
MATEMATIKA: MJIAM, 2020, Volume 36, Number 1, 51–67
c© Penerbit UTM Press. All rights reserved

Bayesian Mixture Poisson Regression for Modeling Spatial Point

Pattern of Primary Health Centers in Surabaya

Tri Murniati∗, Nur Iriawan and Dedy Dwi Prastyo

Department of Statistics, Faculty of Science and Data Analitics
Institut Teknologi Sepuluh Nopember
60111 Sukolilo, Surabaya, Indonesia

∗Corresponding author: trimurniati1992@gmail.com

Article history

Received: 14 February 2019
Received in revised form: 14 February 2020
Accepted: 12 March 2020
Published online: 1 April 2020

Abstract Spatial Point Pattern describes the spatial location of Primary Health Centers
(PHC) in Surabaya. The varying distribution of PHC locations in Surabaya causes its

process to follow the Nonhomogeneous Poisson Process (NHPP). The NHPP intensity
needs to be modeled to figure out the factors affecting the spread of PHC. The parameter

of the NHPP intensity model estimated by building an algorithm based on Bayesian
Markov Chain Monte Carlo to model the mixture Poisson regression. The result shows

that two mixture components are significantly involved in the model along with four
variables i.e., the total population, the number of clean households, the Accessibility

Index, and the length of the road. It produces smaller Deviance Information Criterion
(DIC) than Poisson regression.

Keywords Bayesian Markov Chain Monte Carlo; Mixture Poisson Regression; NHPP

Intensity; Primary Health Centers

Mathematics Subject Classification 62F15, 74E30, 62J02, 62M30

1 Introduction

Spatial point pattern (SPPt) data is a collection of observed datasets based on random points
of spatial locations. Many studies of SPPt data have been considered, such as forestry [1],
population [2], criminology [3], and property sales [4]. The SPPt modeling can be done
by involving covariate variables to determine whether the intensity distribution of the point
location depends on the covariate variables [5]. The SPPt analysis is an example of a Poisson
process in stochastic modeling. Based on the intensity, the Poisson process is categorized into
Homogeneous Poisson Processes (HPP) and Nonhomogeneous Poisson Processes (NHPP). The
SPPt classified as HPP has a constant intensity (expected value of a countable random variable)
in each area, while NHPP has a spatially varied intensity in each area [6]. The intensity of
NHPP that varies spatially can be influenced by the covariate as measured by the regression
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parameter coefficient. Thus, the estimated NHPP intensity could be represented as a function
of location diversity that is approximated by Poisson mixture regression. Mixture models
appear when the measurement of random variables is performed based on two or more different
conditions, or the sampling unit consists of sub-populations [7]. Finite mixture models can
be either estimated within a frequentist framework or a Bayesian framework [8]. There are
many studies of finite mixture models that work on different distribution, such as Mixture of
GLMs [8], Bernoulli Mixture Regression Model [9], Mixtures of Normal Distributions [10], and
Poisson Mixture Regression Model [11], [12], and [13]. Most of them use Bayesian framework
to estimate parameters.

The Bayesian approach coupled with Markov Chain Monte Carlo (MCMC) algorithm is
one of the popular methods to estimate parameters in mixture regression modeling. Bayesian
models are widely applied to SPPt because they aim to build an intensity function for predicting
the posterior distribution of the point pattern. Gibbs sampling is the most commonly used
approach and it is done by augmenting the data with the unobservable variable of class
membership. By using one of the MCMC methods that is Gibbs Sampling algorithm, the
estimation of parameter regression is done based on the sample generated from the posterior
distribution. The advantage of using the Bayesian approach in mixture regression is to
obtain parameter interval estimation so that the significance of each parameter can be tested.
Kusumaningrum, et al. [11] conducted SPPt analysis on the distribution pattern of community
health centers in Surabaya. The city of Surabaya is divided based on the 8x4 grid to make up
32 regions with assigned covariate variables attributed to the characteristics of each community
health center.

In this study, an analysis of the intensity of NHPP is carried out on points of dispersion
location from Primary Health Centers (PHC) in Surabaya. The PHC includes Puskesmas
(Community Health Centers) and Klinik Pratama (Privately-run Health Clinic), that is the
closest health facility to the community. The existence of PHC becomes very important to
provide accessible health services. The different characteristics of each sub-district, however,
cause the spatial variation of the intensity of health facilities in Surabaya. Two dimensions of
access need to be considered in the provision of health facilities namely availability or number of
health facilities in a region and accessibility in relation to the distance between health facilities
locations [14]. Surabaya has 31 sub-districts with a total population of 2.8 million people [15].
Ideally, the number of Puskesmas in the city of Surabaya should be at least 95; unfortunately,
the available number at this time is only 63 [16]. The government has attempted to meet the
needs of the health services profession by inviting private sectors to participate in developing
health services by establishing Klinik Pratama. With the participation of private parties, the
city of Surabaya has overcome the shortage of health facilities. However, the development
of these private health facilities tends to be located near the city center. Hence, they are
inaccessible to those who live far from the city center.

The balanced distribution of health facilities in urban areas is at the core of health services
improvement in major cities. The exploration of spatial relationships between the location of the
health center with the characteristics of the surrounding environment becomes an important
factor for decision-makers, city planners, and healthcare stakeholders. Decisions about the
location of health facilities are essential to the provision of health services as a basic need for the
population. However, the variation in health facility coverage is frequently related to geographic
characteristics of a population, their economic activities, and the different accessibility of each
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region. The Geographic Information System (GIS), on the other hand, has a potential role in
assessing the distribution of health services, particularly the effectiveness of coverage of health
facilities relevant to population density. Various GIS analysis tools have been used extensively
to analyze the distribution patterns of the existing health facilities and to find the new optimal
locations [17]. The development of modeling for the allocation of health facilities through GIS
allows researchers to model access dimensions using spatial statistical models. The GIS can help
to explore the availability of PHC based on environmental characteristics such as population
geography condition, population economic status, and accessibility [18]. GIS data can be used
as the basic information in determining the type of health services needed by the surrounding
community and as a consideration to determine the location of the new PHC.

2 Methodology

2.1 Spatial Point Process on Rd

Spatial point processes Y is a countable random variable from a space S where it is assumed
that S ⊆ Rd. Spatial point processes are very useful as statistical models in analyzing point
patterns, where points indicate the location of the study object (tree in the forest, birds nest,
the case of disease, or crime). In practice, it can be observed as a point that is confined to
a rectangular window space or irregular shape. The window object can be a tessellation of a
polygon list describing the division of the administrative area of a state into states or provinces
or can also be formed based on point data. It is called Dirichlet or Voronoi tessellation [5].
Figure 1(a) describes the city of Surabaya that is observed as a combination of objects of
tessellations with sub-district boundaries. While Figure 1(b) describes the division of windows
formed based on the Dirichlet or Voronoi tessellation function.

Figure 1: (a) Tessellation Object City of Surabaya and (b) Voronoi Tessellation

2.2 Mixture Poisson Regression

The Poisson regression model is an example of a Generalized Linear Models (GLMs) with
response Y , given the covariate x, and has Poisson density function as follows:

p(y|λ) =
e−λλy

y!
IA(y). (1)
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In (1), it would fulfill that E(Y ) = λ and has the link function g(λ) = log(λ) = xβ. Suppose
A = {0, 1, 2, . . . } is the set of non-negative integers, and IA(y) is the indicator function,
that is IA(y) = 1 if y belongs to set A and IA(y) = 0 otherwise. The variance of Y is
var(Y ) = E(Y ) = λ and there exists an overdispersion when var(Y ) > E(Y ) [19]. The Poisson
Mixture Regression Model belongs to a GLMs, where the i-th response can be expressed as
follows:

p(yi|x i,Φ) =
∑

k

wkpk(yik |x ik , βk), (2)

pk(yik |x ik , βk) =
e−e

xik
βk

(exik
βk)yik

yik !
Tik(yi), (3)

where Φ = {w, β}, w = {w1, w2, . . . , wK} as proportions of mixture components, K

is the number of mixture component and for each k, pk(yik |xik , βk) is the density, β =
{β1, β2, . . . , βK}, βk = {β0k, β1k, . . . , βQk}

T as the regression parameters, x is a n × Q matrix
of independent variables, yik and xik are the i-th observations which come from the k-th
component of mixture, Q is the number of covariate variables, n is number of observation,
i = 1, 2, . . . , n, k = 1, 2, . . . , K, ik = 1, 2, . . . , nK , n1 + n2 + · · · + nK = n and nk is number
observations in the k-th component of mixture. For the K-mixture component, it would have:

E(Yi) =

K
∑

k=1

wkλik , (4)

0 ≤ wk ≤ 1 and
K

∑

k=1

wk = 1,

var(Yi) = E[var(Yi|Hk)] + var(Yi|Hk) = E(Yi) + vik , (5)

where λik = exp(xikβk) is the average of the i-th response in the k-th component of mixture
or λik = (λk)i, and Hk is the component indicator vector of zeros and ones with Hik

= (Hk)i.
It worths one when yi is belong to the k-th component and zeros for the other, vik = 0 when
λi1 = λi2 = · · · = λiK [19]. When we use logit or log-linear links to model Hik , it would be
set one with probability πk(x). Therefore, it could represent λik which is the regression vector
coefficients of the i-th response in the k-th component typically given as equation (6).

logit
(

πk(x)
)

= log

(

πk(x)

1 − πk(x)

)

= xikβk,

log(λik) = HT
k γk, (6)

for βk and γk are unknown parameters. If there is Q covariate variables recorded from all
spatial location (ui) with K-components, then the form of the spatial Poisson mixture regression
becomes as equation (7).

ŷi =w1

[

log
(

exp[β01 + β11x1i1(ui1)]
)]

+

w2

[

log
(

exp[β02 + β12x1i2(ui2)]
)]

+ · · ·+

wK

[

log
(

exp[β0K + β1Kx1iK(uiK )]
)]

.

(7)
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2.3 Bayesian Method

Bayesian statistics differ from the classical statistical theories because all unknown parameters
in Bayesian are considered as random variables. The Bayesian analysis required the initial
prior distribution derived from the information available previously available. The analysis
was performed to obtain a posterior distribution based on observational data after it multiplies
with the priors [20]. The relationship between the posterior distribution with the prior and
likelihood distributions can be written as follows:

Posterior Distribution = likelihood × Prior Distribution

If there are λ parameters given by the data information y which follows a Poisson distribution,
then the probability posterior distribution for λ given y will be proportional to the
multiplication between prior λ and the likelihood function given by y data. Based on the
Bayes theorem, the posterior distribution is obtained based on the following equation.

p(λ|y) =
p(y|λ)p(λ)

p(y)
∝ p(y|λ)p(λ), (8)

where p(λ) is the prior distribution of λ and p(y|λ) is the likelihood distribution as in (9).

p(y|λ) =
n

∏

i=1

p(yi|λ). (9)

As in (9), the likelihood function of the Poisson mixture regression model in (2) with K-
components can be written as equation (10).

lmix =
n

∏

i=1

wkpk(yik |xik , βk), (10)

provided that pk(yik |xik , βk) as stated in (3), i = 1, 2, . . . , n, k = 1, 2, . . . , K, ik = 1, 2, . . . , nK ,
n1 + n2 + · · · + nK = n and nk is the number of observation in k-th sub-population, and
k = 1, 2, . . . , K is the number of components. For 2-component of the spatial Poisson Mixture
regression, the posterior distribution can be written as (11).

p(Φ|Yi) ∝ p(yi|w, β) × p(w) × p(β),

=
n

∏

i=1

2
∑

k=1

wkpk(yik |xik(uik), βk) × p(w) × p(β),

=
n

∏

ik

{

w1

[

log
(

exp[β01 + β11x1i1(ui1) + · · · + βQ1xQi1(ui1)]
)]

+ w2

[

log
(

exp[β02 + β12x1i2(ui2) + · · · + βQ2xQi2(ui2)]
)]

}

× p(w) × p(β), (11)

where p(βqk), q = 0, 1, 2, . . . , Q and k = 1, 2, is an individually independent of the Normal
probability density function as the prior distribution for each regression parameter and p(wk)
is an individually independent of the Dirichlet probability density function as the prior
distribution of the k-th component of mixture proportion.
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2.4 Gibbs Sampling

The Gibbs Sampling algorithm was firstly developed by Geman and Geman [21, 22].
The modified procedures performed on Gibbs Sampling to determine the membership
of the k-th components mixture of Poisson could be written in Algorithm 1 [23].

Algorithm 1. Gibbs sampling algorithm for estimating the k-th components of mixture
Poisson

1. Set t = 0 and give the state value of parameters of a mixture of Poisson for Markov chain
(λ0

1, . . . , λ
0
K , w0, H0

1 , . . . , H0
n). Usually, for the starting point, this value is randomly

selected from the joint prior distribution.

2. For t = 1, 2, . . . , M , update each parameter of mixture Poisson in every t-th iteration as
follows:

(a) Update Gibbs for λt
k, k = 1, 2, . . . , K: sample λt

k from Gamma prior distribution,
Gamma(αk +

∑n
i=1 yiH

t−1
ik

,
∑n

i=1 Ht−1
ik

+ θk), by using the updated value of

Ht−1
i1

, Ht−1
i2

, . . . , Ht−1
iK

. The prior distribution of Gamma is used as a conjugate prior
for the parameter of the Poisson distribution λt

k.

(b) Update Gibbs for proportion wt
k: sample wt

k from a prior distribution Dir[(1 +
∑n

i=1 Ht−1
i1

), . . . , (1 +
∑n

i=1 Ht−1
iK

)] with the updated value of Ht−1
i1

, Ht−1
i2

, . . . , Ht−1
iK

.
The Dirichlet distribution is a conjugate prior for the multinomial distribution. wt

is a vector of multinomial parameters.

(c) Update Gibbs for indicator Ht
ik

: sample Ht
ik

from the prior distribution Mult(1, rt
i1
,

. . . , rt
iK

), i = 1, . . . , n, k = 1, . . . , K, and
∑K

k=1 rt
ik

= 1, where

rt
ik

=
p(yi|λk)p(wk)

p(yi)
, fork = 1, . . . , K, (12)

by using the updated value of λt
k and wt

k.

(d) Update a new Markov Chain state (λt
1, . . . , λ

t
K , wt, H t

1, . . . , H
t
n).

3. Increasing t, by setting t = t + 1

4. Repeat Steps 2-3 until the chain converges.

Stephens [10] in Iriawan [24] describes the K-components mixture procedures performed
on Gibbs sampling for estimating the regression model with (Q + 1) parameters, containing
Q covariates and an intercept, by implementing their full conditional posterior distributions
in each Gibbs iteration. This modified procedure is performed to estimate the parameters
of Mixture Poisson Regression on Equation (11). It could be written in Algorithm 2.

Algorithm 2. Gibbs sampling algorithm for estimating the parameter of Mixture Poisson
Regression
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1. Setting the initial value of parameter Mixture Poisson Regression: Φ(t) = (w, β)(t),
for w = (w1, w2, . . . , wK), β = (β1, β2, . . . , βK), β1 = (β01, β11, . . . , βQ1), β2 =
(β02, β12, β22, . . . , βQ2), . . . , βQ = (β0K, β1K , . . . , βQK) on the iteration t = 0.

2. Generating component parameters for each mixture

• Generating w(t+1) from the full conditional posterior distributions of

p

(

w|y, β
(t)
1 , β

(t)
2 , . . . , β

(t)
K

)

• Generating β
(t+1)
1 from the full conditional posterior distributions of

p

(

β1|y, w(t+1), β
(t)
2 , β

(t)
3 , . . . , β

(t)
K

)

• Generating β
(t+1)
2 from the full conditional posterior distributions of

p

(

β2|y, w(t+1), β
(t+1)
1 , β

(t)
3 , . . . , β

(t)
K

)

...

• Generating β
(t+1)
k from the full conditional posterior distributions of

p

(

βk|y, w(t+1), β
(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
k−1 , β

(t)
k+1, . . . , β

(t)
K

)

...

• Generating β
(t+1)
K from the full conditional posterior distributions of

p

(

βK |y, w(t+1), β
(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
K−1

)

3. Increasing t, by setting t = t + 1

4. Repeat step 2 and step 3 up to M times, where M → ∞ or all parameters have reached
their convergences.

For Poisson Mixture regression, we use the Normal distribution as an individually independent
of conjugate prior for each component of parameter β and the Dirichlet distribution as an
individually independent of prior for each component of parameter proportion w. The hyper-
prior parameter of β and w are set from their pseudo-prior after the data are modeled using
the frequentist GLMs.

3 Research Variable

Research variables used in the analysis are the pattern of PHC location in the city of Surabaya
along with covariate variables that potentially effect on the distribution of PHC. The covariate
variables used are characteristics of each sub-district collected from Statistics Indonesia [15]
and the Ministry of Health of the Republic of Indonesia [25]. The Response variable used for
modeling is the number of Puskesmas and Klinik Pratama (PHC) observed at the tessellation
object formed based on each sub-district boundary. There are 63 Puskesmas and 148 Klinik
Pratama in Surabaya. The number of location points, Puskesmas and Klinik Pratama falling
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on the object tessellations is observed as a random variable of a Poisson process. Each location
point of Puskesmas and Klinik Pratama in two-dimensional space is expressed in latitude and
longitude lines.

Table 1: Location of Puskesmas

Number Name Latitude Longitude
1 Gayungan -7.338074 112.718704
2 Kedurus -7.319671 112.709634
3 Gununganyar -7.340858 112.783992
...

...
...

...
62 Tambak Wedi -7.217434 112.771583
63 Sememi -7.248419 112.635390

Table 2: Location of Klinik Pratama

Number Name Address
1 Klinik Nurani Jaya 83 (JST) K.H. Abdul Karim No 17 SBY
2 BP Widya Mandiri II (108) Gubeng Kertajaya V C No 24
3 BP Klinik Kebangkitan (JST) Manukan Madya 141 Tandes SBY
...

...
...

142 Klinik Rahap Bersalin Al-Azhar Jl. Dupak Bandarejo No.23
143 Putri Rahayu Jl. Mastrip IX No.9 Karang Pilang

Table 1 shows some of the data on the location point of Puskesmas obtained from the
Publication of Surabaya Health Office, while Table 2 shows some of the data on the location of
Klinik Pratama [16].

The covariate variables used in this research are some characteristics attributed to each
sub-district. Description of each research variable is explained in Table 3.

4 Result and Discussion

4.1 PHC Data and Covariate Variables Exploration

PHC are the first-degree healthcare facilities including Puskesmas and Klinik Pratama. Health
services provided by PHC include a general practitioner, maternal and child health services,
dental services, etc. Due to their function as first-degree healthcare, PHC should ideally be
built in every subdistrict. If a patient needs follow-up treatment, the doctors at PHC should
refer the patient to the bigger hospitals.

The distribution of PHC location in Surabaya can be assumed as a point pattern. The
analysis of this point pattern can be useful to know how the PHC locations spread in Surabaya.
Since the PHC distribution is not evenly distributed in all sub-districts, the spatial point pattern
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Table 3: Research Variables

Variable Descriptions Data Type

Number of PHC (Y ) Number of PHC located on each tessellation
object

Count

X1 (Population in each
sub-district)

Total population in each sub-district in the
city of Surabaya

Ratio

X2 (Number of clean
households)

Clean Households means the households that
can maintain, improve, and protect the
health of every household member from
diseases and the environmental condition
that does not support healthy living.

Ratio

X3 (Accessibility Index
in each subdistrict)

Accessibility Index is measured by using
the travel time parameter as an indirect
measurement system. The data is recorded
based on the Google Maps software, and
the method of measuring accessibility and
depiction of the road network is based on
the sub-district area, consisting of 31 sub-
districts. The sub-district office is set as the
center of sub-district and the road linking it
is set as the route.

Ratio

X4 (Length of road in
good condition in km)

National/provincial/city roads that pass
through the subdistrict are in good condition

Ratio

analysis focusing on the intensity pattern of the point in the area has been determined. The
intensity shows the ratio of the number of points in an area to the population size. In an analysis
involving administrative areas with a certain regional boundary, object tessellation is often used.
The main reason for using object tessellation is the mechanism of a computational view that
can change an area into a grid that has the same size as the region. The observed variables,
therefore, can describe the conditions of each region. The main benefit of the analysis is that
the results provide information on the district that need more PHC so that the government as
a policymaker have sufficient information to take action in determining locations of new PHC
in the future.

The SPPt analysis on PHC in Surabaya begins with transforming PHC data into the form
of point patterns based on its location. The study area is divided into 31 tessellation objects
corresponding to the number of sub-districts in Surabaya. Figure 2 shows the distribution of
PHC in Surabaya. The red point displays the number of PHC in each location. The bigger
the red circle point, the higher the number of PHC, see Figure 2(a). The location of PHC
in Surabaya is still widely spread in Central Surabaya. It means that sub-districts in central
Surabaya tend to have more PHC than do the other areas. Although the number of PHCs has
met the minimum number of health facilities in Surabaya, the PHC locations tend to develop
toward the proximity of the Central Surabaya area. This causes greater distance for people
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Figure 2: PHC Location Distribution in Surabaya: (a) Redpoint Displays the Number of PHC;
(b) Coloring Shows the Smoothly Increasing the Intensity of PHC

living on the outskirts of Surabaya to reach the PHC. PHC intensity that shows PHC ratio per
area in Figure 2(b) makes it clear that PHC development tends to move toward the center of
Surabaya City.

Variables that represent each sub-district illustrate the social demographic, population, and
accessibility conditions of the sub-district that describes in Figure 3. The total population
variable indicates the number of people who have to get health services. Hence, the more
densely populated an area, the greater the availability of health facilities. Figure 3(a) illustrates
the condition of population distribution in the city of Surabaya. Most of Surabaya dwellers
live in the area close to the Central Surabaya because the color is red and brick red which
shows a higher population. Figure 3(c) shows the distribution of clean households. Clean
households reflect the level of public awareness of health. The higher the level of public health
awareness, the more the people carry out regular health checks so that the number of health
facilities is increased. The distribution of clean households is relatively more evenly distributed
in Surabaya.

The level of access in the sub-district is indicated by the accessibility index which is described
by the linkage rate. The linkage rate means the distance that must be taken from one sub-
district to another sub-district measured by the travel time [26]. High the linkage rate means
the lower the level of access. High sub-district accessibility will encourage the growth of public
facilities because the sub-districts are easier to reach. Figure 3(b) shows that the Accessibility
Index in the centers of Surabaya area is lower than the other areas. This means that the
centers of Surabaya have a higher level of access to health facilities. Figure 3(d) shows the
infrastructure of roads in good conditions which reflects the results of economic development
of a region, i.e. the higher availability of roads in good conditions will tend to increase the
construction or improvement of other public facilities.

4.2 PHC Intensity Modelling Using Poisson Regression and Mixture Poisson

Regression

Poisson regression modeling is employed to predict the count response data. Modeling was
carried out on the intensity of PHC in Surabaya with four covariate variables. To do so, the
assumptions that must be met in Poisson regression modeling are that the mean and variance
data must be the same. Poisson regression modeled by the link function in equation (1).
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Figure 3: Covariate Variables: (a) Population in Each Sub-district; (b) Accessibility Index in
Each Sub-district; (c) Number of Clean Households, and; (d) Length of Road in Good Condition
in km

By using the Bayesian approach with MCMC as stated in Algorithm 2 is used to obtain the
convergent results. The regression equation for PHC intensity is as follows:

λi = exp
[

1.823 + 0.1926X1(ui) + 0.1787X2(ui) − 0.2361X3(ui) + 0.1478X4(ui)
]

. (13)

This model shows that PHC are established in areas with a dense population, a higher number
of clean households, and higher accessibility. The assumption of no overdispersion is not fulfilled
in this model.

A histogram of PHC number in Surabaya in Figure 4 shows the presence of a mixture
distribution. The goodness of fit distribution by Chi-square test concludes that the response
variable is not an unimodal Poisson distribution with the p-value of 0.006242096. Homogeneity
testing with the quadrate count test resulted in Chi-square statistics of 114.67. It seems that the
PHC intensity in each sub-district in Surabaya City follows the NHPP process. Overdispersion
testing produces D-test statistics:

D-test =
Observed variance

Theoretical variance
× (number observations-1) = 53.01422, (14)

which implies that the data of PHC are the overdispersed count data. Regression Poisson
mixture must be employed to model the relationship between count-response variables and
several covariate variables in which the response variables are from NHPP and or overdispersed
count data.

The number of mixture components could be obtained visually based on the histogram
and are as many as two components. These two components can be interpreted to imply
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Figure 4: PHC Histogram: (a) Histogram of the Number of PHC and; (b) Histogram of 2-
component of the Number of PHC

that the sub-districts in Surabaya can be categorized in high and low intensities in terms
of PHC availability. Membership of each component is determined by the Gibbs sampling
procedure [21]. The result shows that the first component consists of seven sub-districts with
many PHCs less than and equal to three in each sub-district, while the second component
consists of 24 sub-districts with a total PHC of more than three in each sub-district. Figure 4(a)
shows the histogram of PHC number, while Figure 4(b) shows the histogram of the number of
PHC if there are two mixture components.

Mathematically, the Poisson mixture model for PHC in Surabaya can be written as follows:

Yi ∼ PM(wk, λi),

λi = exp(xT
i β),

yi = w
(

log
[

λ1(ui1)
])

+ (1 − w)
(

log
[

λ2(ui2)
])

,

=w
(

log
[

exp(β01 + β11x1i1(ui1) + β21x2i1(ui1) + β31x3i1(ui1))
])

+ (1 − w)
(

log
[

β02 + β12x1i2(ui2) + β22x2i2(ui2) + β32x3i2(ui2)
])

,

βqk ∼ N
(

µ[βqk], σ
2
[βqk]

)

,

µ[βqk] and σ2
[βqk] are hyper-parameters that are set as the pseudo-prior derived from regression

parameter estimates using the frequentist GLMs approach, q = 0, 1, 2, 3, 4 and k = 1, 2. w ∼
Dir(1, 1) as an uninformative prior for the proportion of mixture component. Estimation
of regression parameters for each component is carried out by using the fully computational
Bayesian approach. The estimation process is done through repeated sampling through the
form of a full conditional posterior distribution in equation (11). The structure of the regression
Poisson mixture with four covariate variables model represent via DAG (directed acyclic graph)
model in Figure 5 and then automatically generate the corresponding WinBUGS code from
this graph. Determination of the posterior distribution and model parameter estimation are
carried out using MCMC simulation until the irreducible, aperiodic and recurrent of chain
conditions are obtained. These conditions are reached on the iteration of as much as 20000,
with the sample thin one and the burn-in of 1000 iterations by using WinBUGS. The generated
parameter β12, as an example, are demonstrated as plots of the density plot, autocorrelation
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Figure 5: DAG Mixture Poisson Regression

plot, and history plot in Figure 6(a), Figure 6(b), and Figure 6(c) respectively. Figure 6(a)
shows that diagnostic posterior density plots for Markov chain Monte Carlo (MCMC) process
follow density plot of Normal distribution. The autocorrelation plot in Figure 6(b) indicates
that there is no autocorrelation in samples generated by Gibb Sampling. Finally, the history
plot in Figure 6(c) demonstrates that the chain is already in the state of a rapidly mixing
processes which represents that the irreducible, aperiodic and recurrent conditions of the chain
have already been reached perfectly. Typically, a parameter will appear to converge if the
sample estimates form a tight horizontal band across this history plot.

Parameter significance testing is performed using a credible interval. If the credible interval
does not hold zero then the parameter is declared significant. The estimated model of the
Poisson mixture model in equation (7) for PHC (Yi) in Surabaya is shown in equation (15).
The number of PHC (Yi) can be estimated by with the model in equation (15). As an example,
the x1i1(ui1) represents that the total population in sub-district one has a contribution of 0.1874
in the first component of the mixture.

ŷi =0.2431 ×
[

1.3820 + 0.1874x1i1(ui1) + 0.2205x2i1(ui1) − 0.2351x3i1 (ui1)

+ 0.1716x4i1(ui1)
]

+ 0.7569 ×
[

1.9540 + 0.1732x1i2(ui2) + 0.1418x2i2 (ui2)

− 0.1644x3i2(ui2) + 0.09193x4i2 (ui2)
]

.

(15)

The first component consisting of seven sub-districts with less than four PHCssub-district
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Figure 6: The Generated Posterior Sample of β12: (a) The Density Plot; (b) The
Autocorrelation Plot, and (c) The History Plot

of Simokerto, Asemrowo, Pakal, Benowo, Jambangan, Bubutan, and Bulakgives a smaller
contribution to the model which is 24.3%, while the second component has a 75.7% contribution
to the model. The covariate variables involved in modeling have a significant effect on the
PHC distribution in the city of Surabaya. Variable of total population (X1), number of
clean households (X2), and road length variable (X4) have a significant positive effect, while
Accessibility Index (X3) has a negative influence on the PHC distribution. PHC development
in Surabaya tends to be established in areas with a dense population, most clean households,
and high accessibility.

Table 4 shows the estimated parameters of Poisson mixture regression in equation (7) which
is shown in equation (15). It also shows the credible interval of each estimated parameters.
The credible interval of all variables does not include zero value, which means that all variables
are significant in the model.

4.3 Model Comparison

The model comparison between the Poisson Mixture regression model and Poisson regression is
performed using the DIC goodness of fit test. The DIC of these two models is shown in Table 5
that concludes the second model is better than the first one due to its smallest DIC value.
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Table 4: Estimation of Regression Parameter

Node Mean Sd MC Error 2.5% Median 97.5%
P [1] 0.243 0.0733 5.513×10−4 0.116 0.2378 0.399
P [2] 0.757 0.0733 5.513×10−4 0.601 0.7622 0.884
b0[1] 1.382 0.2107 1.523×10−3 0.951 1.3880 1.782
b0[2] 1.954 0.0754 5.360×10−4 1.805 1.9560 2.101
b1[1] 0.187 0.0444 3.158×10−4 0.101 0.1877 0.275
b1[2] 0.173 0.0371 2.903×10−4 0.099 0.1732 0.246
b2[1] 0.221 0.0436 2.900×10−4 0.134 0.2209 0.306
b2[2] 0.142 0.0399 2.937×10−4 0.063 0.1420 0.219
b3[1] -0.235 0.0435 2.934×10−4 -0.321 -0.2351 -0.151
b3[2] -0.164 0.0401 3.009×10−4 -0.243 -0.1644 -0.085
b4[1] 0.172 0.0448 3.171×10−4 0.083 0.1718 0.261
b4[2] 0.092 0.0319 2.713×10−4 0.019 0.0921 0.164

Table 5: DIC of the Model

Model DIC Value
Poisson Regression 141.2410

Mixture Poisson Regression 137.3130

5 Conclusion

The analysis and discussion above have clearly demonstrated that the PHC distribution in the
city of Surabaya is classified as the NHPP. This means that the PHC intensity can be modeled
using Poisson Mixture regression. Demographic conditions represented by the population and
the number of clean households, as well as the accessibility of the sub-districts illustrated
by the number of linkages and good road conditions, affect the distribution of PHC in both of
mixture components. The Poisson Mixture regression can be applied to model the overdispersed
response variables.
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