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Abstract Prediction analysis has drawn significant interest in numerous fields Taguchi’s

T-Method is a prediction tool that was practically developed to predict even with a
limited sample data. It was developed explicitly for multivariate system prediction by

relying on historical data as the baseline model and adapting the signal to noise ratio
(SNR) as well as zero proportional concepts in strengthening its robustness. Orthogonal
array (OA) in T-Method is a variable selection optimization technique in improving the

prediction accuracy as well as helping to eliminate variables that may deteriorate the
overall performance. However, the limitation of OA in dealing with higher multivariate

data restrains the optimization accuracy. The binary particle swarm optimization used in
this study helps to cater to the limitation of OA as well as optimizing the variable selection

process for better prediction accuracy. A comparison between the T-Method+OA and T-
Method+BPSO in four different case studies shows that the T-Method+BPSO performs

better with a higher coefficient of determination (R2) value and means relative error
(MRE) value compared to the T-Method+OA. The T-Method with the BPSO element

as variables screening optimization is able to increase or even maintain the prediction
accuracy for cases that are normally distributed, have a high R2 value, and with low
sample data.
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1 Introduction

Disruption is a daily challenge in ensuring are liable system with responsive risk control towards
a robust design and a robust operating system. Uncertainty invarious areas has led to an
unpredictable future industrial system. Most of the current modes of uncertainty have specific
causes and are commonly treated as one of the influential factors towards better prediction
accuracy. Leveraging and managing it properly with advanced cognitive and predictive
modeling and algorithms for a better system has been discussed progressively among researchers
and industrial practitioners. Several practitioners in various fields have used various prediction
tools for the past few decades and have progressively enhanced them. In the last few decades,
machine learning has been found to be the preferable approach in prediction analysis compared
to the statistical approach. This view is supported by a recent study carried out by Hussain
et al. [1] which found that machine learning based approaches are performing better than time
series-based approaches in predicting the future quality of services in order to avoid service
violation and violation penalty.

Taguchi’s T-Method or commonly called the T-Method is one of the prediction tools
governed under the Mahalanobis-Taguchi System (MTS) that was developed explicitly for
prediction and optimization purposes by relying on historical data. One of the significant
contributions of Taguchi’s T-Method is its ability to predict even with limited sample data.
If multiple regression analysis has a limitation that the sample size must be larger than the
number of items, the Taguchi’s T-Method does not have this limitation [2–4]. The smallest
sample data that have been used in Taguchi’s T-Method analysis is the yield prediction [2],
which involved seven training data and two test data. Unlike other optimization methods,
an element of the signal to noise ratio (SNR) within MTS supports the robustness and
insensitiveness to the variation in the multidimensional system. In a multidimensional system,
it is essential to preserve only relevant variables rather than redundant variables that may
deteriorate performance so that the loss of valuable information will be minimised.

The element of the orthogonal array (OA) within MTS has been debated and is believed
to be insufficient as it offers a sub-optimal solution. Abraham and Variyath [5] argued that a
fixed combination in OA is not optimal since the results may vary significantly if the column-to-
column information is rearranged. Foster et al. [6] agreed with Abraham and Variyath [5] after
proving the fact with 1000 random variables to column assignment. Another limitation of OA
can be seen when there is a need to analyze a large number of variables [5]. Issues in OA have
been highlighted as well by [5], [8–9], especially the fact that the OA design has limitations in
handling the higher-order interaction between variables, which might lead to an inconsistency
in the identification of the crucial variables. Therefore, developing a hybrid methodology for a
better accuracy gain is the solution to these concerns.

Up until recently, the element of OA in the MT-Method has been continuously enhanced
with various machine-learning algorithm approaches. Unlike the MT-Method, enhancement
of the OA element within the T-Method for variables optimization is still at an initial stage
but Harudin et al. [10] did enhance the OA in the T-Method with an artificial bee colony
algorithm (ABC) and the results showed that T-Method+ABC performed better compared to
T-Method+OA for the specific case study conducted. There are several other studies done with
the same intention which are yet to be published but have been shared in several forums.

Iquebal et al. [7] compared MT-ABC, MT-Particle Swarm Optimization (PSO), and MT-
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Genetic Algorithm (GA) in their study on several benchmark datasets and MT-PSO was found
to be the best in terms of running time with very minimal differences in terms of its accuracy
compared to MT-ABC. Several other studies whether within MTS or beyond the MTS nature,
also highlighted that Binary PSO converges faster compared to other algorithms. Up until
recently, many BPSO algorithms have been progressively enhanced and proven to provide
better accuracy [11–15]. In the area of the T-Method, BPSO has not been explored yet, and it
serves as a motivation for this research study to be conducted. The objective of this research
is, therefore, to integrate binary particle swarm optimization (BPSO) with the T-Method by
replacing the OA for variables optimization.

2 Related Studies

The application of OA within the T-Method has similarities with the MT-Method. Due
to minimal resources within the T-Method itself, the authors are relying on the progress
of OA enhancement within the MT-Method for practical purposes. The most recent study
conducted by Mota-Gutiérrez et al. [16] which summarised the 18 year progress of the MT-
method in various industrial practices was found to be very helpful for this study since the
area of dimensional reduction or variables optimization by several researchers are still being
progressively enhanced till recently [7], [17–18]. This study provides a conceptual idea in
applying the same concept to T-Method variable screening or optimization since very few
studies have been conducted within that area. Khanesar [19] introduced the novel binary
particle swarm optimization (BPSO) in 2007 and it was adapted by Pal and Maiti [20] for
dimensional reduction within the MT-Method. Reséndiz and Rull-Flores [21] implemented
the Pal and Maiti [20] work as part of a comparison between binary ant colony optimization
(BACO) and Gompertz binary PSO (GBPSO). The results concluded that GBPSO converges
faster compared to the other two algorithms.

Since the T-Method has been progressively explored up until recently, most of the cases use
the T-Methodin real life prediction problems[22–24]. Inoh [25] improved the method to define
the unit space theory into Ta and Tb methods while [3], [4], [26–29] focused on improving the
baseline model accuracy for outliers and abnormal case data. Harudin et al. [10] is the only
published work outside Japan currently that improved the variables selection optimization in
the T-Method using ABC. The findings were concluded to be case-to-case dependent. This
research was intentionally conducted to implement the theory of BPSO into the T-Method as
part of the improvement approach to enhance the limitation of the orthogonal array within
the T-Method as currently practiced. However, this study will not focus on the algorithm
convergence time. It is more focused towards examining the accuracy of the predicted data on
MRE and R2 across four different case studies.

3 Methodology

This section will explain the theory of the T-Method and Binary Particle Swarm Optimization
(BPSO) together with the absorption of BPSO into the T-Method for variables optimization
and prediction purposes.
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3.1 T-Method

Emphasizing on three core elements (sensitivity, linearity, and variability), signal to noise ratio
(SNR) is the critical element that has been adapted into the T-Method formulation together
with the concept of Mahalanobis Distance (MD) theory as a crucial aspect in defining the
reference data. The regression model is formulated linearly and relies on the Zero-proportional
concept with the linear regression line passing through zero-point (origin). The establishment
of unit space and signal space for the normalization analysis is the core element of MD in
the T-Method. The selection of unit space is a crucial predefined decision before making
further analysis. It must be as homogenous as possible since high-density population data
representation requires particular expertise to accurately define the target region for the unit
space selection. Taguchi stated that the selection of unit space is always in the middle position
between the lowest and highest data of the selected region if following the rules [2]. Figure 1
illustrates the unit space concept more clearly. Inoh [24] improved the way to define unit space
with the theory of Ta and Tb methods. Ta relies on the overall average input value and output
as baseline data while Tb relies on samples that contribute to higher SNR value. We keep the
unit space concept definition as per the actual theory for this research. By fulfilling the rule of
unit space, reliable prediction accuracy and justification is achievable. We need to put in some
effort towards understanding the historical data trend.

Figure 1: The Concept of Unit Space Selection for T-Method

The main idea of this theory is to fulfill the prediction model, which is the integrated estimate
output value (Mˆi), as in Equation (1). In order to do that, the proportional coefficient (β)
and SNR ratio (η) will have to be computed on an item by item basis using normalized data
(Xij, M0) calculated by Equation (2). The determination of unit space data is conducted from
the raw data taken, which is then excluded and averaged out from the raw data. Whatever
data left will be treated as signal data. This is how Equation (2) can be used. Equation (3)
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to Equation 9 are the theory for calculating the proportional coefficient β) and SN ratio (η)
to be filled into Equation (1). If the value of the SN ratio (η) calculated is negative, it will be
assumed to be zero. It is clearly seen that a higher SN ratio of an item will result in a higher
degree of contribution to the overall model estimation. SNR here is called duplicate SNR since
it represents weightage to the overall equation.

Mˆi=
η1×

(

Xi1

β1

)

+η2×
(

Xi2

β2

)

+ . . . .+ηj×
(

Xij

βj

)

η1+η2+ . . . + ηj

(1)

normalised data (Xij, M0)= signal data − average of unit space (2)
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1 + M2
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i (3)
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1 + X2

2 + . . . + X2
i (4)
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2

r
(5)

Error variation, Se=ST − Sβ (6)

ErrorVariance, Ve=
Se

l − 1
(7)

Duplicate SN ratio,

η =

(

(Sβ − Ve)

r Ve

)

(8)

βM =
M1X11 + M2X21 + . . . . + MlXl1

r
(9)

By fulfilling Equation (1), the overall prediction can be achieved by considering all variables.
In predicting the unknown future output, the known input can be used in Equation (1) by
maintaining the value of the SNR, proportional coefficient, and replacing the known input
data. Considering the need for optimizing the variables selection for better prediction and
cost-saving purposes as mentioned in the previous section, the orthogonal array is the current
method used within the T-Method. Below are the formulas to calculate the SN ratio, η (B) for
optimization on feature selection:

Linear equation, L =M1M̂1 + M2M̂2 + . . . + MiM̂i (10)

Effective Divider, r =M2
1 + M2

2 + . . . + (11)

Total Variation, ST =M̂2
1 + M̂2

2 + . . . + M̂2
i (12)

Variation of proportional term, Sβ=
L2

r
(13)

Error variation, Se=ST − Sβ (14)

ErrorVariance, Ve=
Se

n − 1
(15)

SN ratio, η = 10 log

(

(Sβ−Ve)

rVe

)

. (16)
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Taguchi specifically used a two-level OA type within the MTS theory, which represents
either to use the variable or not to use it. The type of two-level array selected depends on the
total number of variables within the study. The linear equation, L, is the sum of multiplication
between estimated output (Mˆi) for each sample calculated using Equation (1) with its actual
output value (Mi) as in Equation (10). Table 1 below shows an example of L12 combination.
One means the variable for that particular level (row) and combination (column) is included
as Xij in Equation (1), while 2 means the value for that combination and level will be treated
as zero (excluded) for Xij in Equation (1). Each level of computation will rely on the number
of samples in the normalized data in Equation (2). If the normalized data have five samples
with five values of the Mˆi, a total of 5 estimation output (M̂i) is generated then for each level
computation. Once the values of (M̂i) and (Mi) are specified, Equation (11) until Equation (16)
are used to compute the dynamic SNR of each level computation. For the final optimization
result, if the average value of SNR for 1 (used) is significantly higher compared to 2 (excluded)
in each variables analysis, it shows that the contribution of that variable is relatively significant.
The average unit space value of the output called (M0) will need to be added with the integrated
estimate output value (M̂i) in order to compute the integrated estimate value (Y) for unknown
data as in Equation (17). At this stage, (M̂i) is either considering all variables or only referring
to the optimum variable selection. We can repeat the same procedure accordingly for the
remaining prediction of unknown data.

Ŷ1 = M̂1 + M0. (17)

Table 1: L12 Orthogonal Array Combination

Control Factors

Sample no. A B C D E F G H I J K SNR (db)

1 1 1 1 1 1 1 1 1 1 1 1 SNR1

2 1 1 1 1 1 2 2 2 2 2 2 SNR2

3 1 1 2 2 2 1 1 1 2 2 2 SNR3

4 1 2 1 2 2 1 2 2 1 1 2 SNR4

5 1 2 2 1 2 2 1 2 1 2 1 SNR5

6 1 2 2 2 1 2 2 1 2 1 1 SNR6

7 2 1 2 2 1 1 2 2 1 2 1 SNR7

8 2 1 2 1 2 2 2 1 1 1 2 SNR8

9 2 1 1 2 2 2 1 2 2 1 1 SNR9

10 2 2 2 1 1 1 1 2 2 1 2 SNR10

11 2 2 1 2 1 2 1 1 1 2 2 SNR11

12 2 2 1 1 2 1 2 1 2 2 1 SNR12

(Note: 1 “Item is used,” and 2 “Item is not used.”)
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3.2 Particle Swarm Optimization

Russell Eberhart and James Kennedy invented the Particle Swarm Optimization algorithm
(PSO) in 1995 which was inspired by the flocking and schooling patterns of birds and fish
[30–31]. This algorithm was initially proposed to graphically simulate the uniqueness of the
flying pattern of the flocking birds. Each bird represents a particle that has its own position
and velocity updated from time to time. The fitness function of all swarms are evaluated for
each iteration. The velocity for each particle is updated based on its current position, the best
position it has explored (Pbest) and the global best position (Gbest) discovered by the swarm.
The best position between these three elements will finally be updated or maintained as the
best Gbest position in each iteration.

Below are the equations that show how a particle’s velocity and position are updated.

vi (t + 1) = wvi (t) + c1 ∗ rand1 (pi − ai (t)) + c2 ∗ rand2 (pg − ai (t)) (18)

ai (t + 1) = ai (t) + vi (t + 1) (19)

Here rand1 and rand2 are random numbers within [0, 1] updated each time they occur, and
w is known as ‘inertia weight’ that can control the impact of the previous velocity on any
particle to its current one. If w >1 the particle favoured exploration overexploitation, else
if w <1 the particle gave more importance to the current best positions. The c1 and c2 are
positive constants, called ‘acceleration coefficients’. From a psychological perspective, c1 is the
cognitive component that measures the degree of self-confidence of a particle and measures the
degree at which it trusts its performance. Meanwhile, c2 is the social component that relies on
the capability of the swarm to find better candidate solutions [32]. The PSO algorithm is run
through below pseudocode iteratively until the termination criterion is satisfied.

Begin

Initialize swarm position a(0) and velocities v(0)
Set iteration counter, t=0

Repeat

Compute fitness function for each of the swarm
Begin (perform PSO operation)
Compute v(t+1) from Eq. (18)
Compute a(t+1) from Eq. (19)
End

Set t=t+1
Until termination criteria satisfied

End

Figure 2: Pseudocode of Particle Swarm Optimization

The original PSO is mainly applicable to continuous cases. However, for discrete cases,
there might be a need for extra things to ponder. Due to the limitation of current PSO on
discrete cases, Kennedy and Eberhart [30] has proposed a discrete binary version to tackle the
discrete problem called binary particle swarm optimization (BPSO) which defines the position
of the birds in terms of [0,1]. A detailed description of the PSO algorithm is given in [33]. The
same goes for BPSO which is also presented in detail by [30] as well as other enhanced versions
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of BPSO by [32], [34–36]. However, for this study, we apply the primary BPSO as explained
in the next sub-section.

3.2.1 Binary Particle Swarm Optimization

The BPSO initializes the positions and velocities of the particle swarm randomly by using:

ai =

{

1, if rand() > 0.5
0, Otherwise

(20)

vij = −vmax + 2 ∗ rand() ∗ vmax. (21)

The position ai for each variable is calculated below:

ai =

{

1, if S (vi) > rand()
0, Otherwise

(22)

Here S(vi) represents the logistic function, and it serves as the probability distribution for
position ai.

S (vi) =
1

1 + exp(−vi)
. (23)

The velocities vi are then iteratively updated by Equation (21). The population size (N) used
in this study is 20 with minimum and maximum inertia weight value of 0.4 and 0.9 respectively.
The acceleration factor (C1, C2) is two with 100 iterations and 20 runs.

3.2.2 Binary Particle Swarm Optimization as Variables Selection Optimization in
T-Method

As stated earlier, fulfilling Equation (1) is enough to make any predictions considering all
variables as necessary. However, if an optimization on variables is a requirement or if studying
the effect of all variables to the overall prediction may deteriorate the overall performance, then
optimization should be done. Knowing the limitation of OA in dealing with high-dimensional
data, this is where the BPSO is considered into the loop of the T-Method replacing the OA.
The objective function of this study is to maximize the SNR value in Equation (16). This study
purposely maintains the SNR as the objective function, due to its insensitiveness to variation.
The following paragraph gives a brief overview of how BPSO has been applied within this study.

The BPSO algorithm will generate an initial position randomly based on the population size,
and a total number of variables are identified until the initial fitness value (SNR) is determined.
The fitness function is calculated using Equation (10) to Equation (16). The Pbest and Gbest
values are initialized, and then the BPSO concept shown in Equation (18) to Equation (21) is
applied to define and randomize the new position and velocity updates. The fitness function is
then recalculated using the new position and velocity updates, as well as the Pbest and Gbest.
The process is repeated and updated until it reaches the termination criterion and converges
to the same value of fitness function. In this analysis, as shown in Figure 3 below, the best
position within each run (total of 20) consisting of 100 iterations in each run will be stored.
The crucial choice of optimum variables depends on how many times the variables are selected
from the total of 20 runs. The example in Figure 3 shows that out of six variables (# column),
only four variables are vital to be considered.
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Figure 3: Result and Convergence Characteristics

4 Case Study Data Collection

The above discussed the hybrid methodology applied to several case studies which are
estimations of manufacturing yield and energy performance of a residential building as well
as a prediction on calories burned during ice skating activity and power consumption for a
thermal energy storage system. The manufacturing yield prediction is an example case study
taken from [2], which involved six relevant variables with seven sample data and one unknown to
be estimated. The unknown data to be estimated across all case studies taken was initiated with
known output value; however, to test the accuracy of the method, it was purposely reanalyzed
and compared to measure the accuracy in terms of error calculation.

The dataset in estimating the energy performance of residential buildings is taken from the
UCI machine learning database. It estimates the highest sample data and unknown data with
768 samples and eight variables. This case study provides a different overview of the T-Method
itself since it involves a higher sample data. The outcome of this case study will be compared
to the study conducted by [37] in comparing the same dataset with random forest (RF) and
iterative reweighted least square (IRLS) methods.

The third case study of predicting calorie burn (kcal) in ice skating activity is a real case
study conducted at the icescape ice rink at the IOI City Mall. A pedometer was given to each
respondent who participated in this study to be worn before skating. A simple questionnaire
was given to them as well to acquire some useful information for use in the analysis. Overall, 17
respondents were chosen as the sample with four respondents as unknown data to be estimated
and 15 variables taken into consideration. Figure 4 below shows some samples of the questions
asked in the questionnaire. The value stated in the bracket on the right side of each answer
selection represents the rate used for the T-Method analysis.

The final case study was also taken from real life data collection involving the prediction
of power consumption for a thermal energy storage system (TES). Data on 14 days charging
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Figure 4: Sample of Questions Included in the Questionnaire

state condition is used with 13 days of data as the unknown to be estimated with a total of
15 variables. The TES acts like a battery to the air-conditioning system within the area which
helps in reducing energy consumption by having high consumption during off-peak hours since
charging is happening during the night shift. Detailed parameters of all case studies are shown
in Table 2.

Table 2: List of Parameters

Case study: Estimation of
the energy performance of
residential building

Case study: estimation of
Calories burned (kcal) for
ice skating activity

Case study: Estimation
of power consumption for
thermal energy storage

Relative Compactness Hear rate (bpm) DP speed (%)
Surface Area ((m) Step Diff press (Bar)
Wall Area (m) Age STL-Tempsupply (deg)
Roof Area (m) Gender STL-Tempreturn (deg)
Overall Height (m) Weight (kg) STL-PHE supply (de)
Orientation Height (m) CH1-Temp supply (deg)
Glazing Area (%) Often skating CH1-Temp return (deg)
Glazing Area Distribution (%) Main purpose CH2-Temp supply (deg)

Attire CH2-Temp return (deg)
Case study: Yield prediction Time spent (min) CH2-PHE supply (deg)
B temp (deg Ofte exercise TS 1(Deg)
C temp (deg) Diet rate TR1 (Deg)
P1 BM KW(r) / KW (e)
P2 Temperature Before (deg) Chiller 1 (CH1) (KW)
Preheat time Temperature After (deg) Chiller 2 (CH2) (KW)
Manuf time
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5 Results and Discussion

The algorithms of the T-Method, T-Method + OA and T-Method + BPSO were generated
using the Matlab R2017a application software [38]. To determine the accuracy measure in this
study, we rely on the formula of mean relative error (MRE) as described in Equation (24) where
s denotes the number of samples, yi is the actual output and ŷiis the predicted output.

MRE = 100 .
1

s

s
∑

i=1

|yi − ŷi|

yi

. (24)

One of the accuracy measures used in this study was using R2 value. It was applied in 2 different
case studies, as stated in Table 3. The R2 represents how good the correlation between actual
and predicted historical data is. The higher the value of R2, the higher the chances of getting
higher accuracy in predicting the unknown output data in the future. In Table 3, both case
studies show that the values of R2 for both models and predicted unknown data do not vary
much for the T-Method, namely 0.97 versus 0.98 for prediction of calorie burn and 0.77 versus
0.7551 for power consumption prediction.

Table 3: Summary of Case Study Prediction Analysis for Prediction of Calorie Burn and Power
Consumption

As for the prediction of calorie burn case study, the results show better prediction accuracy
compared to the other two optimum methods when using all 15 variables. Referring to Table 2
above, the list of variables used within this study involved some attributes and discrete types
of data, which might not be possible to be excluded from the analysis since it will result in
bias and may deteriorate the prediction accuracy. It might be the reason why the other two
optimization methods have lower performance compared to the original T-Method alone. Table
4 also represents the normality test study of the historical output (Mi) data for 10 different test
types, which were run using MATLAB mainly for sample size <1000 [39]. The calorie burn
and power consumption prediction case studies are normally distributed across all tests.
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The T-Method seems to be the best approach for the calorie burn prediction type of
study, which involves many attribute types of variables. The prediction of power consumption
case study shows that the R2 value for predicting the unknown data is highest for the T-
Method+BPSO method, with only 10 useful variables out of 15 variables.

Table 4: Normality Test for Four Different Case Studies

The next two case studies discuss the effects of optimum variables in terms of the mean
relative error prediction (MRE) and R2 value. Table 5shows the summary of MRE between
the two case studies, comparing the three methods. The R2 value between actual and
predicted historical data of yield prediction and energy performance cases is 0.75, which shows a
considerably high correlation between the predicted and actual values. Yield data involved only
a minimum sample size, and the T-Method is able to predict unknown data with considerably
low error percentages. T-Method+BPSO also helps to further optimize the number of variables
from six to only four optimum variables with the same error percentages.

However, in the estimation of energy performance case study, the results show consistently
high MRE across the three methods. Compared with the analysis done by [37] which used
random forest (RF) and iterative reweighted lease square(IRLS) methods, the results show
significant differences compared to the three methods discussed in this study. The variable
optimization in T-method is mainly relying on the accuracy of the model baseline, as in
Equation (1). The normality test results in Table 5 show that the estimation of energy
performance case is not normally distributed. It generally reflects that abnormal data analyzed
using the T-Method might carry a risk in assessing model accuracy. The Random Forest (RF)
is a powerful nonlinear approach that often produces excellent results [37]. The existing T-
Method is already showing low error accuracy, and it is not improved when optimization takes
place. Further investigation of the T-Method model baseline needs to be done to increase this
accuracy level. This is one of the disadvantages of the T-Method that been foreseen now and
been further explored by several researchers [3], [4], [28].
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Table 5: Summary of Case Study Prediction Analysis for Yield Prediction and Estimation of
Energy Performance

It appears that the T-Method is more reliable for data with a lower sample size, as shown
by the case studies shared, except for the estimation of building energy performance case
study. Similar findings have also been reported by [4], [23–24], [27–28]. Cases that deal with
high sample data might be at risk since linear regression analysis tends to be biased towards
nonlinear and outliers that lead to non-normality issues.

Dealing with a higher sample size is also one of the disadvantages of the T-Method. The
main intention of this study (as highlighted in the background study) is to optimize the variable
selection to improve or at least maintain the prediction accuracy with much lesser cost. In order
to fulfill this, the predefined data (historical data) should be well analyzed with a normality
study and R2 value for model creation which is as high as possible. If both of these requirements
can be met, the optimization process in reducing the number of variables would be much more
reliable and accurate. A comparison between T-Method+OA and T-Method+BPSO analysis
results shows that T-Method+BPSO performs better with higher R2 and MRE values in terms
of variables optimization purposes.

6 Conclusion

In both the power consumption prediction and yield prediction case studies, T-Method + BPSO
performed well compared to the other two prediction cases. Normal data with higher R2 value
will contribute to higher future prediction accuracy. Dealing with attributes and discrete types
of data is among the crucial things to be adequately considered within this method. Reducing
the attribute and discrete type variables that are normally distributed and highly correlated
might deteriorate the overall prediction performance. The T-Method in this study proved to be
useful for predicting cases that are dealing with lower sample sizes. Enhancing the T-Method
with BPSO element as variables screening optimization was able to increase or even maintain
the prediction accuracy for cases that are normally distributed, with high R2 value, using low
sample size.
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[21] Reséndiz, E. and Rull-Flores, C. A. Mahalanobis-Taguchi system applied to variable
selection in automotive pedals components using Gompertz binary particle swarm
optimization. Expert Syst. Appl. 2013. 40(7): 2361–2365.

[22] Dasneogi, P., Cudney, E. A. and Ph, D. Comparing the Predictive Ability of T-Method
and Linear Regression Method. In Proceedings of the 2009 Industrial Engineering Research
Conference Comparing. 2009. 2176–2182.

[23] Cudney, E. A. and Shah, P. A. Predicting annual precipitation using the T-Method. In
Proceedings of the 2010 Industrial Engineering Research Conference. 2010. 1–6.

[24] Inoh, J., Nagata, Y., Horita, K. and Arisa, M. Prediction accuracies of improved Taguchi’s
T. methods compared to those of multiple regression analysis. J. japanese Soc. Qual.
Control. 2012. 42(2): 265–277.

[25] Jalil, I. E. A., Shamsuddin, S. M., Muda, A. K., Azmi, M. S. and Hashim, U. R. Predictive
based hybrid ranker to yield significant features in writer identification. Int. J. Adv. Soft
Comput. its Appl. 2018. 10(1): 1–23.

[26] Kawada, H. and Nagata, Y. An application of a generalized inverse regression estimator
to Taguchi’s T-Method. J. Japanese Soc. Qual. Control. 2015. 1985: 3–4.

[27] Harudin, N., Jamaludin, K. R., Nabil Muhtazaruddin, M., Ramlie, F. and Muhamad, W. Z.
A. W. A feasibility study in adapting Shamos Bickel and Hodges Lehman estimator into T-
Method for normalization. In IOP Conference Series: Materials Science and Engineering.
2018. 319(1): 6

[28] Harudin, N. et al. Increasing T-Method accuracy through Application of robust M-
estimator,” J. Adv. Reseach Dyn. Control Syst. 2018. 09-special issue: 44–48.



N. Harudin et al. / MATEMATIKA 36:1 (2020) 69–84 84

[29] Nakao, Y. and Nagata, Y. Analysis of data including missing values in the Taguchi’s T
method. Total Qual. Sci. 2018. 4(2): 53–64.

[30] Kennedy, J. and Eberhart, R. C. A discrete binary version of the particle swarm algorithm.
1997 IEEE Int. Conf. Syst. Man, Cybern. Comput. Cybern. Simul. 1997. 5: 4104–4108.

[31] Eberhart, R. and Kennedy, J. A new optimizer using particle swarm theory. In MHS’95.
Proceedings of the Sixth International Symposium on Micro Machine and Human Science
(Nagoya, Japan), IEEE Service Center, Piscataway, NJ. 1995. 39–43.

[32] Vieira, S. M., Mendonça, L. F., Farinha, G. J. and Sousa, J. M. C. Modified binary PSO
for feature selection using SVM applied to mortality prediction of septic patients.’ Appl.
Soft Comput. 2013. 13(8): 3494–3504.

[33] Kennedy J. et al. Particle swarm optimization. 1995. In Proceedings. IEEE Int. Conf. on
Neural networks. 1995. 4: 1942–1948.

[34] Xu, J. and Huiyou, C. The discrete binary version of the improved particle swarm
optimization algorithm. In Proceedings - International Conference on Management and
Service Science, MASS 2009. 2009.

[35] Zhang, Y., Wang, S., Phillips, P. and Ji, G. Binary PSO with mutation operator for feature
selection using decision tree applied to spam detection. Knowledge-Based Syst. 2014. 64:
22–31.

[36] Menhas, M. I., Wang, L., Fei, M. and Pan, H. Comparative performance analysis of various
binary coded PSO algorithms in multivariable PID controller design. Expert Syst. Appl.
2012. 39(4): 4390–4401.

[37] Tsanas, A. and Xifara, A. Accurate quantitative estimation of energy performance of
residential buildings using statistical machine learning tools. Energy Build. 2012. 49: 560–
567.

[38] Alam, M. Codes in MATLAB for Particle Swarm Optimization. 2016. [Source
code].https://www.researchgate.net/publication/296636431.
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