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Abstract In this paper, extended Runge-Kutta fourth order method for directly solving

the fuzzy logistic problem is presented. The extended Runge-Kutta method has lower

number of function evaluations, compared with the classical Runge-Kutta method. The

numerical robustness of the method in parameter estimation is enhanced via error min-

imization in predicting growth rate and carrying capacity. The results of fuzzy logistic

model with the estimated parameters have been compared with population growth data

in Malaysia, which indicate that this method is acceptable to represent or predict the

data population. Numerical example is given to illustrate the efficiency of the proposed

model. It is concluded that robust parameter estimation technique is efficient in modelling

population growth.
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1 Introduction

Analytically or computationally intractable likelihoods often occur in the genetics and biology
literature. Applications involving populations like population growth models can provide im-
portant but limited inferences from count data, such as estimates of population growth rate
and the maximum limit value of the population. Parameter estimation is a discipline that
provides tools for efficient use of data for aiding in mathematical modeling of phenomena and
the estimation of parameters in this paper.

The utilization of these models is limited particularly by imprecise estimates of population
size, which reduces the accuracy and precision of parameter estimates [1]. When the parame-
ters of a population model must be estimated from time-series data, it is usual to assume that
stochasticity would arise from either measurement error or process error, but not both [2]. A
process-error model of population dynamics assumes that variation comes from the population
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growth process (e.g., random birth-death processes, environmentally driven variation in sur-
vival), and that observations are made without error. Meanwhile, a measurement-error model
assumes that changes in population size are deterministic, and that measurements of population
size are made with errors. Measurement errors can be viewed as noise that obscures the signal
of the true population dynamics. If measurement error is significant but ignored, predictions
about the future behavior of a population can be grossly in error because the process variation
is overestimated [3-5].

In real research programs, new problems lacking empirical data are common, therefore,
probability distribution of variables cannot be obtained. In order to deal with these problems,
Liu [6] particularly investigated uncertainty theory, and then refined it in Liu [7]. Nowadays,
the uncertainty theory has become a new branch of mathematics for modeling nondeterministic
phenomena.

Fuzzy differential equations can be used to describe the phenomena that include uncertainty
parameter. This study mainly concerns with fuzzy differential equations and logistic equations
in population growth model. This paper presents the approaches for incorporating parame-
ter estimation techniques in fuzzy logistic equations through the use of the robust gradient
minimization. This paper aims to discuss the model of fuzzy logistic equation subjected to
uncertainties in parameter intrinsic growth rate, G and initial population growth, y0.

There have been many different methods for solving fuzzy logistic equations, such as explicit
Runge-Kutta methods to integrate systems. This study has been conducted with aim to solve
fuzzy logistic equations by using extended Runge-Kutta fourth order method. The results have
been compared with data population growth model.

The rest of the paper is organized as follows: The Model Description section presents some
basic concepts and properties in fuzzy theory in logistic model. The Parameter Estimation
section explains the derivation of robust minimization, while the Numerical Solution of the
Model section explains numerical method using the extended Runge-Kutta fourth order method.
The Numerical Example section gives a numerical example to show the efficiency of the solution
of population growth model.

2 Preliminaries

Zadeh [8] extended the definition of the characteristic functions by replacing the set {0, 1} by
closed interval [0, 1] which is the base to the new definition of fuzzy sets.

Definition 1 [9] Let Y be the universal set with typical element, denoted by y. A fuzzy set A in
Y is characterized by a membership function µA : Y → [0, 1], with the value µA(y) representing
the grade of membership of y in A.

The set of all fuzzy sets over a set Y will be denoted by F (Y ).

Zadeh in his first publication [8] defined the operations for fuzzy sets by generalizing the
theoretic operations of crisp sets. Through his research that it is realized that the set theoretic
operations intersection, union and complement correspond to the logical operators and, inclusive
or and negation.

Definition 2 [10] Let A and B be two fuzzy sets, then:
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1 The intersection of A and B is the fuzzy set C with

C(y) = (A ∩ B)(y) = min{A(y), B(y)} = A(y) ∧ B(y).

2 The union of A and B is the fuzzy set C, where

C(y) = (A ∪ B)(y) = max{A(y), B(y)} = A(y) ∨ B(y).

3 The complement of A is the fuzzy set B, where

B(y) = AC(y) = 1 − A(y), ∀y ∈ Y.

4 Difference (A − B)(y) = (A ∩ BC)(y) = min{A(y), 1− B(y)}.

5 Equilibrium points A(y) = AC(y).

Now, two fuzzy subsets of a set Y can be compared, as one of them contains the other as
follows:

Definition 3 [8] Let A, B be two fuzzy subsets of Y, defined as A ≤ B to mean A(y) ≤ B(y)
for all y ∈ Y.

Definition 4 [11] The support of the fuzzy set A is defined by:

supp(A) = {y ∈ Y : A(y) > 0}.

Definition 5 [12] An α− level set of a fuzzy set A of Y is a non-fuzzy set denoted by Aα and
is defined by:

Aα =

{

y ∈ Y : µã(y) ≥ α, α ∈ (0, 1],
closure (∪α∈(0,1][ã]α), α = 0.

3 Model Description

The logistic growth model has been introduced to describe population growth with consideration
of a self-limitation term that corrects the unlimited growth of the Malthusian model [13].

Malthusian models have the following form:

y(t) = y0e
Gt

where y0 = y(0) is the initial population size and G is the population growth rate, or sometimes
called as Malthusian parameter. In real world, with its limited resources, exponential growth
cannot continue indefinitely. Exponential growth may occur in environments where there are
few individuals and plentiful resources, but when the number of individuals gets large enough,
resources will be depleted and the growth rate will slow down [14].

To model the reality of limited resources, population ecologists have developed the logistic
growth model. The logistic growth model attempts to model real-world population dynamics
by adding carrying capacity, denoted by K.
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The logistic growth model can be expressed as Equation (1) as:

y′ = Gy(t)

(

1 − y(t)

K

)

, y(t) = y0. (1)

Its general solution depends on initial condition, and parameter G is used to define the “fuzzy”
solution as an extension of this function following Zadeh’s extension principle.

y(t) is n-dimensional fuzzy functions of t. The function y′(t) is a fuzzy derivative of y(t)

and y0is a fuzzy number. The fuzzy function y(t) is denoted by
[

yi

α
(t), yi

α(t)
]

. The α-cuts of

y(t) are follows:

yi
α =

[

yi

α
(t), yi

α(t)
]

, i = 0, ..., n. (2)

The α-cuts equations of fuzzy logistic of Equation (2) are defined as follows:

yi

α
(t) = min

{

u|u ∈
[

yi

α
(t), yi

α(t)
]}

,

yi
α(t) = max

{

u|u ∈
[

yi

α
(t), yi

α(t)
]}

,

y
α
(0) = y

α0
,

yα(0) = yα0.

(3)

4 Parameter Estimation

The parameters, G and K from Equation (1) are estimated from the minimum of the objective
error using robust gradient minimization. From the objective error, E(G, K), the gradient
function for G and K are defined as follows:

E(G, K) =
n
∑

i=0

(y(ti) − P (ti))
2 =

n
∑

i=0

(yi − Pi)
2
. (4)

where y(ti) is a population growth at time t, and P (ti) is the data of population growth model.
Equation (4) is differentiated partially with respect to G and K, to obtain

∂E

∂G
=

n
∑

i=0

2 (yi − Pi)
∂yi

∂G
, (5)

and
∂E

∂K
=

n
∑

i=0

2 (yi − Pi)
∂yi

∂K
. (6)

Then, Equation (1) is differentiated partially with respect to G and K, to obtain

∂

∂G

d

dt
y = y + G

∂y

∂G
−

y2

K
−G

2y ∂y

∂G

K
, (7)

and
∂

∂K

d

dt
y = G

∂y

∂K
−

Gy2

K2
− G

2y ∂y

∂K

K
. (8)
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Let β1 = ∂y

∂G
and β2 = ∂y

∂K
. Then, β1 and β2 are substituted into Equations (7) and (8) to obtain

d

dt

∂y

∂G
= y + G

∂y

∂G
−

y2

K
− G

2y ∂y

∂G

K
,

d

dt
β1 = y + Gβ1 −

y2

K
− G

2yβ1

K
,

(9)

and
d

dt

∂y

∂K
= G

∂y

∂K
−

Gy2

K2
− G

2y ∂y

∂K

K
,

d

dt
β2 = Gβ2 −

Gy2

K2
− G

2yβ2

K
.

(10)

In order to obtain the new value for parameter estimations G and K, the gradient of objective
function needs to be calculated. The following are derived from Equation (5) obtained

∂E

∂G
=

n
∑

i=0

2 (yi − Pi)
∂yi

∂G
=

n
∑

i=0

2 (yi − Pi)βi
1, (11)

and from Equation (6),

∂E

∂K
=

n
∑

i=0

2 (yi − Pi)
∂yi

∂K
=

n
∑

i=0

2 (yi − Pi)βi
2. (12)

The whole minimization from Equation (4) is then solved using gradient based minimization,
which is that is conjugate gradient given in Equation (11) and (12). The best value of param-
eters, G and K are obtained after minimization.

In real population, the growth rate of population in certain countries, which is denoted as
parameter in Equation (1), is often imprecise due to the implicit lack of information and the
mistakes in measurement process. Therefore, in this paper, fuzzy parameter for G is introduced
to design meaningful and realistic models; plus, parameter K is a crisp number. The parameters
will be applied to the model and solved using numerical method for the predictions of the
country population.

The program code is written in Microsoft Visual C + +, and Matlab software is used for
visualization. The time of calculation has been programmed in accordance to the data.

5 Extended Runge-Kutta Fourth Order Method

A lot of researches have been done to improve the efficiency of Runge-Kutta method. Increasing
the number of terms in the Taylor series expansion is one of the preferable ways to improve the
order of accuracy of Runge-Kutta method. In their work, Xinyuan and Jianlin proposed an
extended Runge-Kutta-like formulae for integrating autonomous system of ordinary differential
equations [15]. Further, as an improvement for solving ordinary differential equations by two
and three stages, Rabiei and Ismail developed a third order Improved Runge-Kutta method
[16].
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Therefore, the extended Runge-Kutta method has been chosen to solve the problem as
discussed in this paper. A family of extended Runge-Kutta method has the form

yi+1 = yi + h

m
∑

j=1

bjk
(1)
j + h2

m
∑

j=1

cjk
(2)
j (13)

where

k
(1)
j = f

(

yi + h

j−1
∑

s=1

ajsk
(1)
s

)

,

k
(2)
j = f ′

(

yi + h

j−1
∑

s=1

bjsk
(1)
s

)

, j = 1, 2, ..., m.

(14)

Obviously, with cj = 0, j = 1, 2, · · · , m in Equation (13), the method is reduced to classical
Runge-Kutta methods, as

yi+1 = yi + h

m
∑

j=1

bjkj (15)

where

kj = f

(

yi + h

j−1
∑

s=1

ajsk
(1)
s

)

, j = 1, 2, ..., m. (16)

From Equation (13) and Equation (14), the extended Runge-Kutta methods with m = 3 have
the following form:

yi+1 = yi + h
(

b1k
(1)
1 + b2k

(1)
2 + b3k

(1)
3

)

+ h2
(

c1k
2
1 + c2k

2
2 + c3k

2
3

)

, (17)

where
y0 = α

k
(1)
1 = f(yi),

k
(1)
2 = f

(

yi + ha21k
(1)
1

)

,

k
(1)
3 = f

(

yi + ha31k
(1)
1 + ha32k

(1)
2

)

,

and
k

(2)
1 = f ′(yi),

k
(2)
2 = f ′

(

yi + hb21k
(1)
1

)

,

k
(2)
3 = f ′

(

yi + hb31k
(1)
1 + hb32k

(1)
2

)

,

(18)

In order to determine the coefficients of formulae in Equations (17) and (18), Taylor’s series
expansion is used to compare the terms of order 1, 2, 3 and 4 with those of the true solution
in Wu and Xia [15]. Accordingly,

b1 = 1, c1 =
1

6
, c3 =

1

3
, a21 =

1

4
, b32 =

1

2
(19)
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Then, the values from Equation (19) are substituted into Equation (17) and(18). Thus, the
extended Runge-Kutta fourth order method has the following form:

yi+1 = yi + hk
(1)
1 + h2

(

1
6
k2

2 + 1
3
k2

3

)

,

y0 = α

k
(1)
1 = f(yi),

k
(1)
2 = f

(

yi + 1
4
hk

(1)
1

)

,

k
(1)
3 = f(yi),

k
(2)
1 = f ′(yi),

k
(2)
2 = f ′(yi),

k
(2)
3 = f ′

(

yi + 1
2
hk

(1)
2

)

.

(20)

6 Numerical Example

In this section, the fuzzy logistic equation, Equation (1), with fuzzy initial condition is given
as:

dy

dt
(t) = Gy(t)

(

1 −
y(t)

K

)

, t ∈ [0, 1]

y(0) = (0.2727473 + 0.01α, 0.2927473 − 0.01α) , 0 < α ≤ 1.

(21)

The parameters, G and K are estimated in the fuzzy logistic model. By minimizing the objective
function using conjugate gradient method, the values of parameters G and K are obtained. Next
is to proceed the numerical method as proposed in this paper.

In this work, the actual Malaysia (2010-2014) population data as presented in Table 1, from
the website (references 17) has been used, with reduced unit from 1 million to 0.1, normalized
time from 0 to 1.

The obtained results from numerical method and actual population data have been plotted
as in Figure 1 and Figure 2. From the graph, we can see that the approximate solution converges
to the population data.

7 Results and Discussion

Figure 1 presents the percentage of fuzzy width between ERK4 solution and data population;
also listed in Table 2.

From Table 2, when t = 0.00, the percentage of fuzzy width between ERK4 lower solution
and data population is 0.037%, while between data population and ERK4 upper solution is
0.035%.

When t = 0.50, the percentage of fuzzy width between ERK4 lower solution and data
population is 0.036%, while between data population and ERK4 upper solution is 0.035%. When
t = 0.75, the percentage of fuzzy width between ERK4 lower solution and data population is
0.036%, while between data population and ERK4 upper solution is 0.034%.

Therefore, the uncertainty region is considered good and acceptable because the percentage
of fuzzy width between the initial fuzzy width at t = 0.00 and the simulation at t = 0.50 and
t = 0.75 are close.
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Table 1: Normalized Population Data in Malaysia

Time Population Time Population
0 0.282747 0.52075 0.292173
0.02075 0.283126 0.54175 0.292547
0.04175 0.283504 0.5625 0.292921
0.0625 0.283882 0.58325 0.293294
0.08325 0.28426 0.60425 0.293668
0.10425 0.284638 0.625 0.294042
0.125 0.285017 0.64575 0.294415
0.14575 0.285395 0.66675 0.294789
0.16675 0.285773 0.6875 0.295163
0.1875 0.286151 0.70825 0.295537
0.20825 0.28653 0.72925 0.29591
0.22925 0.286908 0.75 0.296284
0.25 0.287286 0.77075 0.296655
0.27075 0.287662 0.79175 0.297026
0.29175 0.288038 0.8125 0.297396
0.3125 0.288414 0.83325 0.297767
0.33325 0.288791 0.85425 0.298138
0.35425 0.289167 0.875 0.298509
0.375 0.289543 0.89575 0.29888
0.39575 0.289919 0.91675 0.29925
0.41675 0.290295 0.9375 0.299621
0.4375 0.290671 0.95825 0.299992
0.45825 0.291047 0.97925 0.300363
0.47925 0.291423 1 0.300734
0.5 0.2918

Table 2: Percentage of Fuzzy Width

Time Data
Population

ERK4
Lower
Solution

ERK4
Upper
Solution

Percentage of
Fuzzy Width
in Lower
Region

Percentage of
Fuzzy Width
in Upper
Region

0.00 0.2827473 0.2727473 0.2927473 0.037% 0.035%
0.50 0.291799 0.281203 0.302149 0.036% 0.035%
0.75 0.296284 0.285401 0.306789 0.036% 0.034%
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Figure 1: Fuzzy Logistic Equation in 2D

Figure 2: Fuzzy Logistic Equation in 3D
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In previous study [18], we solved this problem using other minimization technique, which is
center difference differentiation.

∂yi

∂G
=

yi(G + ∆G) − yi(G − ∆G)

∆G
,

∂yi

∂K
=

yi(K + ∆K) − yi(K −∆K)

∆K

(22)

In terms of CPU time comparison, the ratio of robust minimization and center difference
minimization is 0.5337. In computational time, the focus was on how many ODE systems
could be solved. Obviously, as in Equation (22), the center difference scheme needs to be
calculated 4 times for differential equation, while the robust scheme only has 2 complicated
differential equation to be solved. Thus, the ratio should be more than 2

4
according to our

prediction. Therefore, we can conclude that robust approach is more efficient than center
difference differentiation.

8 Conclusion

This paper has shown how the study of fuzzy differential equations can be motivated using
model of populations. This approach permits parameter estimation studies. In this study,
robust parameter estimation has been used to estimate the model parameter, and has indeed
given better estimation. The robust parameter estimation gives a closer value for parameter
G and K to model the population data. The expected result is bounded inside the region of
lower and upper solution.
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