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Abstract In recent years, generalised estimating equations (GEEs) have played an im-

portant role in many fields of research, such as biomedicine. In this paper, we use GEEs
for latent class regression (LCR) with covariate effects on underlying and measured vari-

ables. However, there are only a few model-selection criteria in GEEs. The widely known
Akaike information criterion (AIC) cannot be used directly, since AIC is a full likelihood-

based model, whereas GEEs are nonlikelihood based. Hence, we propose a modification
to AIC in GEEs for LCR models, where the likelihood is replaced by quasi-likelihood, and

a proper adjustment is made by giving a penalty term. The data of the modified hospital
elder life program (mHELP) project are used to illustrate our method.
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1 Introduction

In the latent variable framework, there are two types of variables to be considered. These
are the variables that can be measured directly, also known as manifest variables, and the
variables that are inferred from measured variables and cannot be measured directly, known
as latent variables. The measured and latent variables can be discrete or continuous. In this
paper, we concentrate on measured variables and latent variables that are categorical, called
a latent class analysis (LCA). The LCA model was initially proposed by Green [1]. Goodman
[9] provided a beneficial theory for LCA and developed a maximum likelihood (ML) approach
to estimate model parameters as well. In recent years, LCA is admitting a lot of attention
in many fields of research. For instance, LCA has been used in psychosocial (Pickles et al.
[10]; Hudziak et al. [11]; Garrett and Zeger [12]; Neuman et al. [13]; Nylund et al. [14]; Li
and Lee [15]; and Larance et al. [16]) and in medical research (Moustaki [17]; Sullivan et al.
[18]; Bandeen-Roche et al. [19]; Klonsky and Olino [20]; and Neumann et al. [21]). When
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a set of covariates is available, the LCA model can be extended to incorporate the covariate
associated with the class membership, as well as to build a direct relationship with measured
responses. This is a latent class regression (LCR) model as developed by Clogg and Goodman
[22] and [23], Forman [24], Dayton and Macready [25], Forman [26], Hagenaars [27], Melton,
Liang, and Pulver [28], Van Der Heijden, Dessens, and Bockenholt [29], Bandeen-Roche et

al. [19], Leisch [30], Huang and Bandeen-Rochee [31], and Huang [32]. It is necessary to
build LCR models under the conditional independence assumption, where the responses are
independent given class membership. However, this assumption is not necessarily true and
can be empirically checked through analyses stratifying on inferred class memberships. This
is problematic since these inferred latent classes can be wrong if the model assumptions are
violated. The use of generalised estimating equations (GEEs) is fast becoming the solution for
such a problem, since this approach is built by constructing a working covariance structure to
relax the dependency among variables. Unfortunately, there are a few model-selection criteria
in GEE. The likelihood-based criteria, such as AIC, cannot be used directly in the GEEs
approach since they are nonlikelihood based. Hence, we propose modified model-selection
criteria for GEEs, particularly for LCR models. These criteria use quasi-likelihood instead of
full likelihood to run the procedure.

2 Method

In this section, we briefly review the literature and illustrate the proposed method used in this
paper.

2.1 Latent Class Regression (LCR)

To postulate the LCR model, the covariates of interest are incorporated into the LCA model.
Let (xi, zi) be the concomitant covariates of the ith individual for i = 1, . . . , n, where xi =
(xi0, xi1, . . . , xip)

T
, xi0 = 1, are covariates assumed to be associated with the ith latent class

membership, Si, and zi = (zi1, . . . , ziM)T with zim = (zim1, . . . , zimLm)T
, and m = 1, . . . , M

are covariates used to determine the direct effects on the response given the latent class mem-
bership. The covariates may include any combination of continuous and/or discrete measures
and could be mutually exclusive or overlap. The regression extension of latent class analysis,
called the LCR model, is defined as in equation (1):

P ({Yi1 = y1, . . . , YiM = yM} | xi, zi)

=
J
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being defined as in the generalised linear model (GLM)
framework proposed by McCullagh and Nelder [2]. However, Agresti [3] stated that the logit link
function was commonly adopted in GLMs, hence, we specify ηj
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as in equation (2) and (3), respectively:
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for i = 1, . . . , n ; m = 1, . . . , M ; k = 1, . . . , (Km − 1) ; j = 1, . . . , J, and

ηij = ηj

(

xT
i β

)

=
exp (β0j + β1jxi1 + · · · + βPjxiP )

1 +
J−1
∑

j′=1

exp (β0j′ + β1j′xi1 + · · · + βPj′xiP )

(3)

for i = 1, . . . , n ; j = 1, . . . , J − 1.

2.2 Generalised Estimating Equation (GEE) for LCR Models

The GEE was proposed by Liang and Zeger [4] as an extension of the generalised linear model
(GLM) framework of Nelder and Weddenburn [5] to deal with correlated data. The general
form of a GEE can be defined as in equation (4):

G (θ) =
n

∑

i=1

∂Eθ

(

YT
i

)

∂θ
V-1

i (θ) [Yi −Eθ (Yi)] = 0 (4)

where Eθ

(

YT
i

)

is the mean response of Yi,V
-1
i (θ) is the working covariance structure, and

[Yi − Eθ (Yi)] is the vector of centralised responses. To simplify the notation in equation (4),
we set DT

i = ∂Eθ

(

YT
i

)/

∂θ. The generalised estimating equation approach relaxes the use of
‘true’ covariance structure by introducing working covariance structure, V−1

i (θ) .This method
was developed by Zeger and Liang [33], Zeger, Liang, and Albert [34], Lipsitz, Laird, and
Harrington [35], Liang and Zeger [36], Preisser and Qaqish [37], Burton, Gurrin, and Sly [38],
Pan [6], Diggle et al. [39], Hanley et al. [40], Hardin and Hilbe [41], Ballinger [42], Chaganty
[43], Twisk [44], Balan and Schiopu-Kratina [45], Ogungbenro and Aarons [46], Natarajan et

al. [47], Goetgeluk and Vansteelandt [48], Koper and Manseau [49], Shults et al. [50], Chen,
Yi, and Cook [51], Warton [52], Shen and Chen [53], Wang, Zhou, and Qu [54], Shen and
Chen [55], Touloumis, Agresti, and Kateri [56], Stoklosa, Gibb, and Warton [57], Yang, Chen,
and Lung [58], Chen, Liang, and Wang [59], Kalema and Molenberghs [60], Jaman et al. [61];
Nikoloulopoulos [62], and Wang et al. [63]). To use a GEE for an LCR model, we extended
model (4) to incorporate covariate effects as in equation (5):

G (θ) =
n

∑

i=1

∂Eθ

(

YT
i

∣

∣xi

)

∂θ
V−1

i (θ; xi, zi) [Yi − Eθ (Yi| xi, zi)] = 0W×1 (5)

Here, xi and zi are the covariates that associate with latent class membership and the covariates
that are related to measured responses, respectively. The estimates of parameters are obtained
using the Newton-Raphson procedure. The selection procedure to select the best working
covariance structure, however, is beyond the scope of this paper.

2.3 Model Selection Criteria in GEEs for LCR Models

Traditional model-selection criteria such as AIC and BIC cannot be used directly in GEEs
since they are likelihood-based, and full multivariate likelihoods are not expressed in GEE
estimations. Instead, the estimation is based (in marginal) on quasi-likelihood. A modification
of AIC, called the quasi-information criterion (QIC), was introduced by Pan [6]. The QIC
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was constructed by replacing the likelihood in the Kullback-Leibler information with the quasi-
likelihood under the working independence assumption. The QIC is defined as in equation
(6):

QIC (R) = −2Q
(

β̂ (R) ; I, DTrue

)

+ 2tr
(

ΩV̂san
)

(6)

where Ω =
∑n

i=1 DT
i ViD is the model-based variance estimator under the independence work-

ing correlation structure, and V̂san is the sandwich variance estimator under the working corre-
lation structure R described by Liang and Zeger [4]. Since the QIC is built under an indepen-
dence working correlation structure, we face the problem of misspecification if we apply another
working correlation structure. Hence, Hin and Wang [7] proposed another criterion used for a
more general working correlation structure by eliminating the first term of the right-hand side
of equation 6. This criterion is called the correlation information criterion (CIC), and is defined
as in equation (7):

CIC (R) = 2tr
(

ΩV̂san
)

(7)

It improves QIC performance. In this paper, we modify the QIC of Pan [6] and CIC of Hin and
Wang [7] for LCR models with a covariate effect in both measured and underlying variables.
These criteria assume the independence of m observed polytomous responses within the same
individual. The independence working covariance for each individual Vi can be derived as a
block-diagonal matrix as in equation (8):
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(8)

where the elements of Vi, Vim ≡
{

Vi, (m, k), (m, k′) (θ; xi, zi)
}

= {Cov (Yimk, Yimk′ | xi, zi)}, is a
(Km − 1) × (Km − 1) block matrix of the working covariance for the mth responses.

3 Data Example

In this section, we use data from the mHELP project to illustrate our approach. The mHELP
project investigates the indicators that jointly affect frailty among patients after undergoing
abdominal surgery. These indicators are based on Fried’s criteria: shrinking (weight loss),
weakness, exhaustion, low activity, and a slow walking speed. This project recruited elderly
Taiwanese adults after undergoing abdominal surgical procedures. mHELP was hypothesised
to improve the frailty of these patients at discharge. The sample included 377 elderly patients.
However, for the purpose of our study, we only used the samples with complete observations.
Hence, we used 320 out of the 377 patients, 149 of whom received usual care and were treated
as the control group, and the remaining patients who received mHELP care served as the
intervention group. Of the 320 patients, 184 were male and the rest were female. We utilised
covariates suggested by Chen et.al. [8]. The covariates included the patients’ demographics (age
(years), gender (1 = male; 2 = female)) and medical statistics (duration of surgery (minutes),
length of hospital stay (days), comorbidity, baseline frailty status at admission (using Fried’s
criteria; 1 criterion present = not frail, 2 criteria present = pre-frail, 3 or more criteria present
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= frail), cancer stage (1 = stage 1, 2 = stage 2, 3 = stage 3, 4 = stage 4)). The data
on demographic and medical characteristics were obtained from the medical report of each
patient. Comorbidities were measured using the Charlson Comorbidity Index, where higher
scores indicate a higher mortality risk. We also set the care group indicator (1 = usual care, 2
= mHELP care) as our primary covariate to be related to the latent frailty.

4 Model Fitting and Data Analysis

We fit LCR models using the five dichotomised frailty criteria: shrinking, weakness, exhaustion,
low activity, and a slow walking speed as the observed responses. These five criteria were used
to jointly reflect the underlying frailty, which was modelled as a categorical latent variable (i.e.
the latent class). These measurements need to be combined appropriately to derive summaries
of frailty. Seven covariates which were probably related to observed responses (also known as
secondary covariates) were chosen as potential candidates to be incorporated into the LCR,
including age, gender, duration of surgery, length of hospital stay (LOS), comorbidity, baseline
frailty, and cancer stage. We set “treatment”, the care group indicator (1 = usual care, 2 =
mHELP care), as our primary covariate to be related to the latent class, which can be used to
evaluate the effect of mHELP on frailty.

The GEE approach that we propose allows LCR modelling to be performed by regressing
different covariates for different frailty indicators. For the purpose of the present study, we
performed a pre-analysis to select significant covariates for each response (frailty indicator),
which will be incorporate into LCR

Table 1: The Selected Covariate(s) for Each Response

Responses Covariates

Yi1 = shrink
zi11 = gender
zi12 = Length of hospital stay (day)

Yi2 = weakness
zi21 = age (year)
zi22 = Length of hospital stay (LOS) (day)

Yi3 = exhaustion zi31 = age (year)

Yi4 = low activity zi41 = Baseline frailty criteria

Yi5 = slow walking speed
zi51 = age (year)
zi52 = Length of hospital stay (LOS) (day)
zi53 = comorbidity

as the secondary covariates zim. For each binary response (frailty indicator), we fit a logistic
regression to all seven potential candidate covariates (introduced by Chen et. al.[8]) and used
the stepwise procedure to obtain the important secondary covariate(s) zim. Table 1 presents
the selected secondary covariate(s) for each response.
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Table 2: Information Criteria for LCR Models with Two and Three Latent Classes

LCR

Working Covariance Information criterion class 2 class 3

Independence (GEE-I) QIC 1601.32 2424.46
CIC 21.53 66.08

In this paper, we proposed a GEE approach for LCR models (henceforth, the GEE for the
LCR approach) by performing independence working covariance structures (GEE-I). Then, we
selected the number of latent classes for our LCR model. Table 2 shows the summary of QIC
and CIC for LCR’s with two and three latent classes under independence working covariance
structures. The results showed that the LCR with two latent classes provided the lowest values
of both QIC and CIC. This indicates that this model gave the best result. Hence, in this paper,
we chcose to concentrate on LCRs with two latent classes (not frail versus frail after surgery).

The direct relationship between frailty indicators and their confounding variables can be
shown using the odds ratio (OR). The odds ratios are obtained by taking the exponential
transformation of the estimates of regression coefficients in equation (2) [i.e., exp (αimk)

′s],
which is shown in Table 3. To summarise the results, we found that: (a) females were more
at risk of shrinking than males; (b) patients who stayed in hospital longer were more likely to
experience shrinkage, weakness, and a slow walking speed;

Table 3: Conditional Probability Regression from LCR (1) for the Direct Relationship
between Frailty Indicators and Confounding Variable: mHELP Project

Frailty Indicators Comparison Confounding Variables OR* 95% CI for OR

Shrink no vs. yes Female 4.18 (1.95, 8.97)
LOS 0.95 (0.91, 0.99)

Weakness no vs. yes Age 0.88 (0.83, 0.93)
LOS 0.93 (0.89, 0.97)

Exhaustion no vs. yes Age 0.96 (0.92, 0.99)
Low activity no vs. yes Frailty at baseline 0.19 (0.06, 0.56)
Slow walking speed no vs. yes Age 1.14 (1.13,1.15)

LOS 0.98 (0.97, 0.99)
Comorbidity 2.23 (2.22, 2.24)

*Value in bold are significantly different from 1 at the 0.05 level

(c) older patients were more likely to experience weakness and exhaustion, although they did
not develop a relatively slow walking speed; (d) patients with a high level of comorbidity were
less likely to have a slow walking speed; and (e) patients who had baseline frailty were more
likely to show low activity. In addition, the association between latent class membership and
the risk factor was obtained by taking the exponential
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Table 4: Latent Prevalence Regression from LCR (1) for the Relationship between Underlying
Frailty Status and the Risk Factor: mHELP Project

Risk Factor Comparison OR 95% CI for OR

Treatment (1 = mHELP) no frail vs. frail 2.28 (1.34, 3.87)
Value in bold are significantly different from 1 at the 0.05 level

transformation of the estimate of the regression coefficient in equation (3) [i.e., exp (βpj)
′s].

This association is shown in Table 4. Thus, mHELP reduces the risk of patients becoming frail
after surgery by approximately 2.28 times compared to usual care.

5 Discussion

The generalised estimating equation (GEEs) approach relaxes the role of “true” covariance
structure by introducing a working covariance; as a result, there is no need to establish the
joint distribution of the responses. The GEE is an extension of the GLM framework to deal
with correlated data, hence, it is an appropriate approach for the case of repeated measures,
such as LCR models. Therefore, in this paper, we emphasised the use of the GEE approach
for LCR models. The main issue coming from the GEE approach is that there are only a few
model-selection criteria in GEEs. We cannot use either the AIC or BIC criteria directly, since
GEEs are not full-likelihood based models. One way to solve this issue is to use QIC and CIC
as a modification of AIC. This paper presented the modification of QIC and CIC for the LCR
model under an independence working covariance structure. We used our proposed criteria to
determine how many classes should be involved in the LCR model. The lower the QIC and/or
CIC, the more appropriate the number of classes in the LCR model. Instead of using these
criteria, we could utilise another method to determine the number of classes in the LCR model.
For instance, we can utilise the bayesian method to decide the number of classes by using prior
and posterior properties. Furthermore, to increase the efficiency of GEE approach, probably we
could apply another working covariance structure, such as conditional pairwise independence
working covariance.
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