coefficient, local Nusselt number and local Sherwood number
are

f ′′ (0) =
Cf

√

2
Rex

√

x
L

, −θ′ (0) =
Nux

√

Rex

2

√

x
L

, −φ′ (0) =
Shx

√

Rex

2

√

x
L

, (16)

where Re = (Uwx)/γ is the local Reynolds number.

3 HAM Solutions

Using HAM, the zeroth-order deformation problems for each dimensionless equation are defined
as,

(1 − q) `1 [f (η; q) − f0 (η)] = q}fH1N1 [f (η; q)] , (17)

(1 − q) `2 [θ (η; q) − θ0 (η)] = q}θH2N2 [θ (η; q)] , (18)

(1 − q) `3 [φ (η; q) − φ0 (η)] = q}φH3N3 [φ (η; q)] , (19)
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subject to the boundary conditions based on (13),

f (0; q) = 0, f ′ (0; q) = 1, f ′ (∞; q) = 0, θ (0; q) = 1, θ (∞; q) = 0,

φ (0; q) = 1, φ (∞; q) = 0, (20)

The auxiliary linear operators are chosen based on the higher order and lower order of differential
equations as in (10) – (12). Then, the auxiliary linear operators are expressed as

`1 (f) =
d3f

dη3
−

df

dη
, `2 (θ) =

d2θ

dη
− θ, `3 (φ) =

d2φ

dη2
− φ, (21)

with the following properties,

`1

(

C1 + C2e
−η + C3e

η
)

= 0, `2

(

C4e
−η + C5e

η
)

= 0, `3

(

C6e
−η + C7e

η
)

= 0, (22)

where Ci, i = 1, 2, 3, ..., 7are arbitrary constants.
From the boundary conditions (13) and according to [11], the initial guesses for (10) – (12)

are expressed as follows

f0 (η) = 1 − e−η, θ0 (η) = e−η, φ0 (η) = e−η, (23)

The non-linear operator for the zeroth-order deformation equations (17) – (19) are denoted as

N1 =
∂3f̂ (η; q)

∂η3
+ f̂ (η; q)

∂2f̂ (η; q)

∂η2
− 2

(

∂f̂ (η; q)

∂η

)2

− M
∂f̂ (η; q)

∂η
,

N2 =

(

1 +
4

3
R

)

∂2θ̂ (η; q)

∂η2
+ Pr

(

f̂ (η; q)
∂θ̂ (η; q)

∂η
−

∂f̂ (η; q)

∂η
θ̂ (η; q)

)

, (24)

N3 =
∂2φ̂ (η; q)

∂η2
+ Sc

(

f̂ (η; q)
∂φ̂ (η; q)

∂η
−

∂f̂ (η; q)

∂η
φ (η; q)

)

.

The above non-linear operator, N1, N2 and N3 are taken by referring to ODEs of (10) – (12).
From the zeroth-order deformation equations (17) – (19), the }f , }θ and }ϕ represent non-zero
auxiliary parameter, H1, H2 and H3 as non-zero auxiliary function where H1 = H2 = H3 = 1
and the embedding parameter is q ∈ [0, 1] .

Thus, the mth-order deformation equations are defined as,

`1 [fm (η) − χmfm−1 (η)] = }f

(

f ′′′

m−1 (η) +
m−1
∑

k=0

(

fkf
′′

m−1−k − 2f ′

kf
′

m−1−k

)

− Mf ′

m−1

)

, (25)

`2 [θm (η) − χmθm−1 (η)] = }θ

(

(

1 +
4

3
R

)

θ′′m−1 (η) + Pr
m−1
∑

k=0

(

fkθ
′

m−1−k − f ′

m−1−kθk

)

)

, (26)

`3 [φm (η) − χmφm−1 (η)] = }φ

(

φ′′

m−1 (η) + Sc
m−1
∑

k=0

(

fkφ
′

m−1−k − f ′

m−1−kφk

)

)

, (27)
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associated with the following boundary conditions,

fm (0) = 0, f ′

m (0) = 1, f ′

m (∞) = 0, θm (0) = 1, θm (∞) = 0,

φm (0) = 1, φm (∞) = 0, (28)

where

χm =

{

0, m ≤ 1
1, m > 1

.

Symbolic software is used to solve the mth-order deformation equations of (25) – (27).

4 Results and Discussion

4.1 Convergence of Homotopy Solution

The }-curves determined by plotting the horizontal line segment as shown in Figures 1, 2 and
3. The figures show the HAM solution at 10th order approximation. Figure 1 shows the range
of admissible values of }f for velocity profile is −1.0 ≤ }f ≤ −0.2. Figure 2 shows the plotted
graph with variation values of θ′ (0) , against different values of }θ. The range of admissible
values for temperature profile is −1.5 ≤ }θ ≤ 0.2 as in Figure 2. Permissible intervals for
concentration profiles in Figure 3 are found to be in the range of −1.9 ≤ }ϕ ≤ −0.2. By HAM,
any values from the horizontal line segment will guarantee the convergence of the series. Thus,
the value of }f = }θ = }ϕ = 0.5 for velocity, temperature and concentration profiles is used in
this work.

Figure 1: ~-curve for f ′′(0)
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Figure 2: ~-curve for θ′(0)

Figure 3: ~-curve for φ′(0)
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4.2 Validation of the Present Study

To ascertain the accuracy and efficiency of homotopy analysis method, a comparison of this
study with published data for local Nusselt number, −θ′ (0) is made. Table 1 shows the result
obtained from Runge-Kutta method [4] and [18] which is in excellent agreement with the result
obtained in this study using HAM.

Table 1: Comparison of Local Nusselt number, −θ′ (0) for Various Values of R, M and Pr with
Sc = 0

R M Pr Khalili et al. [10] Seini and Makinde [17] Present Study

0 0 1 0.9550 0.9548 0.9551
2 1.4714 1.4715 1.4714
3 1.8690 1.8691 1.8645

0 1 1 0.8615 0.8610

4.3 Results
Figure 4 displays the influence of M parameter on non-dimensional velocity field. The graph
shows the increment of magnetic parameter reduces the fluid velocity. Physically, the increasing
values of M parameter leads to the existence of Lorentz force where this force has the tendency
to produces more resistance to motion of the fluid.

The influence of various values of M and R parameter on dimensionless temperature field
are plotted in Figure 5. The graph shows the increment of M increases the temperature
distribution. The Lorentz force occurred as the magnetic parameter increases and this causes
the temperature to increase and thickens the thermal boundary layer thickness. Figure 5
also shows the dimensionless temperature increases with larger values of R parameter. This
occurred due to the augmentation of R parameter improves the changes of energy transport to
the surrounding fluid that helps the enhancement in temperature field. Consequently, reduces
the rate of heat transfer from the sheet.

Figure 6 represents the effects of various values for Prandtl number and radiation parameter
on dimensionless temperature field. The graph displays the increasing values of Prresults in the
decrease of thermal diffusivity. In consequence to that, the thermal boundary layer becomes
thinner and the heat diffuse away faster from the heated surface. This results in rises of heat
capacity which increases the rate of heat transfer.

The effects of magnetic parameter on dimensionless concentration profile is plotted as shown
in Figure 7. The graph shows the increasing values of M parameter increases the concentra-
tion distribution across boundary layer. Hence, the rate of mass transfer decreases due to the
thicker structure of concentration boundary layer. It is noticeable that the features of con-
centration distribution with increasing values of M are qualitatively equivalent to temperature
distribution.

Figure 8 shows the increasing values of Schmidt number reduces the concentration distri-
bution. The increasing values of Sc number indicates the decrease in the particle diffusivity
that leads to reduction of the level of concentration. Hence, the concentration boundary layer
thickness becomes thinner and results in rises of mass transfer rate. The effect of Schmidt
number increases on the concentration boundary layer thickness is analogous to the increasing
values of Prandtl number on the thermal boundary layer thickness.
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Figure 4: Velocity Profile, f ′(η) for Different Values of Magnetic Parameter, M with R = 0.3,
Pr = 1.5, and Sc = 0.5

Figure 5: Temperature Profile, θ(η) for Different Values of Magnetic Parameter, M and radia-
tion parameter, R with Pr = 2.2 and Sc = 0.5
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Figure 6: Temperature profile, θ(η) for Different Values of Prandtl number, Pr and radiation
parameter, R with M = 0.5 and Sc = 0.5

Figure 7: Concentration Profile, φ(η) for Different Values of Magnetic Parameter, M with
Sc = 0.5
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Figure 8: Concentration Profile, φ(η) for Different Values of Schmidt Number, Sc with M = 0.5

5 Conclusions

This paper investigated the heat and mass transfer of MHD boundary layer flow of a viscous
incompressible fluid over an exponentially stretching sheet in the presence of radiation. The
partial differential equations were transformed into nonlinear ordinary differential equations
using suitable similarity variables and were solved numerically with HAM method. The results
obtained show that increasing the magnetic parameter reduced the velocity but the temperature
and concentration of the fluid increased. The temperature increased with higher radiation
parameter but decreased as the Prandtl number increased. The concentration distribution of
the fluid is reduced with the increasing values of the Schmidt number.
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