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Abstract This paper addresses the problem of determining the best policy for
an inventory replenishment with continuous deterministic time-varying demand
over a finite planning horizon. We determine when to replenish and how much
for each batch. We propose a genetic algorithm procedure which is based on
Darwin’s survival of the fittest principle and a method using spreadsheet mo-
delling in Microsoft Excel Solver. Numerical results from our examples showed
that both procedures produced optimal solutions reported in the literature.
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Abstrak Dalam kertas ini kita akan menentukan polisi terbaik bagi masalah
penambahan perolehan inventori apabila kadar permintaannya tentu berubah
dengan masa secara selanjar untuk sesuatu tempoh yang terhad. Kita ten-
tukan bila dan jumlah kuantitinya untuk setiap kitaran. Kita gunakan prose-
dur genetik algoritma yang berasaskan kepada prinsipal kewujudan Darwin dan
model hamparan di dalam Microsoft Excel Solver. Keputusan berangka dari be-
berapa contoh menunjukkan kedua-kedua prosedur mampu memberikan penye-
lesaian yang optimum.

Katakunci Permintaan berubah dengan masa, Genetik algoritma, Model ham-
paran dan Inventori.

1 Introduction

Resh et al. [14] and, independently, Donaldson [4] were among the first to investigate the
inventory model with linearly increasing demand patterns analytically. They derived the
optimal number of replenishments and their replenishment times over a finite and an infinite
time horizon.

The mathematical complexity of the above exact solutions has led to the development of
much simpler heuristic procedures to obtain nearly optimal replenishment schedules. Silver
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[15] showed how the Silver-Meal heuristic, which was developed for the discrete time-varying
demand case, could be adapted to give an approximate solution procedure for continuous
time-varying demand patterns. Instead of finding the lot sizes that minimise the total
ordering and inventory holding costs up to the time horizon, the author determined each
lot size sequentially, one at a time, by finding the first local minimum of the total inventory
cost per unit time. Phelps [13] proposed a computationally easier procedure by restricting
the replenishment intervals to be constant. Under this restriction he determined the optimal
number of replenishments using an iterative algorithm over the time horizon. Mitra et al.
[8] developed a simpler method by modifying the EOQ model to accommodate the case of
linear trend and a finite horizon. Naddor [10] proposed heuristic solution procedures and
obtained good results for linearly increasing demand. Hong et al. [6] extended Naddor’s
work by assuming the production rate is uniform and finite, and developed three different
heuristic policies. Recently, Omar et.al. [12] considered how the existing methodology
developed by Naddor can be adapted for the case of a finite input rate.

In this paper we propose two alternative methods to solve deterministic inventory prob-
lem. The first procedure is based on a genetic algorithm. The second is based on spreadsheet
modelling supported in Microsoft Excel Solver. We illustrate these procedures using several
examples and the results are compared with those found in the literature.

2 Mathematical Model

The mathematical model of the inventory replenishment problem is based on the following
assumptions and notations:

1. An inventory schedule for a single item is required over a known and finite period of
time (0, H).

2. Replenishment occurs instantaneously at an infinite rate.

3. The demand rate, f(t), is known and varies with time.

4. There is a fixed setup cost of c1 for each batch replenishment.

5. There is a carrying inventory cost of c2 per unit per unit time.

6. n is the total number of batch replenishments (and therefore we define tn = H).

The total relevant cost for n-batches can be expressed as (see [4]) :

TRC(n) = nc1 + c2

n−1∑

i=0

∫ ti+1

ti

y(t) dt, (1)

where y(t) is an inventory level at time t and

y(t) =
∫ ti+1

ti

f(t) dt −
∫ t

ti

f(t) dt

=
∫ ti+1

t

f(t) dt ti ≤ t ≤ ti+1 (2)
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For linearly increasing or decreasing demand, f(t) = a ± bt, we obtain

TRC(n) = nc1 + c2

n−1∑

i=0

{a

2
(t2i+1 − t2i ) ±

b

3
(t3i+1 − t3i ) − ti[a(ti+1 − ti)

± b

2
(t2i+1 − t2i )]

}
. (3)

The total relevant cost for the exponentially declining demand,
f(t) = a e−bt, is given by

TRC(n) = c1 + c2
a

b2

n−1∑

i=0

[
e−bti + e−bti+1(bti − bti+1 − 1)

]
. (4)

The objective for this problem is to find the number of replenishment orders, n, placed
during the planning horizon and the corresponding replenishment times, ti for

i = 0, 1, . . . , n − 1,

that minimize the total relevant cost. The optimization problem is:

Minimize : nc1 + c2

n−1∑

i=0

∫ ti+1

ti

y(t) dt

subject to : ti < ti+1, i = 0, 1, . . . , n − 1,

t0 = 0,

tn = H.

For fixed n, the optimal replenishment times can be found by analytical, heuristic or
numerical methods. In this paper, we used genetic algorithm and Microsoft Excel Solver,
to find the optimal replenishment times which satisfy the above optimization condition.

3 Genetic Algorithms

In the last decade we have seen a growing interest in biologically motivated approaches such
as Neural Networks, Evolutionary Strategies and Genetic Algorithms (GAs) being applied
to many complex optimisation problems. The processes occurring in the Natural Systems
such as the intricate networks of human nervous systems, the behaviour of ants looking
for food and the process of evolution, have inspired the development of these algorithms.
Evolutionary Strategies and GAs are constructed based on the observation of evolutionary
processes such as adaptation, selection, reproduction, mutation and competition. These
processes are closely studied and translated into the form of computer simulations. Al-
though these algorithms are a crude simplification of the natural processes, they have been
successfully applied to many complex problems that were once intractable (see for example
Mitchell [7]).

As with other evolutionary-based algorithms, GA is a stochastic search technique that
closely mimics the metaphor of natural biological evolution. GA explores the problem
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domain by maintaining a population of individuals, which represents a set of potential
solutions in the search space. The survival of each individual into the next generation is
determined by its fitness. The fitness of an individual is a performance measure based
on an objective function that describes the problem. At each iteration, new individuals
(offspring) are created by selecting individuals according to their fitness and breeding them
using genetic operators similar to natural genetics. The selection is carried out based on the
principle of the survival-of-the-fittest where stronger individuals are allowed to participate
more in the reproduction of new individuals than the weaker ones, who may not even
contribute at all. Using genetic operators, GA attempts to combine the good features
found in each individual using a structured yet randomised information exchange in order
to construct individuals which are better suited to their environment than the individuals
that they were created from. Through the evolution of better individuals, it is hoped that
the desired solution will be found.

GA emerged in the mid-1960s and the book written by Holland [5], that gave the first
rigorous description of GA, has generated an overwhelming interest within the scientific
research community. GA has since been applied to a wide range of research fields includ-
ing machine learning, pattern recognition, function optimisation, optimal control, control
system engineering, scheduling, wire routing, etc. GA is an active research area and is con-
tinuously expanding as indicated by the vast amount of work and the number of conferences
devoted specifically to GA.

4 Microsoft Excel Solver

Microsoft Excel Solver is one of the facilities available in the spreadsheet Microsoft Excel.
It can be used to solve linear and nonlinear mathematical programming models with con-
tinuous and/or integer variables. Linear and integer problems use the simplex method with
bounds on the variables and the branch-and-bound method. The nonlinear optimization
model is solved using the Generalized Reduced Gradient (GRG2) method implemented by
Lasdon and Waren. The details of the Solver can be found in Anderson et al. [1]

The Microsoft Excel spreadsheet version of the inventory model for linearly decreasing
demand, f(t) = 100 − 20t with c1 = 100, c2 = 7.5 and H = 5 appears in Table 1. It shows
the nonoptimal solution for the problem. The Solver will minimize the target cell, B15, by
changing the values of cells C9, D9, E9, F9 and G9 subject to the given constraints. In the
Solver Options, we click the box Assume Non-Negative so that the changing cells will be
nonnegative. The optimal solution is given in Table 2.

5 Numerical Results and Discussion

We have adapted GA based on parameter optimization to solve the inventory problem. Each
chromosome represents the possible values of the time varying variables, ti. Each variable
is represented using a floating point representation as it offers high degree of precision
and is capable of representing quite large domains which is the essence of many inventory
problems.

The objective values of each chromosome is evaluated using equations 1–4.
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Table 1: Non-optimal solution

A B C D E F G H
1 Inventory

policy
2
3 Input data
4 Demand a = 100 b = −20

parameters
5 Cost c1 = 100 c2 = 7.5

parameters
6 Time horizon H = 5
7 Number of

replenishment, 6
n

8 Batch time t0 t1 t2 t3 t4 t5 t6
9 0 0.5000 1.0000 2.0000 2.5000 4.0000 5.0000

10 Inventory per unit 11.6667 10.4167 33.3333 6.6667 33.7500 3.3333
time per unit time

11
12
13 Total 743.7500

inventory cost
14
15 Total cost 1343.7500
16
17 Batch time 0.5000 <= 1.0000

constraints
18 1.0000 <= 2.0000
19 2.0000 <= 2.5000
20 2.5000 <= 4.0000
21 4.0000 <= 5.0000
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Table 2: Optimal solution

A B C D E F G H
1 Inventory

policy
2
3 Input data
4 Demand a = 100 b = −20

parameters
5 Cost c1 = 100 c2 = 7.5

parameters
6 Time horizon H = 5
7 Number of

replenishment, 6
n

8 Batch time t0 t1 t2 t3 t4 t5 t6
9 0 0.5411 1.1198 1.7496 2.4562 3.3041 5.0000

10 Inventory per unit 13.5848 13.6398 13.7252 13.8768 14.2250 16.2572
time per unit time

11
12
13 Total 639.8156

inventory cost
14
15 Total cost 1239.8156
16
17 Batch time 0.5411 <= 1.1198

constraints
18 1.1198 <= 1.7496
19 1.7496 <= 2.4562
20 2.4562 <= 3.3041
21 3.3041 <= 5.0000
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The assignment of fitness to each individual is achieved using the linear ranking methods
whereby individual(s) with the lowest fitness is assigned a value of 2 and individual(s) with
the lowest objective value is assigned a value of 0. The values of other individuals are
interpolated linearly between these two values.

Individuals are selected for breeding using the stochastic universal sampling that has
been shown to have zero bias [2]. Pairs of individuals are then recombined using the in-
termediate recombination operator to produce offspring and mutation is achieved using the
breeder genetic algorithm proposed by Mühlenbein and Schlierkamp-Voosen [9].

The population size, crossover rate and mutation rate are problem dependent. We
note that for each problem the program were run for five times and we observed that the
algorithm converges to the same value over the five runs for all the problems.

To demonstrate the effectiveness of these methods, we present three numerical examples
with different demand function.

Example 1

In this example, the demand rate is linearly decreasing with:

a = 100, b = −20, c1 = 100, c2 = 7.5 & tn(= H) = 5.

For this problem, both GAs and Microsoft Excel Solver found the optimal solutions cited
in the literature [3] whereby we replenish at times 0, 0.5410, 1.1197, 1.7494, 2.4560 and
3.3040, with the minimum total cost of 1239.8156.

Example 2

In this example, we consider a linearly increasing demand rate with:

a = 6, b = 1, c1 = 90, c2 = 1 & tn(= H) = 11.

The GA and Microsoft Excel Solver give the optimal number of replenishment orders as
3 with the corresponding replenishment times at 0, 4.2099 and 7.7915. Both algorithms
found the best optimal total relevant cost of 510.8392 as given by Donaldson [4].

Example 3

This example considers a problem with an exponentially declining demand rate where:

a = 500, b = 0.5, c1 = 30, c2 = 0.2 & tn(= H) = 10.

The optimal results obtained by both procedures are comparable with those found by Omar
et al [11]. The replenishment times are at 0, 0.9165, 2.1424 and 4.0408 with the minimum
total cost of 259.0128.

These numerical results suggest that the genetic algorithm and Microsoft Excel Solver
are able to produce competitive results. The advantage of using the genetic algorithms
and Microsoft Excel Solver is that they are very straight forward to use and can easily
be adapted to accomodate different demand patterns as compared to the existing heuristic
methods.
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6 Conclusions

We have shown that GAs and Microsoft Excel Solver can easily be adapted to solve deter-
ministic inventory problems and in all the examples considered in this paper, both proce-
dures obtained the optimal solutions reported in the literature.

Since most of the deterministic time-varying demand process can be expressed as a func-
tion of ti (see for example [12]), the above procedures can offer a very attractive alternative
solution methods for other deterministic inventory problems.
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