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Abstract This paper discusses the effect of errors in prior estimates on the effi-
ciency of the D-optimal design used for estimating the parameters of a nonlinear
regression model. The performance of the local D-optimal designs produced are
evaluated by comparing their respective efficiencies of estimation , E (%). It was
discovered that the D-optimal design is exceptionally robust to a wide range of
initial parameter values and that over-estimating the parameters would consis-
tently produce a more efficient design than under-estimating them by the same
quantum.
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Abstrak Kertas ini membincangkan kesan ralat dalam anggaran prior ke atas
kecekapan rekabentuk D-optimum yang digunakan bagi menganggar parameter
suatu model regresi tak linear. Pencapaian rekabentuk D-optimum tempatan
yang terhasil dinilai dengan membandingkan kecekapan penganggaran, E(%)
masing-masing. Kajian mendapati bahawa rekabentuk D-optimum amat teguh
terhadap nilai awal parameter dalam satu julat yang lebar dan terlebih anggar
parameter akan menghasilkan secara konsisten rekabentuk yang lebih cekap dari-
pada terkurang anggar dengan ‘quantum’ yang sama.

Katakunci Anggaran prior, Kriteria, Varians Teritlak, D-optimum , Keceka-
pan
1 Introduction
Consider the univariate nonlinear response surface model
yr = n(zg,0) +ex, k=1,2,....n (1)

where r is an input variable; @ is a vector of unknown parameters and ¢ is a random error.
It is well known that the design problem for such a model is to obtain an n—point design
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£ to estimate some function of the p—dimensional parameter vector # with high efficiency.
In this paper we shall consider a continuous or approximate design & , represented by the
measure

where the design points or vectors x1, x2, . .., x, are distinct elements of the design space Y,
for r>p ( Atkinson [1]). The associated weights wy,ws, . ..,w, are nonnegative real numbers
which sum to unity and each wy, = =%; k = 1,2,...,r, without the restriction of nj being
an integer as proposed by Zocchi and Atkinson [9]. The optimal design problem is therefore
consist of the choice of the pairs (z,nk), k =1,2,...,7 in the design space ¥, subjected to
a specific criterion.

When the errors associated with the model (1) are assumed to be uncorrelated Gaussian
random variables with zero mean and constant variance o2, taken to be equal to one without
loss of generality. The Fisher information matrix for the design £, given the parameter value
0, is represented by

" 0 xi,ﬁ 0 a:l-,O
M) = w; 77(89 ) "éeT ) _ prop 2)

=1

where F is the 7xp Jacobian of n with the i*" row equal to the gradient W of the

response function at the point z; and Q is the diagonal matrix with diagonal elements
W1,W2, ..., Wpr.

Optimal designs typically minimize some convex function of the inverse Fisher infor-
mation matrix. Box-Lucas [2] constructed optimal designs for precise estimation of the
parameters of nonlinear models by using the D-optimality criterion. The D-optimality
criterion seeks to minimize the generalized variance or the determinant of the first order
variance-covariance matrix M ~1(&, 0*) where 0* is the vector of initial parameter estimates.
The experimental designs that minimize the determinant of M ~1(£,0*) are referred to as
continuous local D-optimal designs. Here, “D” stands for the determinant of M ~1(¢,0*)
associated with the model and the design is said to be local D-optimal because it is optimum
only for the chosen set of initial values, 6*.

It is common knowledge that the procedures for estimating the parameter of any non-
linear models is not straightforward as for its linear counterpart. In order to progress,
one has to provide a set of good and reliable prior estimates 8* for the parameters 6 that
one is supposed to estimate. As a result, experimental designs produced by optimizing an
appropriate criterion will undoubtedly vary with different choices of values for the initial
estimates and this, in turns, may affect the precision of the resulting parameter estimates.
In this paper, we present both the theory and numerical examples to highlight the effect of
uncertainty in prior estimates on the performance of local D-optimal designs for estimating
the parameters of a selected nonlinear model.



Robustness of D-optimal Design To Prior Parameter Estimates 111

2 The Underlying Model

Throughout our investigation, we shall consider generating local D-optimal designs in which
the response is to be modelled by the one-factor inverse quadratic polynomial

- x>0
= + € Og, 02>0 3
Yk 6‘0 + 91£L7g + 921‘% k EON ]2\[(07 0_2) ( )

which was first introduced by Nelder [8].

The family of inverse polynomials has been known to be extensively used in biological and
agricultural investigations to describe the relationship between some responses to various
stimuli (see Cousens [4], Mead [7], Large et al. [6], and Cobby et al. [3] ). The model
(1) has a non-symmetric optimum, allowing the response to rise to a maximum and then
falls steadily to a zero asymptote. Such an appealing feature makes the quadratic inverse
polynomial a more practical representation than the ordinary linear quadratic model.

3 Design Efficiency
By taking the first order information matrix M (&, 6), Kassim [5] has shown that continuous

local D-optimal designs for estimating the parameters of the quadratic inverse polynomial
(1) is given by the measure

where
o
To = — =TT, T3 =TTy
02
and the geometric ratio
01
r=f(B), B=

NCY2R

In other words, the D-optimality criterion gave rise to designs consisting of three dis-
tinct geometrically-spaced points each with equal number of replication and the number of
distinct design points were found to be equal to the number of parameters p in the model.
So using these results, we have for the assumed model, r = p = 3.

Let M(£,0) = (my;),i=1,2,3; j =1,2,3 then

i+j 3

WETy,
—_— where wp =1
ij ; (0o + 0121 + 9211%)4 l; '

Hence,

[M(&,0)| = (m11maamas + 2mi2maamagz) — (m§2 + mf2m33 + m§3m11) 4)
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Now, by letting ay = 09 + 01xx + 92,%% we have

IME 0 = ( ) ZZZ i atay + 2wafa], — wivie]—
7 (Oéza]ak) xl:vjxi - :c3x3
z#J#k
n3x12r4(r _ 1)6(1" + 1)2
27(00r2 + Oraar + O222) 0l (0g + O1 a7 + O222r2)3
n3xd2rt(r — 1)5(r +1)2

- 27[(1 + 72)0p + 012278 (200 + O122)* )
Therefore,
_ 27[(1 + ’I”2>90 + 91$2T]8(290 + 91172)4
M= 0) =
| (57 )| n3$%2r4(,’a _ 1)6(,r. + 1)2 (6)
and
_ 27[(1 + 1765 + 07 2or*]8(205 + 07 a20)*
1/ex px\| 0 1 0 1
|M™(E,607)| = m3x A (e — 1)5(r* + 1)2 @
where
A GO

Following Silvey [9], we can compute the efficiency of design £* relative to design &
for estimating the model parameters by calculating the cubic root of the ratio of the D-
optimality criterion for the two designs applied to the true model respectively. Therefore,
the D-efficiency of design £* relative to £ is given by

(g N
£~ () *100% w

Also if we let let §;,4 = 0,1,2 such that |§;|<1 represents an error in 6;, then the prior
parameter estimates can be written as

0r = (1+6,)6;.

Using these notation, we have the following theorem,

Theorem

For the one factor quadratic inverse polynomial model given in (1), the effect of varying 6§
and 65 on the efficiency of estimation is the same regardless of 07.

Proof:

The proof is of two parts.
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(i) Let dp = § and without loss of generality, o = 0. Then, from (7) we have

27A¢ByCy

E&o = ‘Mﬁl(g*ae*”(;o 7’L3D0 (9)

where
Ag = {(1 412+ )00 + 012071 VT + 614, By = {(6 +2)00 + 0120/1 + 6 }*
Co={(1+ Tf2 + 51"{2)90 + 0122731+ 0}, Do = {(1+ 50)6x%2rf4(r1‘ —1)5(ry +1)2

and

1+6
i =f(B7) and B} = <\/1++—15>6

(ii) Let 62 = ¢ and without loss of generality, dp = 0. Again, from (7), we have
27A5BoCo

_ —1/¢* *
Bs, = [M7HE 005, =55, (10)
where
Ay = {2+ (1 +6) b + (14 0) 2012917} = (1 + 6)4Cy
By = {(1 + (1 + 6)_1)90 + 01xav1 + 6}4 = (1 + 5)_430

Co={(1+ (1+68)"1rH00 + (1 +08) 2012017} = (1+0)"* 4
Dy = (1+80)S2P2ri*(r; = 1)S(r; +1)2 = (1 4+ 6) 712Dy
Hence, from (9) and (10), it follows that

o 27A23202 27AQBQCQ

Es, = |M_l(§*79*)|52 = 13D, = 13D, = |M_1(§*79*)|50 = L5,

Thus, by varying d; accordingly, we shall be able to have a set of prior estimates for
parameter 6; and whence generate the required local D-optimal designs. The D-efficiencies
of the resulting designs will be investigated and compared.

4 Results and Discussion

By carrying out successive numerical minimizations of the D-optimality criterion on the
computer, we obtained the required local optimal designs. Table 1(a,b) show the corre-
sponding local D-optimal designs generated for various values of 0* = (6§,07,05) while
Table 2 shows the corresponding D-efficiencies, E(%) calculated by varying 6* when the
true parameter values are assumed to be 6 = (4,1, 1).

It is clear from Table (1) and Table (2) that the D-optimal designs obtained are quite
robust to errors in the initial choices of the parameter values and this is especially true for
0,. Intuitively, this phenomenon can be explained by the fact that 6; is known to be the
least important parameter in the model since its main function is only to jointly govern the
height of the response surface.
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Table 1: Local D-optimal designs constructed by varying 6; and 05 when the true values
are 6 = (4,1,1)

Ik 3 o

oy | (5 TSI v | [ O 22 05
paan | { D0 10 S | | {0 2 3:333}
saan | {630 0o o3} | ares | {05 220 T )
aoan | {638 05 oo L anes| {0 2 T )
aonn | {63 o068 o3} [aano| {03 oo oo )
aann | {095 oo b2 Laaan | {03 oo s )
s | {00 200w | gy | {05 L sart )
saan | {05 20 vae } L | {03 b0 o )
oor | {63 S 5 ) o | {535 080 35 )

Table 2: Local D-optimal designs constructed by varying 67 when the true values are
0=(4,1,1)

- 7 ;

(4,0.5,1) {gggg gggg 1()0333238} (4.1.11) {gggg égg; gggg}
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aoon) | {00 bams bama b | @isn | {05 o oo )
aron | {055 0% oam |
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Table 3: Efficiencies (%) of the local D-optimal designs constructed by varying 6* when the
true values are 6 = (4,1, 1)

0:(%) 0* Es, 0* Es, 0* Es,
—50 | (2.0,1,1) | 70.86 | (4,0.5,1) | 98.84 | (4,1,0.5) | 70.86
—30 | (2.8,1,1) | 91.17| (4,0.7,1) | 99.60 | (4,1,0.7) | 91.17
—20 | (3.2,1,1) | 96.43 | (4,0.8,1) | 99.83 | (4,1,0.8) | 96.43
—-10 | (3.6,1,1) | 99.19 | (4,0.9,1) | 99.96 | (4,1,0.9) | 99.19
0| (4.0,1,1) | 100.00 | (4,1.0,1) | 100.00 | (4,1,1.0) | 100.00
10 | (4.4,1,1) | 99.34 | (4,1.1,1) | 99.96 | (4,1,1.1) | 99.34
20 | (4.8,1,1) | 97.58 | (4,1.2,1)| 99.83 | (4,1,1.2) | 97.58
30| (5.2,1.1) | 95.04 | (4,1.3,1) | 99.62 | (4,1,1.3) | 95.04
50| (6.0,1,1) | 88.53 | (4,1.5,1) | 99.00 | (4,1,1.5) | 88.53
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Figure 1: Plot of Efficiency (%) Against Error.

Table 3, on the other hand, reveals the fact that errors in prior estimates of both 6y and
02 for the model have equal effect on the resulting design efficiencies and this is in total
agreement with the theorem proven above. A close examination of the entries in Table 3
and also the plot in Fig.1 clearly show that over-estimating the parameter values would
consistently produce designs with higher D-efficiencies than under-estimating them by the

same quantum.
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5 Conclusion

Although D-optimal designs were found to be exceptionally robust to a wide range of initial
parameter estimates, one however should pursue a good and reliable set of initial estimates
as one possibly can. As far as the quadratic inverse polynomial model is concerned, acquiring
good prior estimates is possible if one knows at the outset the stimulus level at which the
maximum response lies as well as the maximum value and the slope of the response curve
at zero stimulus. Undoubtedly, such prior information can be utilized to obtain good prior
estimates for the unknown model parameters.
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