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Abstract The heat and mass transfer of steady magnetohydrodynamics of dusty Jeffrey
fluid past an exponentially stretching sheet in the presence of thermal radiation have been
investigated. The main purpose of this study is to conduct a detailed analysis of flow be-
haviour of suspended dust particles in non-Newtonian fluid. The governing equations hav
been converted into dimensionless form, and then solved numerically via the Keller-box
method. The expression of Sherwood number, Nusselt number and skin friction have
been evaluated, and then displayed in tabular forms. Velocity, temperature and concen-
tration profiles are presented graphically. It is observed that large value of dust particles
mass concentration parameter has reduced the flow velocity significantly. Increase in ra-
diation parameter enhances the temperature, whereas the increment in Schmidt number
parameter reduces the concentration.

Keywords Dusty Jeffrey fluid; two-phase flow; heat and mass transfer; thermal radia-
tion; particle-fluid interaction.
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1 Introduction

Multiphase flows (either two or more phases) are described as the flows of different types of
matter. Physically, they represent carrier phase consisting of particulate phase of any randomly
chemical component. The carrier phase is either gas, liquid or solid. Stability of the laminar
flow of a dusty gas was first investigated by Saffman [1], in which the author found that the
two-phase fluids flow is the simplest model of multiphase flow. These phase combinations could
be liquid-solid flow, gas-solid flow, liquid-gas flow, or liquid-liquid flow. Soo [2] discovered
that in most cases, when the carrier phase is a gas, the particulate phase may consist of solid
particles or liquid droplets, or both. Meanwhile, when it comes to liquid as a carrier phase, the
particulate phase may consist of solid particles, gas, or immiscible liquid components.
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The interest in studying the flow of fluids with suspended solid particles has gained much
attention nowadays due to their usage potential in industrial and technological processes. Some
common examples of applications of multiphase fluids in various industrial fields are environ-
mental pollutant motions, filtration, spray processes, fluid-particle transport, pollution control,
foodstuff processing, groundwater flow, nuclear reactor cooling, and drug aerosol delivery. Wide
application of fluid flow with dust particles in the engineering field includes airlift pump, aero-
dynamics ablation, paint spraying, dust collectors, atmospheric fallout, powder technology, and
rain erosion. In last few decades, Sproull [3] experimentally studied air flow motion consisting
of small dust particles. Tyndall [4] observed that a particle free zone around a hot surface
would appear in dusty air. Due to these reasons, dusty fluid flow, which is exclusively related
to Saffman’s model, has received special attention among researchers such as Marble [5], Nayfeh
(6], Drew [7] and Siddiqa et al. [8]. Later on, study on boundary layer for dusty fluid was well
written by Singleton [9].

Analyses on non-Newtonian dusty fluid flow in various aspects from both analytical and
numerical methods have increased greatly, majorly due to the rapid development in many
industrial applications, especially in polymer and food industries. For instance, some foodstuffs
utilize fluids that exhibit the non-Newtonian behaviour, which promotes flow characteristic of
non-Newtonian dusty fluid significantly.

Arifin et al. [10] reported the influence of aligned magnetic field and Newtonian heating on
dusty Casson fluid over a stretching sheet, in which they found that Casson parameter led to the
increase of skin friction coefficient and decrease of Nusselt number. Siddiqa et al. [11] analyzed
the natural convection flow of dusty non-Newtonian fluid via a modified power-law viscosity
model. Afterwards, Mahanthesh and Gireesha [12] studied dusty Casson fluid in the presence
of thermal Marangoni convection effects. In both articles, the authors revealed that the heat
transfer rate for dusty non-Newtonian fluid was higher as compared to dusty Newtonian fluid.

Makinde et al. [13] conducted numerical analysis on non-linear thermal radiation on magne-
tohydrodynamic dusty micropolar fluid. Very recently, Siddiqa et al. [14] studied dusty Casson
fluid in the presence of radiative heat transfer, in which they observed that the radiation pa-
rameter rose along with the rate of heat transfer extensively. They concluded that the use
of the non-Newtonian parameter can decrease drag friction and boost temperature profile in
related engineering fields.

Various studies on non-Newtonian fluid with solid dust particles have shown that most
researchers limited their interest to study heat transfer boundary layer flow only. In addition,
most of the studies above only reported about non-Newtonian fluids such as the Casson fluid,
modified power-law fluid and micropolar fluid. As diversification, research on this type of fluid
can be extended to different models. One of them is Jeffrey fluid type model, which exhibits both
viscous and elastic characteristics. In this regard, Bhatti and Zeeshan [15] studied the effects of
variable viscosity on dust phase in unsteady dusty Jeffrey fluid flow; however, the author did not
consider the mass transfer phenomena. In that article, the solution was obtained analytically.
Thus, in present work, mass transfer has been included into the study on dusty Jeffrey fluid
flow, with consideration on radiation effect. To the best of author’s knowledge, no attempt has
been reported on numerical analysis of steady two-phase dusty non-Newtonian fluid flow by
using Jeffrey fluid model under influence of heat and mass transfer. The governing equations
with boundary condition have been reduced to dimensionless form by employing dimensionless
variables. The equations are then solved numerically with the help of Keller-box method. The
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expressions of Sherwood number, Nusselt number and skin friction have been evaluated and
displayed in tabular forms. Velocity, temperature and concentration profiles have been analyzed
based on their graphical behaviours, respectively, while suspended solid dust particle on Jeffrey
fluid flow, together with heat and mass transfer characteristics, have been analyzed in detail.

2 Mathematical Formulation

For this case, steady two-dimensional mixed convection flow of dusty Jeffrey fluid over an
exponentially stretching sheet has been considered. Heat and mass transfer under the influence
of thermal radiation are assumed to take place in the flow. The velocity of the exponential
stretching sheet is in the form U,(z) = Upe™’ (Uy being characteristic fluid velocity). The
heating of the carrier fluid or cooling surface is maintained by temperature T3, (z) = Too + (T —
T.o)e™?! and exponential concentration C,(x) = Cy + (Cy — Coo)e®?! (Uy, Ty and Cj are
positive constants). L is reference length and subscripts oo, w are free stream conditions and
stretching surface, respectively.

2.1 Physical Assumption for (Solid) Dust Particles

Following Marble [16], some assumptions have been made for dilute suspensions as below:

1. The dust particles have spherical shape. They are all rigid and have the same mass m
and radius 7.

2. Small spherical dust particles of velocity w, move parallel through the carrier fluid at a
small velocity u. Thus, the Reynold number for each dust particle is assumed to be small
enough.

3. The dust particles are considered as non-interacting (being uniformly distributed through-
out the carrier fluid).

4. The volume fraction of the dust particle ¢ is neglected due to some reasons.

Under this restriction, the total fluid-particle interaction force per unit volume Fp is needed
along with the momentum equation. Keeping in mind, the motion of carrier fluid containing
solid particles is critically dependent upon the interaction between the fluid and particle. The
expression of Fp in vector form that obeys the Stokes law is

Fp=KN(V,—V) (1)

where K = 6mrp is the drag coefficient of each spherical dust particle, N = p,/m is the
number density of particles. p, p,, V. = (u,v) and V, = (up,v,) are the fluid viscosity,
dust particle density and velocity vector for fluid and dust particles, respectively. Similarly,
Qp = ppcp(T, — T')/7r corresponding to the total heat transfer per unit volume is required for
both phases, along with the energy equation. Here, c,, T}, T\, 7r are considered as specific heat
of the dust particle, dust temperature, fluid temperature and the timescale for a particle to
relax to the same temperature as the fluid flow. Detailed work on the interaction between fluid
and particle can be found in the book by Rudinger [17] and Fan and Zhu [18].
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2.2 Constitutive Equation for a Jeffrey Fluid
Following Qasim [19], the satisfying constitutive equation for a Jeffrey fluid is defined as
T=-pl+ S, (2)

where 7 is the Cauchy stress tensor, p is the scalar pressure, and I is the identity tensor. The
extra stress tensor, S is given as

S = (R1+ (V- V)Ry), (3)

1
14+ M\
and

R, =VV + (VV). (4)
Here, A\; and )\, are the material parameters of Jeffrey fluid, R; is the first Rivlin-Eriksen

tensor and t denotes the matrix transpose. To clarify, if Fp = Ay = Ay = 0, it will lead to the
expression of a single phase of an incompressible viscous flow.

3 Governing Equations

Under the above assumptions, the governing equations of heat and mass transfer for a steady
flow of dusty Jeffrey fluid, in the presence of thermal radiation, can be written in dimensional
form as

For Jeffrey fluid phase:
Ju Ov

u@—l— v v @—I—)\(u u +U83u ou 0*u _I_@_u 82u)
ox dy 14X\ |0y? 2 0x0y? oy Oxdy? | Oy oxdy
KN oB%u
+7(Up—u)— o (6)
—_— —

extra force

5 1 Oq,

U—— —u —
Ox 8y pcy Oy%  pcyrr pcfﬂ, pcy Oy
~——

, (7)

thermal radiation

80 oc 0*C pp
— c,-C 8
&B Ty dy 8y TC( ) (®)
For dust particle phase: 5 5
up | Oup _
o Ty 0 (9)
8up 8up K
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ac,  ac, 1
U or Ty T 7

subject to the boundary conditions

—(C = Gy), (12)

u="Uy(z), v=0, T=1T, C=C, at y=0,

u—0, u,—0, vy —>v, T =>Ty, T)— Ty, C—Csx, Cp— Cyx as y— o0, (13)

where v = u/p, K, p, T, C, o, ¢y are the kinematic viscosity, thermal conductivity, density,
temperature, concentration, electrical conductivity and specific heat of the fluid phase, respec-
tively. ¢, is the radiative heat flux, D,, is the diffusion coefficient, C, is the concentration for
the dust particle phase, and 7. (7, = m/K) is the timescale for each particle to relax to the
same concentration (velocity) as the fluid flow. Since the effects of thermal radiation and mag-
netic field are taken into accounts, both variables need to be defined well in order to simplify
a similarity solution. Referring to Rosseland’s approximation, the radiative heat flux ¢, can be
expressed as

40* OT*
3k* Oy’
where o* is the Stefan-Boltzmann and k* is mean absorption coefficient. 7* may be identified as
a linear function of temperature T4 = 473 T — 371 due to the assumption that the temperature
difference within the flow is small enough. The new expression of the radiative heat flux is
derived as

qr = — (14)

o9, 160*T3 82T
dy 3k* 8y
Meanwhile, a magnetic field B(z) = Bye®?" is applied with constantBy.

(15)

4 Similarity Transformation
Now, the nonlinear governing equations are transformed into nonlinear ordinary differential

equations via suitable transformations. The suitable transformations for both phases are
Fluid phase :

’ ) 2 ’ C1_6100
W=,/ f ), v = =[S [f o) nf )] 6 = 2, o) =

Ty — Too Cyw — Cx
Dust phase :
z ’ UO'U x ’ T T C — Coo
up = Uy e F (), 0, = —/ 5 ¢ 2t [F(ﬁ) +nk (77)} ,0p(n) = T T, s bp(n) = .
with a dimensionless similarity variable
Uy .,
n=y 1/ —=e"?, (16)

2uL

where (f'(n), F'(n)), (0(n),0,(n)) and (¢(n), ¢p(n)) are the dimensionless stream function, tem-
perature and concentration of fluid and dust particle phase, respectively. The next step is
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introducing relation (16) into Equations (8)-(12), where the dimensionless nonlinear ordinary
differential equations are obtained as

"

£ @) (£ =2f2) +De [2f £ = 17 43 +2 1+ \) G (F = f)

—(1+X)Mf =0, (17)

(1+4/3TR)0" + Pr (fe’ - f’e) +2Pr Gy Br (6, —0) +2Pr EcG B, <F - f’)2 —0, (18)

2 (F)2 —FF" 425, (F - f’) — 0, (19)
F'9,— F6,+ 287 (0, — 0) =0, (20)

¢+ Sc(fo — fd)+25¢G B (¢, — ¢) =0, (21)
F'ép— F¢, +28:(¢p — ¢) = 0. (22)

Accordingly, the transformed boundary conditions become

/

f0)=0, f(0)=1 0(0)=1, ¢(0)=1 at n=0,

f) =0 F'(n) =0, F) —>f'(77)} w1 5
0(n) =0 O(n) —0, &) =0 &p(n) =0 ¢(n) —0

De, G, B8,, M, TR, Pr, ~, Oy, Ec, Sc and (3. are Deborah number, dust particles mass
concentration parameter, local fluid-particle interaction parameter for velocity, magnetic pa-
rameter, radiation parameter, Prandtl number, specific heat ratio, local fluid-particle inter-
action parameter for temperature, Eckert number, Schmidt number, and local fluid-particle
interaction parameter for concentration, respectively, defined as

(23)

Ao Upe®/E mN L 20B2L picy
De=22"%"  G=—"1 f,=—— M= , pr="1
¢ L p’ & TUp pUo T
Cp L Uze* /L v L
S~ =—— Fc=———"F" —— Sc=—, B.= . 24
=y ey P ey T oy T )

5 Numerical Scheme

The governing partial differential equations of flow, heat and mass transfer ((5) to (12)) are
converted into a system of nonlinear ordinary differential equation ((17) to (22)) with the
transformed boundary condition (23) by using similarity transformation. The equations are
then solved numerically by using finite difference scheme known as Keller-box method. This
method consists of a four-step approach to successfully obtain a numerical solution, which can
be found in the study by Cebeci and Bradshaw [20]:

1. Firstly is to choose suitable substitutions as an unknown function, in order to convert the
nonlinear governing equations to a first-order differential equation system.
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2. Domain discretization: To approximate the first order system, centred-difference scheme
about mid-point is applied.

3. Newton’s method: To linearize the resulting system of equations, Newton’s method is
used to express them in matrix-vector form.

4. Block tri-diagonal: To solve the linear system for both phases, formation of block
tri-diagonal elimination technique is required.

To this end, the present results have been computed, as displayed in tables in the next section.

6 Result and Discussion

Heat and mass transfer of steady magnetohydrodynamics (MHD) of dusty Jeffrey fluid over an
exponentially stretching sheet with the thermal radiation effects had been investigated numeri-
cally via Keller-box method, whose results in terms of skin friction coefficient f”(0), heat trans-
fer coefficient #'(0) and mass transfer coefficient ¢’ (0) are presented in Tables 3 - 5. Meanwhile,
the influence of physical parameters for fluid and dust particles phase on the velocity f'(n),F"(n),
temperature 6(n),0,(n) and species concentration profile ¢(n),¢,(n) are displayed graphically
in Figures 1 - 6.

Keller-box finite difference scheme had been used to obtain the numerical solutions. Hence,
the robustness of the numerical method needed to be reported beforehand. For this purpose,
the accuracy of the Keller-box method had been investigated, for comparison with methods in
published works such as homotopy analysis method (HAM) obtained by Nadeem et al. [21],
Keller-box method by Bidin and Nazar [22], shooting method by Chaudhary et al. [23], and
Runge-Kutta-Felhberg integration scheme by Kameswaran et al. [24]. The numerical results
had been compared with the earlier published results for some limiting cases. Note that, by
putting De = A\; = 0 in Equation (17), the solution can be reduced to dusty viscous fluid
(represent Newtonian fluid study), similar to G = 3, = Or = . = 0 in Equations (18)-(22)
which can be reduced to classical single-phase flow.

The comparison of the heat transfer coefficient by various values of Pr is presented in Table
1. The solution of Equation (17) in the present study can be reduced to single-phase problem
(in the absence of solid dust particles) if G = 0. As a consequence, Equation (17) is identical
to the published result obtained by [21] by the use of Equation (14), which clearly shows the
significance of single-phase problem (Jeffrey fluid model). Table 1 shows that heat transfer
coefficient increased with an increase in the radiation parameter. The result is found to be in
an excellent agreement between analytical solution [21] and numerical solution [22] when no
radiation TR = 0 and with radiation TR = 1 cases were considered. Hence, this fact confirms
the accuracy of method used.

Meanwhile, Table 2 shows the comparison of skin friction coefficient by different values of
M. It can be seen that an increase in magnetic parameters led to the increase in the value of
skin friction coefficient of fluid flow. Thus, the results are in good agreement with the results
obtained by Chaudhary et al. [23] and Kameswaran et al. [24]
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Table 1: Comparison of Heat Transfer Coefficient —6'(0) between Various Values of Pr
and TR =0,1.0 with De=G =X\ = 5c=0

—0'(0)
TR Pr Nadeem et al. [21] Bidin and Nazar [22] Present results
1.0 0.955 0.955 0.955
0 2.0 1.471 1.471 1.471
3.0 1.870 1.869 1.869
1.0 0.534 0.532 0.532
1 2.0 0.863 0.863 0.863
3.0 1.121 1.121 1.121

Table 2: Comparison of Skin Friction Coefficient — f"(0) between Various Values of M
with De=G =X =5¢c=TR=0

~f"(0)
TR M Chaudhary et al. 23]  Kameswaran et al. [24]  Present results
0 1.282 1.282 1.282
0.04 1.314 - 1.298
0 0.25 1.464 - 1.378
1.0 - 1.629 1.629
2.0 - 1.913 1.913

The values of skin friction coefficient f(0) by various values of magnetic parameter M,
Deborah number De and fluid-particle interaction parameter for velocity (3, are provided in
Table 3. It can be seen that the values of skin friction coefficient increased with the increase of
values of M and (3,. Physically, the applied magnetic field in the fluid regime generated Lorentz
force which gave rise to surface friction force. Put simply, one could improve the fluid flow rate
by reducing the strength of the magnetic field, and vice versa. In addition, the presence of dust
particle boosted more resistance to the flow, which enhanced the skin friction coefficient. In
contrast to this, the influence of Deborah number De decreased the values of f”(0) significantly.

Since the viscosity of Non-Newtonian fluid is higher compared to Newtonian fluid, this led
to the increase of frictional forces created between two surfaces. Therefore, the viscosity of
fluids might have affected the fluid flow. The same observation was reported in [13].

The effects on heat transfer coefficient #'(0) by various values of magnetic field M, Eckert
number Fc, radiation T'R and fluid-particle interaction parameter for temperature 37 are shown
in Table 4. It can be seen that the heat transfer coefficient increased with the increase of the
values of M and [r. Physically, if the strength of the magnetic field rises, the rate of fluid
motion will increase, which results in the enhancement of heat transfer coefficients. Also, it
can be seen that the increase of the values of Ec and TR reduced the heat transfer coefficient.
The presence of Eckert number parameter generally created some thermal energy due to its
frictional heating, and when thermal radiation parameter took place in the fluid regime, they
significantly affected the temperature distribution and heat transfer.
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Table 3: Values of Skin Friction Coefficient f”(0)

M De Bu fﬁ(o)
1.0 0.5 5.0 3.491761
3.0 3.684930
6.0 3.956659
2.0 2.020731
5.0 1.321724
0.3 2.211438
100.0 3.825013

Table 4: Values of Heat Transfer Coefficient 6'(0)

7

M Ec | TR Br 7' (0)

10 | 20 0.5 5.0 2.916833
3.0 2.972564
6.0 3.037863

1.5 3.838100
3.0 1.074299

1.0 2.105412
3.0 1.417124

0.3 0.777226
100.0 3.239598

Table 5 displays the effect of the magnetic field M, Schmidt number Sc and fluid-particle
interaction parameter for concentration (. on the mass transfer coefficient. The table shows
that the mass transfer coefficient increased as the values of Sc and (. were increased. On
the other hand, increasing the magnetic parameter obviously reduced the flow rate due to the
existence of Lorentz force, which then reduced the mass transfer coefficient. However, it did
not accelerate the species transfer in the boundary layer.

The effects of dust particle mass concentration parameter G' on the velocity profile for the
carrier fluid system are depicted in Figure 1. From the graph, the presence of a small number
of dust particle caused less resistance to the flow. However, the velocity of fluid decreased
significantly according to the increase of number of particles. This behaviour was predictable,
as the frictional forces between phases became stronger in the momentum boundary layer region.

Figure 2 and Figure 3 show the effects of magnetic field M on velocity on concentration
profiles for fluid and dust phases. It can be seen that the velocity of the fluid and dust phase in
the boundary layer region decreased as the values of M were increased, which was due to the
fact that the Lorentz force was against the motion, hence it had tendency to delay the motion
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Table 5: Values of Sherwood Number —¢'(0)

M Sc B ¢'(0)
1.0 1.5 5.0 3.290832
3.0 3.224334
6.0 3.133396
0.22 3.037536
2.80 3.533988
0.3 2.172394
100.0 3.459989

of fluid flow. Meanwhile, for the mass transfer problem, as M was increased, concentration
profile for both phases increased. This was also due to an increase in the opposing force known
as Lorentz force. Once the magnetic field was applied to an electrically conducting fluid, the
frictional heating between the fluids layers increased as well, releasing energy in the form of
heat. Thus, it clearly indicates that Lorentz force could enhance the movement of species.

The effect of thermal radiation parameter, T'R on the temperature profile for fluid and dust
particles phases, is presented in Figure 4. The temperature profiles of both phases increased
as parameter T'R was increased. This temperature enhancement occurred due to energy being
transmitted in the fluid; hence it obeys the definition of thermal radiation.

Viscous dissipation is commonly considered in non-Newtonian fluids studies. Eckert number
is a non-dimension parameter that alludes to this effect. The energy yield by work done between
fluid layers will be taken by fluid viscosity, which at the same time is transformed into internal
energy of the fluid. Put simply, heat energy is provided when the fluid is heated up. This
phenomenon is known as an irreversible process or termed as viscous dissipation. Therefore, in
this case, the fluid temperature increased with the increase of values of Fc. The influence of
Eckert number on temperature profile is displayed in Figure 5.

Figure 6 depicts the influence of Schmidt number on the concentration profile. It can be
seen that increasing the values of the Schmidt number reduced the concentration of fluid and
dust particles in the boundary layer region. This behaviour was expected due to the increase
in the kinematics viscosity which acted on the fluid flows. The Schmidt number is defined as
the ratio of kinematic viscosity to the mass diffusivity. Hence, it is true that when the rate
of mass transfer is dropped from the sheet to the fluid, it reduces the concentration of fluid
and dust. The Schmidt number parameter, in fact, can be an excellent agent in controlling the
movement of species.

7 Conclusion

1. The presence of a large number of dust particles in a carrier fluid phase offers more
resistance to the flow.

2. Flow behaviour due to constrasting velocity and concentration of the magnetic parameter
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Figure 1: Velocity Profile of Different Values of G on Dusty Jeffrey Fluid
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is opposite in both phases.

3. Increase in radiation and Eckert number parameters will enhance temperature in both

phases.

4. Concentration distribution of fluid decreases with the increase of Schmidt number param-

eter.
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