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Abstract A new topic of Zero Energy Building (ZEB) is getting famous in research area
because of its goal of reaching zero carbon emission and low building cost. Renewable

energy system is one of the ideas to achieve the objective of ZEB. Genetic Algorithm (GA)
is widely used in many research areas due to its capability to escape from a local minimal
to obtain a better solution. In our study, GA is chosen in sizing optimization of the

number of photovoltaic, wind turbine and battery of a hybrid photovoltaic-wind-battery
system. The aim is to minimize the total annual cost (TAC) of the hybrid energy system

towards the low cost concept of ZEB. Two GA parameters, which are generation number
and population size, have been analysed and optimized in order to meet the minimum

TAC. The results show that the GA is efficient in minimizing cost function of a hybrid
photovoltaic-wind-battery system with its robustness property.

Keywords Zero Energy Building (ZEB); Genetic Algorithm (GA); hybrid energy system;

generation number; population size.
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1 Introduction

In our daily life, energy is the main supply to many operations like printing, dwelling, cutting,
computing, air conditioning and many others. Total energy demand of residence is increasing
and one of the reasons of this increment is the expanding of population size. In Malaysia, the
energy consumption has increased continuously at the rate of 6.62 percent from 1980 to 2012 as
provided by Chong et al. [1]. However, not all of the generated energy is fully utilized although
the energy demand is high. This excess energy results a energy wastage in the form of heat
which will be released to the environment. Consequently, the problem of global warming arises
if the generated energy is not fully utilized in daily operation.
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The temperature of global land and ocean surface temperature are increasing from 0.65
degree Celsius to 1.06 degree Celsius over the period of 1880 to 2012 [2]. Due to the reasons of
increasing in energy demand, losses of energy and global warming, the concept of Zero Energy
Building(ZEB) is slowly being implemented in new construction building. When there is high
demand of energy, more and more energy need to be produced to supply the energy load.

During the process of energy transportation, energy is lost to the environment as heat energy.
Besides, losses of energy might occur when the energy storage system undergoes charging and
discharging process. Consequently, the total cost of a building is increasing when the rate of
heat loss is high. There are two reasons of this heat loss problem, which is low efficiency of
energy storage system for on-site energy source and high purchase cost for off-site energy source.
Without a good management in constructing a building, the investors might face the problem
of high carbon emission and high construction cost.

According to the fluctuating nature of solar and wind energies, photovoltaic and wind
turbine hybrid systems needs an energy storage. This storage system, i.e. deep-cycle lead acid
batteries will supply the remaining demand once the renewable sources is at the low level of
energy.

Many studies are being carried out to apply the concept of zero energy for new building
design although this concept is still considered as a new idea in most country. Basically the
concept of ZEB is related to source of energy, type of energy source, carbon emission and
investment cost. A study of Torcellini et al. [3] has summarized the concept of ZEB into four
different categories. These four categories are site ZEB, source ZEB, emission ZEB and the
last classification, which also the most important class of ZEB is cost ZEB. Recently, United
States has set a goal of 50 percent of commercial buildings to become zero energy buildings by
2040 and for all commercial buildings by 2050 [4]. In Europe, the government also set a target
that after 2020, all of the buildings in Europe must be built under the concept of ZEB [5]. The
details about the concept of ZEB will be discussed in the following chapter with some literature
reviews.

2 Background of Zero Energy Building and Hybrid Energy System

The concept of ZEB is about the idea of renewable energy system under the objectives of
economical and environmental friendly. According to the study of Hernandez and Kenny [6],
the authors provided a model of achieving an equilibrium level in between the generated energy
from renewable energy system and energy usage of the building which resulted a healthier
environment. Besides, Huat and Akasah [7] designed a ZEB with maximum daylighting and
minimum thermal impact. This optimization of day lighting and thermal impact of photovoltaic
provided a high energy efficiency of the building.

Moreover, climate condition is also one of the main factors in ZEB. In the study of Thalfeldt
et al. [8], energy system and building are designed under the consideration of cold climate to
achieve the concept of ZEB. However, an optimization of investment cost is not included in the
study of Hernandez and Kenny [6], Huat and Akasah [7] and Thalfeldt et al. [8]. As stated
by Pikas et al. [9] and Maleki and Pourfayaz [10], a high energy efficiency and cost optimality
of photovoltaic are the key factors in achieving ZEB. These studies are mainly focused on one
type of renewable energy system only which is photovoltaic. There exits problem of shortage
of energy supply when the climate condition is cloudy. Therefore, our study chose a hybrid
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photovoltaic-wind-battery system as studied by Maleki and Pourfayaz [10] because the result
showed that an optimum sizing of the hybrid photovoltaic-wind-battery system can be achieved
in low cost.

However, there is increasing number of recent studies using Genetic Algorithm in sizing
optimization of hybrid energy system with multiple variables as stated in review paper [11-12].
Studies done by Anoune et al. [13], Gan et al. [14] and Starke et al. [15] are able to obtain
an optimum configuration of energy system in PV/ wind/ split-diesel/ battery hybrid energy
system, hybrid wind-diesel-battery system and hybrid CSP-PV respectively. Hence, Genetic
Algorithm is chosen in our study in sizing optimization the model of hybrid photovoltaic-wind-
battery system of the study of Maleki and Pourfayaz [10] towards the target of cost ZEB.

3 Building Energy System Model

There are many types of energy being used or being generated in our daily life such as electrical,
mechanical, heat energy, wave energy and light energy. A good optimal control of energy
system in a building is important to avoid energy loses and maximize utilization of energy
corresponding to the energy demand of the building in order to achieve the target of cost ZEB.
In this section, a literature on building design models are desired to review and classify into sub-
section of renewable energy systems which are photovoltaic system, wind turbine system and
hybrid photovoltaic-wind-battery storage system. These three components of energy system
have significant effects to the application of ZEB in different combination. The most efficient
group of energy system can be determined by its total investment cost.

3.1 Zero Energy Building Design Model

Recently, many studies were done on reducing energy consumption and minimizing energy cost
towards the target of ZEB. A study done by Pikas et al. [9] focused on saving energy usage and
the result showed that energy saving can be achieved by maximizing the use of electricity within
a building. However, it is challenging to save energy in current buildings design so the existing
buildings might need to be renovated to ZEB since cost saving can be achieved under the
concept of ZEB. Therefore, Pikas et al. [16] carried out another study on building renovation.
The result showed that the pay back from an investment after renovation is approximately
20 years. The renovation cost is very high due to other aspects of renovation fees such as
construction workers fee, existing workers allocation and penalty fee of delayed projects.

Therefore, a new building is recommended to be built under the concept of ZEB to prevent
unnecessary renovation cost in future. By referring to the review of Lu et al. [17], a building
design of ZEB can be summarized into passive design strategies, energy efficiency technologies
and energy generation technologies. The design optimization of ZEB is depending on many
factors because the effectiveness of a building design changes with climate condition and depends
on geographical region on where the building allocation is.

For example, Kolokotsa et al. [18] used a simplified physical simulation model on climate
change data, geometries, building physics, heating-ventilation-air-conditioning system, energy-
generation system, natural ventilation, user behavior and thermal control towards the objectives
of ZEB. The results showed that a simple model is cost efficient than a complex model.
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Therefore, a good selection of mathematical model of the renewable energy systems is important
and will be discussed in the following section.

3.2 Photovoltaic System

Photovoltaic (PV) system is referring to a type of electric current generated by solar radiation
from a solar panel. The ordinary notation of PV is solar PV power system or PV system [19].
From the study of Yang et al. [20], a simplified PV model is used where five parameters
(photocurrent factor, temperature-voltage effect factor, dimension coefficient, series resistance
and ideality factor at a maximum power point) are taken into consideration under the usual
operating condition. These parameters are used to evaluate the performance of PV system.
Generally, the percentage of solar radiation is also influenced by climate change and the
structure of the solar panels because the environmental factors are uncontrollable. Hence,
the uncertainties of weather condition are not considered in our study.

In contrast, Kaabeche et al. [21] focused on PV power generator only where the PV power
generator is dependent on the area of a solar panel plane and its solar radiation on tilted
surface as well as the PV generator efficiency. However, the performance of a PV model is
greatly influence by its temperature. When the temperature of the PV module is increased,
the power generated by a PV module decreases. Therefore, impact of temperature is included
in the PV model of Li et al. [22] and varied from its ideal value during hot climate season. As
we can observe from Yang et al. [20], Kaabeche et al. [21], Li et al. [22] and Wang et al. [23],
solar radiation and temperature of a solar panel are the important factors which need to be
included in a PV model. In the study of Ismail et al. [24] and Maleki and Pourfayaz [10],
both of the authors applied a simplified PV model which included solar radiation, temperature
coefficient and the normal operating cell temperature. The results showed that the PV output
power contributed almost 90 percent of the energy demand due to a high performance of the
PV model and a low unit PV cost. Thus, the simplified PV model is selected in our study and
illustrated in the following equation (1).

ρpv (t) = PR,PV ∗ (R/Rref ) ∗ [1 + NT (Tc − Tref)] (1)

where,
ρpv(t) = power generated by each PV at time t
pR,PV = PV rated power
R = solar radiation
Rref = solar radiation at reference conditions
Nt = temperature coefficient of the PV
Tc = cell temperature
Tref = cell temperature at reference conditions

Some of the parameters values like the solar radiation, is set as 1,000 (W/m2), the cell
temperature at reference conditions, Tref is set as 250C and the temperature coefficient of
the PV, NT is −3.7× 10−3(1/◦) for mono and polycrystalline silicon ([24] and [10]). Lastly, the
parameter cell temperature, is calculated using equation (2).

Tc = Tair +

(

NOCT − 20

800

)

∗ R (2)
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where,
Tair = the ambient air temperature
NOCT = the normal operating cell temperature in ◦C

These two temperature values can be obtained from solar panel manufacturer and declared by
them in the product module. Consequently, the total power generated by PV system can be
computed by using mathematical equation (3).

PPV (t) = NPV × ρρv(t) (3)

where,
PPV (t) = the overall produced power by PV system
NPV = the number of PV system

3.3 Wind Turbine System

Energy produced by wind turbine is depending on wind speed condition as well as the height of
a power towel because deviation of wind speed corresponds to the height of power tower. Yang
et al. [20], Kaabeche et al. [21], Li et al. [22], Wang et al. [23] and Maleki and Pourfayaz [10]
studied the wind turbine system model under three important factors which are power output
curve, wind speed distribution of the allocated wind turbine as well as the power tower height.
Thus, a general wind energy conversion system is dependent on the wind speed distribution
and its power generation efficiency which is:

ρWT (t) =















0 , V (t) < VIN

a((t))3 − bPR , VIN < V (t) < VR

PR , VR < V (t) < VUP

0 , V (t) < VUP

(4)

where
ρWT (t) = Power produced by a wind turbine at time t,

V (t) = The wind speed at time t,
VIN = The low cut speed,
VUP = The up cut speed,
VR = The speed related to nominal power.

Nevertheless, the parameters a and b can be calculated from equation (5):

a = PR,WT/(V 3

R − V 3

IN )

b = V 3

IN/(V 3

R − V 3

IN )
(5)

where PR,WT is the nominal power of wind turbine.
The overall wind turbine energy output system can be illustrated as:

PWT (t) = NWT × ρWT (t), (6)

where,
PWT (t) = The overall produced power by wind turbine system
NWT = The number of wind turbines
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3.4 Hybrid PV-Wind Turbine System

An individual PV or wind turbine system application can reduce the energy cost expenses of a
building. However, Yang et al. [20] stated that a hybrid system of PV-wind turbine proposed
a lower cost than the individual renewable energy system. Moreover, Kaabeche et al. [21] also
introduced a hybrid energy generator system of PV array and wind turbine that satisfied the
load demand according to the system reliability requirements. This is because a reliable hybrid
system is an optimum system configuration in reducing the investment cost. A hybrid solar-
wind system where the wind turbine is built besides the building and solar panels are built
on the building surface while batteries, DC and AC inverters are allocated inside the building.
Then the building can generate renewable energy on site. The excess energy generated by PV
module and wind turbine will be used to charge the battery and discharge to supply the load
demand.

3.5 Battery Bank Model

When there is excess of energy produced by PV and wind turbine system during summer season
or high wind speed weather, battery is used to store surplus energy (under charging status).
Similarly, the battery will supply energy to the load demand when there is less wind or solar
radiation (under discharging status). The charging and discharging process in a battery can
be derived as state of charge of the battery. Therefore, in order to optimize the utilization of
the generated energy towards the goal of ZEB and minimize the investment cost of renewable
energy as well as reduce the carbon dioxide emission, a good battery bank model is needed as
a storage system.

Normally, the battery charging and discharging efficiencies are difficult to be calculated and
these values are set to 1 [20]. However, this is not accurate since energy availability from PV
and wind turbine systems are not consistent. This is because the battery will undergo charging
and discharging status inconsistently due to uncontrollable weather condition. Therefore, the
energy system model used by Kaabeche et al. [21], Askarzadeh [25], Maleki and Askarzadeh [26]
and Maleki and Pourfayaz [10] focused on the state of charge of a battery where the unit of
state of charge are percentage points. The inverse of state of charge is called depth of discharge.
Depth of discharge is another alternative way to describe the state of charge of a battery where
state of charge is not necessarily proportional to depth of discharge. In study of Maleki and
Pourfayaz [10], the depth of charge of battery is set as 0.8. This can be explained as a battery
with 100-unit power but only 80-unit power can be transferred to support the load demand.
Although there are many other factors that will affect the performance of a battery, however
state of charge is the main concern as shown in equation (7) [10].

EBatt (t) = EBatt (t − 1) ∗ (1 − σ)+
[

(

EPV (t) ∗ ηInv + EWT (t) ∗ η2

Inv

)

−
ELoad (t)

ηInv

]

∗ ηBatt, (7)

where
EBatt(t) = The charge quantities of battery bank at time t

EBatt (t− 1) = The charge quantities of battery bank at time t − 1
σ = The hourly self-discharge rate

ηInv = The invertor efficiency
ηBatt = The discharge efficiency of the battery bank
ELoad = The load demands
EWT = Total output of PV
EPV = Total output of wind generators
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Since ηBatt is assumed to be 1, the mathematical battery model can be simplified to

EBatt (t) = EBatt (t − 1) ∗ (1 − σ) +

[

(

EPV (t) ∗ ηInv + EWT (t) ∗ η2

Inv

)

−
ELoad(t)

ηInv

]

(8)

and the values of ηInv and σ are set to 95 percent and 0.0002 respectively.

4 Objective Function

An optimum design configuration of a ZEB is not only depending on the optimal energy system
but also influence by the performance of cost optimality. It is important to consider the cost
when designing a building and a review on the cost optimality towards the target of ZEB will
be carried out in this section.

Based on the study of Kapsalaki et al. [27], the researchers concerned on lowest life cycle
cost and the investment payback period methods where the cost is corresponding to the initial
cost. In another words, the total investment cost to design a building is high if the initial
cost is high such as expensive energy system and building envelope. Due to the reason of high
initial of investment, a good budget planning is needed to prevent timeless capital feedback. In
another study by Pikas et al. [9], the author stated that all the present values of cash outflow
are needed to connect with a period of 20 years such as the cost of windows, wall and solar PV.
The author found that reduce energy consumption of a building is the only way to minimize
the net present value because of lower construction fees on lesser PV are needed. These two
studies have brought up an important message, i.e, to achieve a lower investment cost, estimated
capital cost as well as total annualized costs of a new building construction project has to be
minimized.

Since the uncertainty of weather and climate condition will cause a shortage of energy supply,
a comparison cost of PV system, wind turbine energy system and a hybrid renewable energy
system was done by many researchers in order to acquire a best energy system performance
regarding its total costs. In study of Li et al. [22] and Maleki and Pourfayaz [10], the author
compared the total cost of PV-battery system, wind turbine-battery system and a hybrid of
PV-wind-battery system. The outcome indicated a hybrid PV-wind-battery system is more
cost-effective than an individual PV-battery or wind turbine-battery system.

Consequently, the objective function of our study will focus on total annual capital cost
and annual maintenance cost which is called total annual cost (TAC) of a building as stated in
equation (9) below. Capital cost occurs at the beginning of a project while maintenance cost
occurs during the project life.

minimize TAC = CCpt + CMtn (9)

where,
CCpt = The total annual capital cost
CMtn = The total annual maintenance cost

By referring to study of Maleki and Pourfayaz [10], the lifespan of each battery in the
PV/wind/battery system is assumed to be 5 years and represented by the following equation.

CBatt = PBatt ×

(

1 +
1

(1 + i)5
+

1

(1 + i)10
+

1

(1 + i)15

)

, (10)
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where
CBatt = The present worth of battery
PBatt = The battery prices

i = Annual interest rate

The total annual capital costs and maintenance costs are provided in equations (11) and
(12) respectively ([28], [10]).

CCpt =
i(1 + i)n

(1 + i)n − 1
[NWind × CWind + NPV × CPV + NBatt ×CBatt] , (11)

where
NWind = The number of wind turbine
CWind = Unit cost of wind turbine
NPV = The number of PV
CPV = Unit cost of PV
NBatt = The number of battery
CBatt = Unit cost of battery

CMtn = NPV × CPV
Mtn + NWind × CWind

Mtn , (12)

where
CPV

Mtn = the annual maintenance costs of PV
Cwind

Mtn = the annual maintenance costs of wind turbine

Similar to other optimization method, some constraints are needed to be satisfied which are
the number of wind turbine, PV and battery. The maximum number of PV, wind turbine and
batteries are 200, 200 and 20000 respectively [26].

NPV = Integer, 0 ≤ NPV ≤ Nmax
PV ;

NWind = Integer, 0 ≤ NWind ≤ Nmax
Wind;

NBatt = Integer, 0 ≤ NBatt ≤ Nmax
Batt;

where,
Nmax

PV = The maximum available number of PV
Nmax

Wind = The maximum available number of wind turbines
Nmax

Batt = The maximum available number of batteries

These constraints are modified into a shorter range to reduce the search space and computing
time. This modification is made according to the summary results obtained by different
algorithms in Maleki and Pourfayaz [10] with a minimum two percent loss of power supply
probability. Thereafter, the modified number range of wind turbine, PV and battery are as
follows.

144 ≤ NPV ≤ 165
0 ≤ NWind ≤ 9

1529 ≤ NBatt ≤ 3221
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5 Genetic Algorithm

The basic arithmetic of GA consists of generation, population number, mutation and crossover
operator [29]. Firstly, the population number is a number of possible solutions of the model
which will be evaluated corresponding to the objective function and this is called a fitness
evaluation process. Then the process proceeds with elimination and selection process for
example eliminating poor solution while keeping the better solutions. Lastly, these selected
solutions will be carried forward to the next generation until a stopping criterion is met. The
stopping criterion can be maximum computing time or maximum number of generations. A
general pseudo-code of GA based on the roulette wheel selection is shown as follows [30].

Begin
Initialize the population, P with random number.
Evaluate each individual in P and sort P according to the fitness value.

Repeat
Select individual for reproduction and apply crossover operator.
Evaluate offspring.
Select individual for reproduction and apply mutation operator.
Evaluate offspring.
Select individuals to the next generation.

if
Individual is better than worst individual in P then remove worst
individual from P.

else
Repeat

Until stopping criteria is met.
End

6 Results and Analysis

In this section, all the computational results will be analyzed and discussed. All of the
computation calculation are performed using a laptop of Intel(R) Core(TM) i5 CPU, M 460 @
2.53GHz, 4.00 GB, Window 7, 64-bit operating system and Microsoft Visual C++ Studio 2010
Professional. Firstly, analysis will focus on different setting of genetic parameters to identify
the most optimize genetic parameters on minimizing TAC of hybrid PV-wind-battery system.
Continuously, the best sizing of PV, wind turbine and battery will be list out corresponding to
its minimum TAC. Finally, the performance of GA in our study will be concluded at the end
of this paper.

6.1 Identify the Best Generation Number under Constant Population Size

In this section, the generation number is optimized to prevent premature convergence and
infinite iteration. Based on the experimental results, different population size produced the
different best generation number. A summary can be made to form a range of the best
generation number corresponding to different population size as shown in Table 1. Apart
from 2,000 population size, the setting of maximum generation number must not less than
32,000 but at least 78,000 to ensure the algorithm converges to a good and nearly optimum
solution.
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Table 1: The Best and Minimum Generation Number in GA

Population
Size

Number
of PV
(NPV )

Number
of Wind
Turbine
(NWind)

Number
of Battery

(NBatt)

Average
TAC

The Best
Generation
Number

Minimum
Generation
Number in

GA

100 148 3 1,571 5,5407.26 44,248 45,000
2,000 158 2 1,586 56,023.36 1,441 2,000
4,000 154 5 1,560 58,080.14 77,284 78,000
6,000 156 1 1,581 55,511.14 31,991 32,000
8,000 157 1 1,621 56,914.02 38,587 39,000

Since the largest generation number is 77,284 among the five computation experiments thus,
a minimum generation number of 78,000 must be set in the algorithm. All the experiments
above will be able to reach a better solution provided the minimum generation number is
78,000 regardless of the population size. From this simulation, the best generation number is
77,284 and the best number of PV, wind turbine and battery are 154, 5 and 1,560, respectively.
However, an appropriate population size can increase the efficiency of GA as the outcome might
be a poor solution when the population is large. Hence, a few experiments have been carried
out to identify the best population size in the following section.

6.2 Identify the Best Population Size under Constant Generation Number

Four different simulations at constant generation number of 100, 1,000, 10,000 and 100,000 at
various population size are carried out in this section to determine the best population size by
comparing the minimum values of objective function. The best population size as well as the
computing time will be summarized at the end of this paper.

In summary, the best population size of GA is dependent on the number of generation.
Table 2 and Table 3 show the results of best population size obtained by setting the different
minimum and maximum generation number, respectively. It can be seen clearly that the
solution obtained by setting the minimum generation number are producing the good solution
compared with setting by the maximum generation number.

This indicates that minimum and the maximum points are the key factor that must be
taken into consideration in choosing the best population size. These results are shown in Table
2 and Table 3 below with an additional information of computing time in seconds.

For 100 generation, there is a possibility of obtaining a bad solution if the range of population
size is set in between 100 to 4,500 since population size of 4,200 returned the result to a very
high average TAC value at population size of 4,200, shown in Table 3. Whereas in 1,000 and
10,000 generation, the experiments returned a maximal at population number of 6,100 and
6,200. In this case, a large value of population number which is greater than 6,000 will lead
the search to a poor outcome.
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Table 2: Summary of the Results of Minimal at 100, 1000, 10000 and 100,000 Times of
Generation

Generation
Number

Number
of PV
(NPV )

Number
of Wind
Turbine
(NWind)

Number
of Battery

(NBatt)

The Best
Population

Size

Average
TAC

Computing
Time

(second)

100 150 2 1,617 6,600 54,742.18 10
1,000 150 0 1,557 2,300 54,187.58 16
10,000 303 0 1,555 4,000 54,143.20 431
100,000 144 0 1,529 3,000 5,3031.32 2,352

Table 3: Summary of the Results of Maximal at 100, 1000, 10000 and 100000 Times of
Generation

Generation
Number

Number
of PV
(NPV )

Number
of Wind
Turbine
(NWind)

Number
of Battery

(NBatt)

The Best
Population

Size

Average
TAC

Computing
Time

(second)

100 150 1 2,198 4,200 73,823.22 5
1,000 156 2 1,625 6,100 57,277.98 88
10,000 296 1 1,662 6,200 57,448.46 931
100,000 146 0 1,534 2,100 53,256.42 1,148

Lastly, the best population number for 100,000 generation cannot be too small or too large
because a bad solution will be obtained if population size is small and repeating solutions when
population is large. Therefore, a summary can be made that the population size has to be large
when the generation number is very small and the population size need not be very large for
moderate generation number. Last but not least, a medium number of population is enough
for a very large generation number.

6.3 Comparison of GA with Available Methods

As a further experiment for validating the performance of our GA algorithm, comparison have
been made with the seven other evolutionary algorithms proposed by Maleki and Pourfayaz [10].
The findings from GA can be used as additional information to the study of Maleki and
Pourfayaz [10]. Table 4 reveals the solution obtained from GA and seven other evolutionary
algorithms.

Based on the values of TAC obtained from eight different algorithms, the best number of
PV, wind turbine and battery acquired from GA is 144, 0 and 1,529, respectively with TAC
of 53,031.32. The result showed a zero number of wind turbine which mean PV and battery
are able to provide sufficient energy to the building. It is proven that GA performs better in
minimizing the total annual cost of the hybrid renewable energy system.
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Table 4: The Best Sizing of PV, Wind Turbine and Battery Obtained from GA and Seven
Other Evolutionary Algorithms

Hybrid
System

Algorithm Number
of PV
(NPV )

Number of
Wind

Turbine
(NWind)

Number
of Battery

(NBatt)

TAC

Improved Particle
Swarm Optimization

144 7 1,941 69,169.08

Particle Swarm
Optimization

144 9 2,090 74,356.61

PV-Wind

Artificial Bee Swarm
Optimization

148 5 1,529 56,281.59

Turbine- Tabu Search 148 5 1,529 56,281.59
Battery Simulated Annealing 165 0 3,221 106,140.50

Improved Harmony
Search

144 6 1,876 66,860.57

Improved Harmony
Search-based
Simulated Annealing

144 6 1,635 59,624.13

Genetic Algorithm 144 0 1,529 53,031.32

7 Conclusion

Overall, we believe that the work done in this study contributes positively to scientific
research in minimizing the solution cost of a hybrid renewable energy system towards the
concept of cost ZEB. Since combustion energy release some gases to the surrounding, which
is not environmental friendly, many researchers had done their studies on the performance of
renewable energy system in a building. Recently, some published papers reviewed an idea of
ZEB with the concept of zero carbon emission and low building cost. Then, some researchers
have found that the application of renewable energy can be related to the concept of ZEB [31-
33]. In the study of Yang et al. [20], Kaabeche et al. [21] and Maleki and Pourfayaz [10], the
authors claimed that a hybrid PV-wind-battery system is able to support the energy load of
a building in low investment cost. This low investment cost can be achieved by using suitable
optimization method to optimize the configuration of an energy system.

There are many optimization methods, which can be used to minimize solution cost of
a problem such as steepest descent method, Newton’s method and Gradient search method.
However, heuristic method is used in our study due to its robustness property in escaping the
searching process from local optima. One of the heuristic methods, GA is efficient in minimizing
cost function of a hybrid PV-wind-battery system as published by Koutroulis et al. [34], Bilal
et al. [35], Kalantar [36] and Ramoji and Kumar [37].

By doing the parameter estimation, the application of GA in minimizing TAC of a hybrid
PV-wind-battery system can contribute to the minimum solution cost of construction and
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environment. A low solution cost of a hybrid energy system would be the main interest of
investors in constructing a new building. Besides, the optimization of GA parameters provides
some useful information about the relationship of generation and population number to future
study on the robustness of GA. Based on our study, the result showed that a large number
of generation yields the best solution cost with medium population size. In other word, the
population size is 3% of the generation number. From our study, the best population size is
3,000 when the generation number is 100,000.

7.1 Future Works

This study mainly studied the application of GA in minimizing the cost function without
considering the effect of energy load demand. Therefore, the obtained results of the number
of PV, wind turbine and battery should be used to calculate the total energy that can be
generated. Then, this generated energy is compared with the energy load demand. An optimum
configuration of a hybrid energy system is not only dependent on its cost function but the total
generated energy to support the energy demand of the building.

Moreover, a comparison on solution cost of a hybrid energy system with existing energy can
be made to identify how renewable energy system is more cost-effective than the current energy
system towards the goal of cost ZEB. Since the other objective of ZEB is zero carbon emission,
this study can be further expanded to identify the carbon emission of the hybrid PV-wind-
battery system. This information can support the effectiveness of the hybrid energy system
towards the target of ZEB. This is because, environmental issue will be the main concern in
future study corresponding to global warming issue, increases of energy demand and depletion
of existing energy.
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a hybrid solar–wind-battery system using the minimization of the annualized cost system
and the minimization of the loss of power supply probability (LPSP). Renewable Energy.

2010. 35(10): 2388-2390.



Farhana Johar et al. / MATEMATIKA: MJIAM 36:3 (2020) 235–250 250

[36] Kalantar, M. Dynamic behavior of a stand-alone hybrid power generation system of wind
turbine, microturbine, solar array and battery storage. Applied energy. 2010. 87(10): 3051-
3064.

[37] Ramoji, S. K. and Kumar, B. J. Optimal economical sizing of a PV-Wind hybrid energy
system using genetic algorithm and teaching learning-based optimization. International

Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering.

2014. 3(2): 7352-7367.


