
MATEMATIKA: MJIAM, 2020, Volume 36, Number 3, 197–207
c© Penerbit UTM Press. All rights reserved

New Three-Term Conjugate Gradient Method

with Exact Line Search

1Nurul Hafawati Fadhilah∗, 2Mohd Rivaie, 3Fuziyah Ishak and 4Nur Idalisa
1,2,4Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA Cawangan Terengganu

Terengganu, Malaysia
1,3Faculty of Computer and Mathematical Sciences

Universiti Teknologi MARA
Shah Alam, Malaysia

∗Corresponding author: nurulhafawatifadhilah@gmail.com

Article history
Received: 17 May 2019
Received in revised form: 25 September 2020
Accepted: 28 September 2020
Published online: 1 December 2020

Abstract Conjugate Gradient (CG) methods have an important role in solving large
scale unconstrained optimization problems. Nowadays, the Three-Term CG method has

become a research trend of the CG methods. However, the existing Three-Term CG
methods could only be used with the inexact line search. When the exact line search

is applied, this Three-Term CG method will be reduced to the standard CG method.
Hence in this paper, a new Three-Term CG method that could be used with the exact
line search is proposed. This new Three-Term CG method satisfies the descent condition

using the exact line search. Performance profile based on numerical results show that
this proposed method outperforms the well-known classical CG method and some related

hybrid methods. In addition, the proposed method is also robust in term of number of
iterations and CPU time.
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1 Introduction

Consider the nonlinear unconstrained optimization problem as in the following form:

min f(x), x ∈ R
n (1)

where f : R
n → R is a continuously differentiable function. In order to solve (1), the iterative

method is applied. The iterative method is given by

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (2)
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where dk is a search direction and αk is a positive step size. The step size αk is obtained by
exact line search [1] which can be determined by

αk = arg min
α≥0

f(xk + αdk) (3)

where argmin stands for argument of minimum that gives minimal function value.
The general search direction dk of the conjugate gradient (CG) method can be defined as

dk =

{

−gk if k = 0,
−gk + βkdk−1 if k ≥ 1,

(4)

where βk is called the CG coefficient and gk is the gradient of f(x) at xk. Some of the well-
known classical formulas for βk are Fletcher and Reeves (FR) [2], Hestenes and Stiefel (HS) [3],
and Polak, Ribiere and Polyak (PRP) [4] which are given by

βFR
k =

‖gk‖
2

‖gk−1‖
2

(5)

βHS
k =

gT
k (gk − gk−1)

dT
k−1

(gk − gk−1)
, (6)

βPRP
k =

gT
k (gk − gk−1)

‖gk−1‖
2

, (7)

respectively. The notation ‖·‖ refers to the Euclidean norm for vectors. Recently, there are
many new formulas for βk which contribute to accurate and efficient numerical results. Rivaie
et al. [5] proposed a new simple formula for βk based on the original HS method. The formula
named as Rivaie, Mustafa, Ismail and Leong (RMIL) is defined as follows:

βRMIL
k =

gT
k (gk − gk−1)

‖dk−1‖
2

(8)

Since Rivaie, Mustafa, Ismail and Leong (RMIL) propose (8) by modifying the already proven
Hestenes-Steifel (HS) formula thus, the RMIL method is classified as the modified CG methods
[Rivaie et al. 6].

The classical CG methods could be improved by using hybrid CG methods. The
performances of hybrid CG methods are better than classical CG methods. However, the
formulas for hybrid CG methods are quite complicated and difficult to apply in the algorithm
because the formulas are combinations of two or more classical methods. Some simple formulas
of hybrid methods are Hu and Storey (HuS) [7] and Gilbert and Nocedal (GN) [8] given by,

βHuS
k = max

{

0, min
{

βPRP
k , βFR

k

}}

, (9)

βGN
k = max

{

−βFR
k , min

{

βPRP
k , βFR

k

}}

(10)

respectively. In order to increase the efficiency of general search direction, Three-Term methods
have been widely studied. Beale [9] was the first researcher that proposed the general Three-
Term CG method. According to Baluch et al. [10], Three-Term CG algorithms are efficient,
reliable and robust as compared to the general CG algorithms. Zhang et al. [11] proposed a
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modified PRP method under Armijo line search. Unfortunately, it cannot be established under
weak Wolfe-Powell line search. The formula is obtained by

dk = −gk +
gT

k (gk − gk−1)

‖gk−1‖
2

dk−1 −
gT

k dk−1

‖gk−1‖
2

(gk − gk−1) . (11)

Li and Li [12] modified (11) such as

dk =

{

−gk if k = 0,
−gk + βPRP

k dk−1 − ϑk (gk − gk−1) if k ≥ 1,
(12)

where ϑk =
gT

k dk−1

‖gk−1‖
2
.

Dong et al. [13] proposed another search direction by using the Gram-Schmidt
orthogonalization onto dk and gk, in which

dk = −gk + βkdk−1 − βk

gT
k dk−1

‖gk‖
2

gk. (13)

Khadijah et al. [14] extend the RMIL method to the Three-Term method which is globally
convergent under strong Wolfe line search. The RMIL coefficient is known as one of the simple
formula and easy implementation. The formula can be written as,

dk =

{

−gk if k = 0,
−gk + βRMIL

k dk−1 − θk (gk − gk−1) if k ≥ 1,
(14)

where θk =
gT

k dk−1

dk−1 (dk−1 − gk)
.

Other researches also studied Three-Term CG methods where the main purpose was to
improve the performance of the current methods in terms of its efficiency and numerical
performances. From the referred Three-Term methods, it is known that the studies only focus
on the application of Three-Term CG method using inexact line search. However, there is still
no research on Three-Term CG method that is based on an exact line search.

Theoretically, if an exact line search is used, then gT
k dk−1 = 0. So, it is obvious that the

existing Three-Term algorithms will be reduced to the general search direction when the exact
line search is applied [15]. Thus, this paper strives to propose a new Three-Term CG method
with exact line search. The method will improve the performance of the existing CG methods.

The remainder of this paper is organised as follows: The new Three-Term search direction
CG algorithm is presented in Section 2. In Section 3, the sufficient descent condition for
the proposed method will be presented. Section 4 presents the numerical experiments by
implementing the algorithm to solve benchmark test problems. Lastly, the paper ends with the
conclusion in Section 5.

2 New Three-Term CG Method

This section begins with the idea to propose a new Three-Term CG method. The proposed
formula is similar to search direction presented by [11, 13] with different formula for parameters
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θk and βk. A new numerator for θk has been proposed in order to fit the exact line search. The
new search direction is applied with the classical RMIL defined by (8) and

θk =
gT

k gk−1

‖gk−1‖
2

(15)

where the proposed Three-Term CG method can be written as,

d3TNRMIL
k =

{

−gk if k = 0,
−gk + βRMIL

k dk−1 − βRMIL
k θkdk−1 if k ≥ 1,

(16)

For ease of readings, d3TNRMIL
k is now denoted as 3TNRMIL search direction. Where, 3T is

short-term of Three-Term and NRMIL is named after the contributors which are Nurul, Rivaie,
Mustafa, Ismail and Leong.

The following algorithm describes the steps in order to obtain the solution for the
optimization functions. For 3TNRMIL, the propose Three-Term search direction (16) is applied
with RMIL method (8). Besides, for the classical and modified CG method, the search direction
is computed based on (4) and formula βk in Step 2 is based on (5), (6) or (8) which denoted as
FR, HS and RMIL respectively.

Algorithm 1

Step 1: Initialization. Given x0 set k = 0.
Step 2: Compute βk based on (5), (6) or (8).
Step 3: Compute search direction dk based on formula (4) or formula (16) and θk based on

formula (15). If gk = 0, then stop.
Step 4: Determine step size αk by solving (3).
Step 5: Update new point based on (2).
Step 6: Convergent test and stopping criteria: If f (xk+1) < f (xk) and ‖gk‖ ≤ ε then stop.

Otherwise go to Step 2 with k = k + 1.

3 Convergence Analysis

In this section, the convergence of the new method is studied. For an algorithm to converge,
one of the requirements is to fulfil the sufficient descent condition. The proof of the proposed
method that possesses sufficient descent condition with exact line search is shown as follows.

Theorem 1

Consider a CG method with the search direction dk as given by (16). Then the sufficient descent
condition

gT
k dk ≤ −C ‖gk‖

2 for k ≥ 0, 0 < C ≤ 1 (17)

holds for all k ≥ 0.

Proof

The proof is by induction. If k = 0, then gT
0 d0 = −‖g0‖

2 ≤ −C ‖g0‖
2. Hence, condition (17)

holds true. Then, it is necessary to show that for k ≥ 1, condition (17) will also holds true.
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Multiply (16) by gT
k+1. Thus,

gT
k+1dk+1 = gT

k+1 (−gk+1 + βk+1dk − βk+1θk+1dk)

= −‖gk+1‖
2 + βk+1g

T
k+1dk − βk+1θk+1g

T
k+1dk.

For exact line search, gT
k+1dk = 0. Then,

gT
k+1dk+1 = −‖gk+1‖

2 ≤ −C ‖gk+1‖
2

This implies that dk+1 is sufficient descent direction. Hence, the gT
k dk ≤ −C ‖gk‖

2 holds true.
The proof is completed. 2

4 Numerical Experiments

In order to support theoretical proof, the proposed method is tested using different test problems
with various initial points. The list of different standard test problems with their global
minimum points and function values are tabulated in Table 1. In this paper, the proposed
method 3TNRMIL will be compared with the classical (FR, HS), modified CG (RMIL) and
hybrid CG methods (HuS and GN). The stopping criterion is ‖gk‖ ≤ 10−6 as suggested
by Andrei [16]. The numerical experiment was conducted using a computer with processor
Intel R©CoreTM i3-3217U CPU @ 1.80GHz with RAM 4GB and all the programming codes are
typewritten in Maple 16. The efficiency of the methods was analysed based on the number of
iterations and CPU time.

The initial points were identified from four different geometrical quadrants in order to test
the behaviour of the method; whether the method converges to global solution or local solution
point. For example, Extended Himmelblau function which is a multimodal function that has
four different global solution points in different quadrants. The graph and contour plot of
Extended Himmelblau function is presented in Figure 1. Other than that, the initial points
are chosen from point closer to the solution point to the one that is furthest from it [17]. The
initial points from four quadrants are as follow:

Quadrant 1: (1.25, 1.25), (10, 10), (100, 100)

Quadrant 2: (−1.25, 1.25), (−10, 10), (−100, 100)

Quadrant 3: (−1.25, −1.25), (−10, −10), (−100, −100)

Quadrant 4: (1.25, −1.25), (10, −10), (100, −100)

The results were collected by testing all selected methods on the test problem with different
initial points. The classical CG method FR, HS and RMIL were applied with the standard
search direction of CG method (4) and RMIL method which had been applied with the new
proposed Three-Term search direction (16) is denoted as 3TNRMIL.

The numerical results are presented graphically using the performance profile that is
introduced by Dolan and More [22]. In this performance profile, they introduced the notion of
means to evaluate and compare the performance of the set solver S on a test set P . Assume
that ηs solvers and ηp problems exists, for each problem p and solver s, define

tp,s = Computing time (the number of iterations or CPU time or others) required to solve

problems p by solver s.
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Table 1: Standard Test Problems

Test problem
Global

minimum point

Minimum

function value

Strait function with n = 2 [18]
f(x) = (x2 − x2

1)
2 + 100(1 − x1)

2
x∗ = (1, 1) f(x∗) = 0

Zettl function with n = 2 [19]
f(x) = (x2

1 − x2
2 − 2x1)

2 + 0.25x1

x∗ = (−0.0299, 0) f(x∗) = −0.0037

Threehump function with n = 2 [20]

f(x) = 2x2
1 − 1.05x4

1 +
x6

1

6
+ x1x2 + x2

2

x∗ = (0, 0) f(x∗) = 0

Rosenbrock function with n = 2 [21]
f(x) = 100(x2 − x2

1)
2 + (1 − x1)

2
x∗ = (1, 1) f(x∗) = 0

Extended Beale function with n = 2 [21]
f(x) = (1.5 − x1(1 − x2))

2 + (2.25 −
x1(1 − x2

2))
2 + (2.625 − x1(1 − x3

2))
2

x∗ = (3, 0.5) f(x∗) = 0

Extended Himmelblau function with n = 2 [21]
f(x) = (x2

1 + x2 − 11)2 + (x1 + x2
2 − 7)2

x∗ = (3, 2),
x∗ = (−2.8051, 3.131),
x∗ = (−3.779,−3.283),
x∗ = (3.584,−1.848)

f(x∗) = 0

Figure 1: Graph and Contour Plot of Extended Himmelblau Function
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Requiring a baseline for comparisons, they compared the performance on problem p by
solver s with the best performance by any solver on this problem using the performance ratio

rp,s =
tp,s

min {tp,s : s ∈ S}
.

Suppose that a parameter rM ≥ rp,s for all p, s is chosen, and rp,s = rM if and only if solver
s does not solve problem p. The performance of solver s on any given problem might be of
interest. To obtain an overall assessment of the performance of the solver, it is defined as

Ps (t) =
1

np

size {p ∈ P : rp,s ≤ t} .

Thus, Ps (t) is the probability for solver s ∈ S that a performance ratio rp,s is within a
factor t ∈ R of the best possible ration. In other words, this performance profile intends to seek
the best possible method that capable to solve all given problems by evaluating the calculation
of ratio values. Then, function Ps is the cumulative distribution function for the performance
ratio. The performance profile Ps = R 7→ [0, 1] for a solver is a non-decreasing, piecewise, and
continuous from the right. The value of Ps (1) is the probability that the solver will win over
the rest of the solvers. In general, a solver with high values of P (t) or at the top right of the
figure is preferable or represent the best solver.

The vertical line of the graph also known as right side of the graph shows the capability of
method to solve all the selected test problems. This side will show the efficiency of method to
solve all selected test problems by observing the value of Ps(t). Otherwise, the horizontal line
of the graph is also called as left side of the graph reveals the faster method compared to the
rest of the solvers. The left side will expose the robustness of method by focusing on the top
curve of the graph. Figure 2 until Figure 5 show the performance profile based on the number
of iterations and CPU time.

Figure 2 and Figure 3 show the comparison between classical CG search direction and the
new proposed Three-Term CG method in term of number of iteration and CPU time. From
the figures, the proposed Three-Term method outperformed the current classical CG method
since it can converge faster and able to solve all selected test problems.

Figure 2 and Figure 3 show that the 3TNRMIL is the best method rather than original
RMIL, FR and HS methods. It can be clearly seen that 3TNRMIL method is placed at the top
of the graph. From the right side, 3TNRMIL is capable of solving all selected test problems
since its values of Ps (t) equals to 1. In conclusion, the 3TNRMIL performance is better than
the performance of classical CG.

In addition, the proposed search direction is compared with the hybrid CG methods, HuS
and GN methods in order to see the efficiency of the newly proposed method. The performance
profiles based on the number of iterations is shown in Figure 4 while Figure 5 shows the
performance profile based on CPU time.

Figure 4 and Figure 5 reveal that performance curves for the 3TNRMIL method are clearly
above the other curves which mean this method converges faster to the solution than HuS
and GN methods. In addition, the right side of the graph shows that 3TNRMIL is capable of
solving all selected problems. This concludes that the performance of 3TNRMIL is better than
the performance of hybrid CG methods.
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Figure 2: Performance Profile Based on Number of Iterations

Figure 3: Performance Profile Based on CPU Time
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Figure 4: Performance Profile Based on Number of Iterations

Figure 5: Performance Profile Based on CPU Time



Nurul Hafawati Fadhilah et al. / MATEMATIKA 36:3 (2020) 197–207 206

5 Conclusion

The recent studies on CG method have led to the variety of modification on the CG method.
In this study, the efficient and simple coefficient RMIL had been implemented in the proposed
Three-Term CG method under exact line search which is 3TNRMIL. The numerical results show
that 3TNRMIL has the best performance as compared to the classical, modified and hybrid
CG methods. In the future, we intend to apply other classical and modified CG methods into
the proposed search direction using more test functions and inexact line search.
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