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Abstract Embedded Diagonally Implicit Runge-Kutta methods of different
orders are used for the treatment of delay differential equations. The delay
argument is approximated using an appropriate Hermite Interpolation. The
numerical results based on these methods are compared and the Q-stability
region of the methods are presented.

1 Introduction

In the last two decades there has been a growing interest in the numerical treatment
of delay differential equations (DDEs). This is due to their versatility in the mathematical
modeling of processes in various application fields. DDEs generally provide the best and
sometimes the only realistic simulation of observed phenomena. Such work can be found in
Orbele and Pesch (1981), Baker and Paul (1992) and Zennaro (1988). First order DDE
can be written as

y′(t) = f(t, y, y(t − τ)) t > t0

y(t) = ϕ(t) t ≤ t0 (1)

if it has one delay term only, or

y′(t) = f(t, y, y(t − τ1), . . . y(t − τn)) t > t0

y(t) = ϕ(t) t ≤ t0 (2)

if it has more than one delay term.

ϕ(t) is the initial function, τ(t, y(t)) is called the delay, is called the delay argument, the
value of y(t − τ(t, y(t)) is the solution of the delay term or commonly referred to as the
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delay term only. If the delay is a constant then it is called constant delay, if it is function
of time t, then it is called time dependent delay, if it is a function of time t and y(t) then
it is called the state dependent delay.

2 Numerical Treatment Of DDEs

Most numerical methods for solving ordinary differential equation of the form

y′(t) = f(t, y(t)) y(t0) = c (3)

can be adapted to solve DDEs. The range comprises of one step methods such as Runge-
Kutta method and Euler method, multistep and also block implicit method. When a q-stage
Singly Diagonally Implicit Runge-Kutta (SDIRK) method is used to solve (3) at the point
tn+1 , the following equations will be obtained:

k1 = f(tn + c1h, yn + ha11k1)
k2 = f(tn + c2h, yn + ha21k1 + ha22k2)

...

ki = f(tn + cih, yn + h

i∑

j=1

aijkj)

yn+1 = yn + h

q∑

i=1

biki (i = 1, . . . , q)

yn + h

i∑

j=1

aijkj is called the internal stage of the method.

When it is adapted to DDE(1) we have

ki = f(tn + cih, yn + h

i∑

j=1

aijkj , y(tn + cih − τ))

yn+1 = yn + h

q∑

i=1

biki

y(tn + cih − τ) is the delay term and interpolation is needed to approximate the value.
There are a number of techniques for obtaining the approximations which has been discussed
in Neves (1981), In’t Hout (1992) and Karoui (1992). In this paper Hermite interpolation
is used to approximate the delay term. The interpolation order and hence the number of
support points have to be adapted to the order of the method.

If p denotes the order of the Runge-Kutta method used, the interpolation order q must be
greater or equal to p. Let ip denotes the number of support points for Hermite interpolation
then

2ip > p (4)
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In this paper fifth order embedded (SDIRK) method (4,5) in (5,6) (see Ismail and
Suleiman (1999)) and fourth order embedded SDIRK (3,4) in (4,6) due to Hairer and Wanner
(1991) were used to solve DDEs.

For the fifth order method three support points were used, so that equation (4) holds
and for the fourth order method we are also using three support points since if two support
points were used the order of the interpolations is less than the order of the method itself.

In the numerical treatment of delay differential equations two essential difficulties occur.
First is the evaluation of the delay term which has been discussed earlier and secondly
is the jump discontinuities of the solution in various derivatives, which usually are the
characteristic of DDEs.

When solving DDEs, one of the basic requirements is the storage of sufficient back
information so that the method can evaluate the delay term when it is required at some
point t ≤ tn. The amount of information to be stored at each time step depends on the
method for approximating the delay term, but the interval on which the information is to
be stored and the quantities to be stored on that interval should be flexible and adaptable
for each problem, depending on the nature of the delay term and accuracy required. If the
delay term falls at some point t ≤ t0, then the initial function must be used.

The delay argument may fall in the current step because it is smaller than the stepsize
or may even vanish, we call this type of delay a small delay or when the delay vanishes we
call it vanishing delay. These types of delays are handled by either restricting the stepsize
to be smaller than the delays or using extrapolation.

Discontinuities are handled by the error control mechanism or locating the discontinuity
points by solving associated nonlinear equations. In this paper the test equations used have
the analytical solution so we knew the discontinuity point hence make it a mesh point so
that the stepsize does not cross the discontinuity point.

The main concern here is DDE which has a single delay, both time dependent and state
dependent and of the large type.

3 Stability Of The Method

There are many concepts of stability of numerical methods when applied to DDE,
depending on the test equation as well as the delay term involved see Bellen et al., (1988),
Tian Hongjiang and Kuang Jiaoxun (1995) and Guang-Da Hu and Meguid, S. A. (1999).
One of the most commonly used test equation in the literature is,

y′(t) = λy(t) + µy(t − τ), t ≥ t0

y′(t) = ϕ(t), t ≤ t0 (5)

λ and µ ∈ C, τ > 0 and ϕ is continuous.
If λ = 0, the following equation is obtained

y′(t) = µy(t − τ) t ≥ t0

y′(t) = ϕ(t) t ≤ t0 (6)

Barwell (1975) introduced the following concept of stability.
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Definition: Given a numerical method for DDEs, the P-stability region of the method is
the set Sp of pairs of (α, β), such that the numerical solution of (5) asymptotically vanishes
for steplengths h satisfying

h =
τ

m
, m is a positive integer.

Definition: If µ ∈ C, Q-stability region of the method is the set SQ of β, such that the
numerical solution of (6) asymptotically vanishes for steplengths h satisfying

h =
τ

m
, m is a positive integer.

α = hλ and β = hµ.
When q-stage Runge-Kutta method is applied to DDE (5), using Hermite interpolation

for the delay term, the following equations are obtained.

k
(i)
n+1 = f(tn + cih, yn + h

i∑

j=1

aijk
(j)
n+1 +

∑
H(ci)yn−m+l + H̄(ci)hy′

n−m+l)

yn+1 = yn + h

q∑

i=1

bik
(i)
n+1 (7)

Where H and H̄ are the coefficients of Hermite interpolation.
Define u = (1, . . . , 1)T and for n ≥ 1

kn = (k(1)
n , . . . , k(q)

n )T

b = (b1, b2, . . . , bq)T

Hl(c) = Hl(c1), . . . , Hl(cq)
H̄l(c) = H̄l(c1), . . . , H̄l(cq)

For n ≥ m (7) takes the form

kn+1 = λ(ynu + hAkn+1) + µ

s∑

l=r

(Hl(c)yn−m+l + hH̄l(c)yn−m+l + hH̄l(c)y′
n−m+l) (8)

yn+1 = yn + hbT kn+1 (9)

Replacing y′
n−m+l by λyn−m+l + µyn−2m+l, we will have

kn+1 = λyu+hλAkn+1 +µ

s∑

l=r

Hl(c)yn−m+l +µhλ

s∑

l=r

H̄l(c)yn−m+l +hµ2
s∑

l=r

H̄l(c)yn−2m+l

hence, we have

(I − hλA)kn+1 = λynu + µ

s∑

l=r

[
(Hl(c) + hλH̄l(cc))yn−m+l + hµH̄(c)lyn−2m+l

]
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hkn+1 = hλ(I − hλA)−1ynu +

hµ(I − hλA)−1
s∑

l=r

[
(Hl(c) + hλH̄l(c))yn−m+l + hµH̄(c)lyn−2m+l

]
(10)

replacing the above equation into (9) and taking α = hλ, β = hµ and η = (I − hλA)−1 we
have

yn+1 = yn + αbT ηynu + βbT η

s∑

l=r

[
(Hl(c) + hλH̄l(c))yn−m+l + hµH̄(c)lyn−2m+l

]
(11)

Rewriting

Yn+1 =
(

yn+1

hkn+1

)
,

equation (10) can be written as

(
1 0
0 I

)
Yn+1 =

(
1 + αbT ηu 0

αηu u

)
Yn +

(
βbT η

∑
Hl(c) + λH̄l(c)) 0

βη
∑

Hl(c) + αH̄l(c)) 0

)
Yn−m+l+

(
β2bT η

∑
H̄l(c) 0

β2η
∑

H̄l(c) 0

)
Yn−2m+l

I is the identity matrix, replacing Y by ζ, the stability polynomial of the method is

S(α, β, ζ) = det[
(

1 0
0 I

)
ζn+1−

(
1 + αbT ηu 0

αηu u

)
ζn−

(
βbT η

∑
Hl(c) + λH̄l(c)) 0

βη
∑

Hl(c) + αH̄l(c)) 0

)
ζn−m+l

−
(

β2bT η
∑

H̄l(c) 0
β2η

∑
H̄l(c) 0

)
ζn−2m+l]

Hence

S(α, β, ζ) = ζn+1 − (1 + αbT ηu)ζn − βbT η
∑

l

(Hl(c) + λH̄l(c))ζn−m+l

− β2bT η
∑

l

H̄l(c)ζn−2m+l (12)

The above polynomial is called the P -stability polynomial of the method using Hermite
interpolation to approximate the delay term. If λ = 0, hence α = 0, then we obtain

S(β, ζ) = ζn+1 − ζn − βbT η
∑

l

(Hl(c))ζn−m+l − β2bT η
∑

l

H̄l(c)ζn−2m+l (13)

that is the Q-stability polynomial of the method.
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By taking n−2m−1 = 0, so that the lowest order of ζ is zero and using three points for
the interpolations for both the methods we have three values of y and y′, that is six data
altogether so that the interpolations are at least of the same order as the method.

Hermite polynomial of least degree agreeing with y and y′ at t0, . . . , tn is a polynomial
of degree at most 2n + 1 given by

P2n+1(t) =
n∑

j=0

Hn,j(t)y(tj) +
n∑

j=0

H̄n,j(t)y′(tj)

where

Hn,j(t) = [1 − 2(t − tj)L′
n,j(tj)]L

2
n,j(t)

H̄n,j(t) = (t − tj)L2
n,j(t)

and

Lj(t) = Πs
l=r

(t − l)
(j − l)

(j 6= l)

In this case, the coefficients of the 3-point Hermite interpolation are

H2,0(c) = 0.25(4 + 3c)c2(c − 1)2

H2,1(c) = (c + 1)2c(c − 1)2

H2,2(c) = 0.25(4− 3c)c2(c + 1)2

H̄2,0(c) = 0.25(1 + c)c2(c − 1)2

H̄2,1(c) = c(1 + c)(c − 1)2

H̄2,2(c) = 0.25(c− 1)c2(c + 1)2

And taking Hl = H2,j and H̄l = H̄2,j , h = 1 and m = 1, equation (13) becomes

S(β, ζ) = ζ4 − ζ3 − βbT η

3∑

l=1

(Hl(c))ζl − β2bT η

2∑

l=0

H̄l(c)ζl (14)

The Q-stability region of the method is the region where all the roots of the polynomial (ζ)
is less or equal to 1, hence substituting the value of ζ = cos θ+i sin θ, and solve the equation
for β = a+ ib we obtained the required regions. Figure 1 below gives the Q-stability regions
for both methods, where the regions lie inside the loop.

4 Numerical Experiment

Below are some of the problems tested, which were obtained from Al-Mutib (1977).

Problem
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No 1:-

y′(t) = −y exp(1 − 1
t
) + 1, 1 ≤ t ≤ 10

y(t) = ln(t), 0 ≤ t ≤ 1

τ(t) = t − exp(1 − 1
t
)

Solution: y(t) = ln(t), t ∈ [0, e]

No 2:-

y′(t) = −y(t − 1 + e−t) + sin (t − 1 + e−t) + cos(t), t ≥ 0
y(t) = sin(t), t ≤ 0
τ(t) = 1 − e−t

Solution: y(t) = sin(t), t ∈ [0, 10]

No 3:-

y′(t) = cos(t)y(y(t) − 2), t ≥ 0
y(t) = 1, t ≤ 0
τ(t) = t − y(t) + 2

Solution: y(t) = sin(t) + 1, t ∈ [0, 10]

No 4:-

y′(t) =
1
2

exp(y(y(t) − ln 2 + 1)), 1 ≤ t ≤ 3

y(t) = 0, t ≤ 1
τ(t) = t − y(t) + ln 2 − 1

Solution:

y(t) =
{

ln(t) 1 ≤ t ≤ 2
t
2 + ln 2 − 1 2 ≤ t ≤ 3 t ∈ [1, 3]

No 5:-

y′(t) =
1
t
y(t)y(ln(y(t))), t ≥ 1

y(t) = 1, t ≤ 1
τ(t) = t − ln(y(t))

Solution:

y(t) =
{

t 1 ≤ t ≤ e
exp( t

e ) e ≤ t ≤ e2 t ∈ [1, e2]
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No 6:-

y′
1(t) = y2(t), 1 ≤ t ≤ 10

y′
2(t) = −y2(exp(1 − y2(t))2 exp(t − y2(t)), 1 ≤ t ≤ 10

y1(t) = ln(t), 0 ≤ t ≤ 1

y2(t) =
1
t
, 0 ≤ t ≤ 1

τ(t) = t − exp(1 − y2(t))

Solution:

y1(t) = ln(t), 0 ≤ t ≤ 10

y2(t) =
1
t
, 0 ≤ t ≤ 10

The numerical results are obtained when the problems are solved by fifth order SDIRK
method F1(C ) in Ismail and Suleiman and fourth order SDIRK method due to Hairer
(1991) using 3-point Hermite interpolation to approximate the delay term and are given in
Tables 1-6. The notations used are as follows:

TOL The chosen tolerance.
FCN The number of function evaluation.

STEP The number of successful steps.
FSTEP The number of failed steps.

MAX ERROR Absolute value of the true solution minus the computed solution.

The notation 6.453225(−5) means 6.453225x10−5.

Method:

F1 Using SDIRK method (4,5) in (5,6)

F2 Using SDIRK method (3,4) in (4,5)

5 Conclusion and Discussion

From the numerical results, it was observed that, the fifth order method gives smaller
number of function evaluation though the fifth order method has six stages meaning at every
step, six functions evaluations has to be done compared to the five function evaluations for
the fourth order method. In terms of number of steps, the fifth order method also gives
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smaller number of steps and also less number of failed or unsuccessful steps, but the fourth
order method gives a slightly smaller error compared to the fifth order method, this is
because the interpolation used is of order five, one order higher than the method itself.
Overall it can be concluded that the fifth order method is superior compared to the fourth
order method despite of the same order of interpolation used for the delay term.

Both methods though of different orders have almost the same region of Q-stability.
The reason for this is that the test equation comprises only of the delay term and Hermite
interpolations used for both methods are of the same order.
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Figure 1:

Table 1: Numerical Results for Problem 1
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Table 2: Numerical Results for Problem 2

Table 3: Numerical Results for Problem 3
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Table 4: Numerical Results for Problem 4

Table 5: Numerical Results for Problem 5
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Table 6: Numerical Results for Problem 6


