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Abstract Abstract Blood flow through a bifurcated artery with the presence of an over-

lapping stenosis located at parent’s arterial lumen under the action of a uniform external

magnetic field is studied in this paper. Blood is treated as an electrically conducting fluid

which exhibits the Magnetohydrodynamics principle and it is characterized by a Newto-

nian fluid model. The governing equations are discretized using a stabilization technique

of finite element known as Galerkin least-squares. The maximum velocity and pressure

drop evaluated in this present study are compared with the results found in previous

literature and COMSOL Multiphysics. The solutions found in a satisfactory agreement,

thus verify the source code is working properly. The effects of dimensionless parameters

of Hartmann and Reynolds numbers in the fluid’s velocity and pressure are examined in

details with further scientific discussions.
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1 Introduction

Atherosclerosis is a key occurrence in cardiovascular disease and is the leading cause of mortality
among humans worldwide [1,2]. This fact has been verified by World Health Organization
(WHO) where in 2005, 17.5 million people have died from cardiovascular diseases [1]. In fact,
this number is expected to grow to 23.3 million deaths by 2030 [2]. Atherosclerosis or in medical
terms, stenosis consist of the deposition of cholesterol, cellular waste, fatty substance, fibrin
and calcium on the inner lining of the artery [3,4]. This results in the narrowing of the blood
vessel that may lead to inadequate and abnormal blood flow to organs and tissues [5]. As the
flow of blood vessels supplying the heart muscle and brain are fully obstructed, heart attacks
and strokes usually occur [2].

Static magnetic field generated by permanent magnets have been widely utilized in most
medical devices to treat cardiovascular diseases rather than time varying electromagnetic field [2].
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The production of Lorentz force according to the Lenz law opposing the fluid’s motion provide
a lot of medical benefits by controlling the flow of blood using magnetic field [6]. The retarda-
tion on the velocity of blood is proven useful for the treatment of diseases with an accelerated
blood flow likes hypertension and haemorrhages [2]. In addition, the flow of blood influenced
by an external magnetic field assist in reducing the bleeding during surgical procedures, de-
crease the healing time of fractures and effectiveness for the treatment of depression [2,7]. The
strength of Lorentz force produced as the electrical conducting fluid interacts with an exter-
nal magnetic field applied depends on the magnetic field intensity. It was found by applying
magnetic flux intensity that exceeds 0.05 T can lead to an irreversible changes and heart fib-
rillation [2]. Whereas, a 0.4 T static magnetic field causes the changes in calcium dynamics
that may also alter skin blood flow of individual humans [6]. Hence, this study concerns on
the effects of Hartmann number, M (a dimensionless parameter that appears due to the non-
dimensionalization procedures) that represent the strength of magnetic field to understand its
contribution to haemodynamic factors of stenotic blood flow. Another dimensionless parameter
that is also essential in most stenotic blood flow study is Reynolds number, Re that represent
the ratio of the inertial force to the shearing force of the fluid. In other words, the Reynolds
number could define the flow conditions which are either leading to laminar or turbulent flow
corresponding to the arterial geometry [8]. It is believed that higher Reynolds number tends to
develop more recirculation and enhance the shear stress magnitudes at the tightest occlusion
which may severely damage the endothelial cells [5]. The malfunction of endothelial cells may
reduce the lumen ability and influence the progress of cardiovascular diseases in the arteries [1].

Atherosclerosis preferentially develop at large and medium arteries with curvatures, junc-
tions and bifurcations [9,10] due to the sudden change of section area and curvature [11]. Re-
alizing the impacts of complex geometry of an artery with the presence of stenosis to the blood
flow dynamics, this study will pay attention on a bifurcated artery with an overlapping shaped
stenosis. It is opined that by considering this type of geometry, the problem would become
more acute since overlapping stenosis is usually formed at pulmonary and femoral arteries [6].
It is well known that the assumption of Newtonian behaviour for blood is valid when the flows
is characterised by high shear rates of more than 100 s−1 flowing through a large vessel [12]. On
the other hand, when the blood is flowing through a smaller or diseased vessel, those assump-
tion breaks since non-Newtonian behaviour is more evident at low shear rates region [8,12].
According to [13], this variation of viscosity between Newtonian and non-Newtonian models
is very small with the influence of an applied magnetic field. Thus, assuming the rheological
behaviour of blood in this study as a Newtonian fluid would be acceptable.

Concerning on the influence of magnetic field as well as the domination of either inertial or
viscous forces, the effects of two important dimensionless parameters which are Hartmann and
Reynolds numbers are respectively studied. The streaming blood is assumed to behave accord-
ing to the Newtonian fluid nature in a bifurcated channel with the presence of an overlapping
shaped stenosis in parent’s arterial lumen. The governing equations are decided to be solved
by using one of the stabilization techniques of finite element method known as Galerkin-least
squares due to its ability to circumvent from satisfying Babuska-Brezzi condition [14] which
will be discussed further in Section 2 of this paper.
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2 Mathematical Formulation

2.1 Arterial Geometry

To demonstrate the mathematical analysis for the problem under consideration, these following
assumptions are inflicted onto the geometry of an artery :

1. The artery forming bifurcation is of finite length.

2. The parent aorta possesses a single overlapping shaped stenosis in its lumen.

3. Curvatures are introduced at the lateral junctions and the flow divider of the arterial
bifurcation to ensure that one can rule out the presence of any discontinuity causing
non-existent of separation zones.

The geometry of the bifurcated artery with the presence of stenosis is modelled as a bi-
furcated channel as proposed by [15]. However, in this study an overlapping shaped stenosis
described by [16] is considered instead of a mild shaped stenosis as shown in Figure 1.

Figure 1: Geometry of the Stenosed Bifurcated Artery with an Overlapping Stenosis

The geometry of the bifurcated artery with the presence of an overlapping shaped stenosis
may be set up mathematically of which the outer wall geometries are described by

R1(x) =



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On the other hand, the inner wall geometries can be specified as
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where R1 (x) and R2 (x) represent the radii of the outer and inner wall, respectively. Meanwhile,
a and r1 are the respective radii of the mother and daughter artery. r0 and r

′

0 are the radii of
curvature for the lateral junction and the flow divider, respectively. Whereas, l0 is the length
of the stenosis at a distance d from the origin. Location of the onset and offset of the lateral
junction are denoted by x1 and x2, respectively. x3 indicates as the apex, τm represents the
maximum height of stenosis occur at d + 2l0/6 and d + 4l0/6. While, β denotes half of the
bifurcation angle. Parameters involved in the above expressions (1) and (2) may be given as

x2 = x1 + r0 sinβ, r0 =
a − 2r1 sec β

cosβ − 1
, r

′

0 =
(x3 − x2) sinβ

1 − sin β
, (3)

x3 = x2 + q, s = 2r1 sin β, (4)

where q is a small number lying in the range of 0.0001 ≤ q ≤ 0.0005 chosen for the compatibility
of the geometry and

x4 = x3 + r
′

0 (1 − sinβ) . (5)

2.2 Mathematical Model

2.2.1 Material Behaviour

The relation between the stress and strain rate tensors are connected via non-linear relations
given by a constitutive equation. According to [17,18], by definition of the Generalized Newto-
nian Liquid (GNL) model, the stress tensor is the sum of volumetric stress and viscous stress
components which can be written mathematically as

τ = −pI + 2η(γ̇)D, (6)

where τ is the stress tensor, p is the pressure or volumetric stress and D is the strain rate
tensor which may be defined as

D =
1

2

(
∇u + (∇u)T

)
. (7)

Whereas, η is the viscosity function which is depending on the scalar γ̇ that indicates the
magnitude of the strain rate tensor given as

γ̇ =
√

2D (u) : D (u) (8)

GNL model allows the variation of viscosity with the shear rate. Thus, this model is useful
in modelling the shearing flow and observing the effects of shear dominated flow under the
natures of shear-thinning as well as shear-thickening [17]. However, this study only covers the
Newtonian case where the viscosity is always constant with the shear rate, thus expression (6)
is reduced to

τ = −pI + 2µD, (9)

where η(γ̇) = µ for such cases. Since this study is concerned on the effects of Hartmann and
Reynolds numbers, thus by the non-dimensionalization procedure which involve the dimension-
less variables below

x =
x

h
, y =

y

h
, u =

u

ur
, v =

ṽ

ur
, p =

p

ρ u2
r

. (10)
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These two dimensionless parameters are respectively attained a

M = B0

(
σh2

µ

)1/2

and Re =
ρurh

µ
, (11)

where B0 is the magnetic flux intensity, σ is the electrical conductivity, h is length of the
inlet, µ represents the viscosity of the fluid, ρ indicates the fluid’s density, and ur is the flow’s
characteristic velocity.

2.2.2 Governing Equations and Boundary Conditions

The boundary value problem is constructed by incorporating the mass and momentum conser-
vations as well as the GNL constitutive equation stated in equation (9). Hence, the governing
equations with prescribed boundary conditions in a domain Ω ⊂ <2 can be written as follows

∇ · u = 0 in Ω,

ρu · ∇u−∇ · (2η(γ̇)D) + ∇p = ρf in Ω,

u = ug on Γg ,

(−pI + 2η(γ̇)D)n = th on Γh,

(12)

where u is the velocity component, f is the body force vector, ug is the prescribed boundary
velocities, n is the unit outward normal vector, I is the second-order identity tensor and th is
vector of the prescribed boundary tractions. In addition, Ω is the domain, Γ is the boundary of
the domain Ω, while Γg and Γh denotes part of the boundary Γ where Dirichlet and Neumann
conditions are respectively imposed.

3 Galerkin Least-Squares Formulation

The appropriate weighting and trial functions for the velocity and pressure fields are approxi-
mated according to the usual approximation spaces for fluid dynamics as found in [17] and [18]
given as,

V h =
{
N ∈ H1

0 (Ω)2|N
|K ∈ Rk(ΩK)2, ΩK ∈ Ch

}
,

V
g
h =

{
N ∈ H1(Ω)2|N |K ∈ Rk(ΩK)2, ΩK ∈ Ch, N = ug on Γg

}
,

Ph =
{
p ∈ C0 (Ω) ∩ L2

0 (Ω) |p
|K ∈ R1(ΩK), ΩK ∈ Ch

}
.

(13)

The parameters Rk and Rl in equation (13) represent the polynomial spaces of degrees k and
l, respectively defined over a finite element partition Ch of the problem domain Ω consisting of
triangular element P1 parametrized by a characteristic mesh size hK .
Based on the approximation functions defined in (13), Galerkin least-squares formulation for
boundary value problem introduced in (12) can be stated as to find the pair (uh, ph) ∈ V

g
h×Ph

such that
B(uh, ph; N , q) = F (N , q), ∀(N , q) ∈ (V h × Ph), (14)
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where

B(uh, ph; N , q) =

∫

Ω

ρu · ∇u · NdΩ +

∫

Ω

2η(γ̇)D(u) · D(N)dΩ −

∫

Ω

ρ∇ · NdΩ

−

∫

Ω

q∇ · udΩ +
∑

ΩK∈Ch

∫

ΩK

[
τ (ReK) (ρu · ∇u + ∇p − 2∇ · (η(γ̇)D(u)))

· (ρu · ∇N −∇q − 2∇ · (η(γ̇)D(u)))

]
dΩK ,

F (N , q) =

∫

Ω

ρf · NdΩ +

∫

Γ

th · NdΓ

+
∑

ΩK∈Ch

∫

ΩK

[ρf · τ (ReK) (ρu∇ · N −∇q − 2∇ · (η(γ̇)D(v)))] dΩK .

(15)

The terms involved in equation (15) are counted elementwise with the positive parameter
τ (ReK) behaves as a stabilization parameter throughout this study defined according to [17]
and [18] as follow

τ (ReK) =
hK

2 |u|
2

ξ(ReK), with

ReK =
mKρ |u|

2
hK

4η(γ̇)/ρ
and |u|

2
=

(
2∑

i=1

|ui|
2

)1/2

ξ(ReK) =
{

ReK , 0 ≤ ReK < 11, ReK ≥ 1

τ (ReK) =
hK

2 |u|
2

ξ(ReK),

mK = min{1/3, 2Ck} ,

hK ‖∆N‖
2

0,K ≤ Ck ‖∇N‖
2

0
, ∀N ∈ V h.

(16)

The term hK acts as size of the triangular K-element. Equations (14)-(16) are discretized by
expanding the trial functions u, p and weighting functions N , q in terms of its finite element
shape functions. By transforming equation (15) into its residual form, R(U) that can be written
as

R(U) = [K(U)]U − {F} = 0, (17)

where U is vector for the degrees of freedom of uh and ph, [K(U)] stands for the stiffness ma-
trices and {F} denotes the force vector. To deal with the non-linearity presented in (15), the
Newton-Raphson method is implemented where the solutions are found converged at 10−4. The
convergence criteria τ of maximum residual norm is approximated by

τ ≤

√√√√
N∑

I=1

R2
I . (18)

Hence, according to the Newton-Raphson method the solutions for the degrees of freedom are
found as

Ub+1 = Ub − J−1(Ub)R(Ub), (19)
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where J = ∂R/∂U, that is also known as the Jacobian matrix and b is the iteration. Meanwhile,
to approximate the integrals in equation (15), the Gaussian quadrature techniques are applied
using six quadrature points throughout this study.

4 Numerical Validation

For the validation purpose of the source code that has been developed according to the GLS
algorithms, an implementation into the Newtonian blood flow in a straight rectangular channel
are carried out using unstructured triangular mesh of 21060 P1/P1 elements with 10841 nodes.
The computational domain involved in this validation step is demonstrated in Figure 2 as
proposed by [19].

Inflow Outflow

Figure 2: Geometry of Straight Rectangular Channel with 50% Occluded Bell Shaped Stenosis

The boundary conditions are prescribed as a non-slip conditions at the walls, a parabolic
velocity profiles at the inflow and a traction free condition at the outlet. In addition, the results

are computed using Re = 400, ρ = 1050 kgm-3, µ = 0.0035 kgm-1s-1, σ = 0.8 Sm-1 and are
found converged with τ = 1 × 10−4. The results for the maximum velocity and its location as
well as the pressure drop at the centre of the stenosis are validated with the results found by
the previous work [19] and COMSOL multiphysics software as tabulated in Table 1.

Table 1: Results for Maximum u - velocity and its Location and Pressure Drop

Maximum u - velocity Pressure drop,
and its location (x, y) ∇p at x = 0

Present study 1.5993 at (0.286,0) 0.7928

COMSOL multiphysics 1.5789 at (0.2697,−0.0002) -

Xenos and Tzirtzilakis [19] 1.5360 0.8000

Comparison of results that are made with the previous literature and COMSOL multiphysics
software shows a small distinct of maximum u - velocity and its location. Meanwhile, the
pressure drop evaluated from this current study shows an excellent agreement with the previous
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work. Overall, it can be concluded that the solutions are obtained in a satisfactory agreement
between the previous work, COMSOL multiphysics as well as the one computed from the source
code thus shows that the source code developed is working properly.

5 Results and Discussions

The computational domain in this present study is discretized using the unstructured linear
triangular elements. This require less number for the degrees of freedom compared to the
quadratic shape functions, but is sufficient to approximate solution at similar level of accuracy.
The geometrical shape of bifurcated artery is constructed based on the data used from [15] and
[16]: a = 0.0075 m, l0 = 0.015 m, d = 0.005 m, xmax = 0.06 m, x1 = 0.025 m and τm = 0.4a.
Blood is assumed to behave as a Newtonian fluid with MHD effects by using the following

set of parameters as suggested by [10] and [15]: ρ = 1050 kgm-3, µ = 0.0035 kgm-1s-1 and

σ = 0.8 Sm-1.
From Table 2, one may observe that the maximum velocities are decreasing with an increase

in Hartmann and Reynolds numbers. Apparently, higher Reynolds number (Re=500) exhibits
an accelerated blood flow and huge area of stagnating flow indicated by the contouring colours
in comparison to the lower Reynolds number (Re=100). Meanwhile, the strength of Lorentz
force produced become stronger with increase in Hartmann number that leads to retardation
on the fluid’s motion.

In Figure 3, the dimensionless axial velocity, u for different Hartmann numbers equal to 0,
4 and 8 showing a reduction on flow’s velocity as the magnetic intensity is increased along the
centre of the second throat of an overlapping stenosis (x = 1). Somehow, the opposing motion
caused by the Lorentz force is dominant only when the magnetic intensity is raised by M = 8.
This indicates that to ensure the flow along this stenotic region to be properly controlled,
certain strength of magnetic intensity is required. Otherwise, there will be no significant effects
of applying an external magnetic field along this constricted region.

Figure 3: The Dimensionless Axial Velocity, u at the Second Throat of Stenosis, x = 1 for
Different Hartmann Number (Re = 300)

Figure 4 shows the variation of axial velocity along the second throat of an overlapping
stenosis, x = 1 with different Reynolds numbers equal to 50, 200 and 500. By increasing the
Reynolds number, the curves attain a flattening shape profiles and steeper velocity gradients
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Table 2: Contour of Velocity for Different Hartmann and Reynolds Numbers

Re= 100 Re= 500

M = 0

M = 4

M = 8
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compared to the lower Reynolds number. This occurs due to the inertial forces dominated flow
caused by higher velocity to overcome the viscous force. Higher Reynolds number indicates
that the flow is more turbulent and more prone to develop a flow reversal along the outer wall.
Thus, the velocity of fluid in an axial direction near the central axis of vessel has dropped
significantly as the Reynolds number is increased from 50 to 500 which is supported by the
findings from [20].

Figure 4: The Dimensionless Axial Velocity, u at the Second Throat of Stenosis, x = 1 for
Different Reynolds Number (M = 2)

The radial velocity profiles along a similar region of x = 1 for different Hartmann numbers
of 4, 8 and 12 are illustrated in Figure 5. One may observe from this current figure that the
magnitudes of the radial velocity decreases with increase in Hartmann number. By comparison
with the previous Figures 3 and 4, it is noticed that the magnitudes for the radial velocity
appear to be much smaller than those on the axial velocity even though the sign might differ.
Besides that, the magnitudes of maximum radial velocity formed near the arterial wall is also
reduced considerably as the magnetic intensity is strengthen. This finding on the radial velocity
profiles is found in excellent agreement as those found in [21].

Figure 5: The Dimensionless Radial Velocity, v at the Second Throat of Stenosis, x = 1 for
Different Hartmann Number (Re = 300)

The results for the radial velocity profiles exhibited in Figure 6 for different Reynolds num-
bers of 50, 300 and 600 along the axial position of x = 1 are found to be quite interesting
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to note. Obviously seen over this present figure that the profiles for lower Reynolds num-
ber (Re = 50) behaves in a different features as the other curves with higher Reynolds number
(Re = 300 and 500) . In addition, it is also discovered that the radial velocity profiles with higher
Reynolds number attain a smaller magnitude of peak radial velocity near the arterial wall. This
shows that flows characterised by low Reynolds number (more laminar) tends to have higher
axial as well as radial velocity at the stenotic region. This outcome agreed well with the one
discovered by [20].

Figure 6: The Dimensionless Radial Velocity, v at the Second Throat of Stenosis, x = 1 for
Different Reynolds Number (M = 4)

Figure 7: The Dimensionless Axial Velocity, u at the Upper Daughter Branch, x = 3.0118 for
Different Hartmann and Reynolds Numbers

The variation of the axial velocity profiles for different Hartmann and Reynolds numbers at
the upper daughter branch position of x = 3.0118 are portrayed as in Figure 7. Basically, the
graph is skewed to the left because the streaming blood are just passing through a region with
flow recirculation along the outer wall side that pushes the fluid layers into the inner wall side.
With increasing strength of magnetic intensity, the flow at the daughter branch decelerates as
well. In contrast, as the Reynolds number is increased, the flow velocity is also increases near
the inner wall side but is prone to develop a negative flow near the opposite side. The negative
flow that is formed near the outer wall somehow could be overcome by the application of an
external magnetic field that destroys the recirculation area that is developed along the outer
wall sides as shown in this figure. The magnitudes of an axial velocity at the daughter branch
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noticed to be lower than those at the stenotic region as shown in Figures 3 and 4 since part of
this flow has been decelerated after it is obstructed at the stenosed part of the mother artery.

Figure 8: The Dimensionless Wall Pressure, p along the Outer Wall for Different Hartmann
and Reynolds Numbers

Figure 9: The Dimensionless Wall Pressure, p along the Inner Wall for Different Hartmann and
Reynolds Numbers

Studied on the pressure loss is very crucial since it can be an indication to adequate blood
supply to the other organs or vice versa. Several plots have been made in Figures 8 and 9
to characterise the variation of wall pressure with different Hartmann and Reynolds numbers
along the outer and inner wall, respectively. Since higher Reynolds number is synonym with
the occurrence of eddies, vortices and tend to be related with a turbulence flow phenomenon.
Hence, as can be seen from Figure 8, the wall pressure for Re = 500 tends to have a negative
wall pressure along the stenotic region and downstream of it due to the flow separation formed
close to the outer wall surface. However, the effects of Hartmann number are diminished for
higher Reynolds number flow since it seems that the variation between the curves are very
small as indicated in Figure 8. The velocity at low Reynolds number is flowing at an increasing
speed near the arterial wall, thus the magnitudes of pressure exerted along the outer arterial
wall by Re = 100 are larger and more noticeable in comparison to Re = 500.

The pressure distribution along the inner wall for both Reynolds numbers of 100 and 500
also increases with increase in Hartmann number. All the curves are gradually decreases from
their respective maximum value at the apex to a zero pressure applied at the outlet. There is
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a significant variation on pressure for low Reynolds number (Re = 100) flow as the magnetic
intensity is increased. This variation gets reduced as the Reynolds number growth to 500.
Flow separation formed by a more turbulence flow (Re = 500) close to the outer wall tends to
increase the velocity at the inner wall side, thus lowering resistance to flow and at the same
time exert only a small pressure between the fluid layers and the arterial wall. This resulted to
the negatives valued pressure that managed to be overcome as the magnetic intensity is raised
to 12.

6 Conclusions

The effects of dimensionless parameters known as Hartmann and Reynolds numbers in the
steady blood flow phenomena in a bifurcated artery with an overlapping stenosis at parent’s
arterial lumen have been presented in this study. The effects of MHD and flow motion transition
from laminar to more turbulence characterised by Hartmann and Reynolds numbers on various
fluid parameters like blood velocity and pressure are studied. Generally, the magnetic field
reduces the blood velocity both in axial and radial directions and restricts the occurrence of
flow reversal downstream of the stenotic region as the magnetic intensity is increased. Despite
that, to reduce the blood’s velocity substantially in an axial direction along the stenosed region,
certain higher values of magnetic intensity are required. These higher magnitudes of Hartmann
number are good enough to recover the negative wall pressure along the inner wall side at
higher Reynolds number. These negative values pressure exerted on the wall especially the
one form at the stenotic region may cause the artery to collapse due to insufficient pressure to
support the opening of the arterial lumen. The MHD effects onto the wall pressure diminishes
at higher Reynolds number due to the inertial forces dominated flow which resist any change
in momentum. At the daughter branch, the effects of Reynolds number are more prominent
than the Hartmann number influences. Somehow, the MHD effects at the daughter branch
having no constriction are more obvious compared to region with 40% constriction at the
mother artery. Rise in Reynolds number promote the occurrence of flow reversal, stagnation
and vortex that may induce the incidence of thrombosis. This investigation would be very
helpful for medical practitioners to analyse the impact of magnetic field by various magnetic
therapy toward patients.

Limitations of this study involve the consideration of steady, rigid arterial wall and Newto-
nian nature of blood. In future, a GNL model will be included in the modelling to understand
more on various physiological problems of diseased vessels.
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