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Abstract Numerous studies have linked biodiversity with zoonotic disease control.
However, researchers have warned against simply believing that the increase in biodiversity
can reduce infectious disease in the community (i.e. the dilution effect). They proposed
that the amplification effect (increase in biodiversity accompanied by an increase in disease
prevalence) might sometimes occur. In this study, we formulated a deterministic model
to consider the impact of an amplification or dilution agent on the SNV transmission
in the deer mouse population. Bifurcation analysis was carried out to examine the
combined influences of the environmental carrying capacity, the interspecific competition
strength and the impact of amplification or dilution agent on the deer mouse population.
Our results showed that the system with amplification agent required a higher carrying
capacity or stronger interspecific strength to compensate for its amplification effect in
suppressing the SNV prevalence. This observation may explain some of the empirical
observations which noted the lack of reduction in SNV prevalence despite the high
species diversity observed at those sites. To conclude, we highlight the importance of
investigating the roles played by the other species in an assemblage to better understand
their relationship with the SNV prevalence in deer mouse population.

Keywords Sin Nombre Virus (SNV); Biodiversity; Amplification effect; Dilution effect;
Bifurcation.

Mathematics Subject Classification 97M10.

1 Introduction

The importance of biodiversity has been a significant issue in disease ecology over the years.
It is believed that biodiversity effect can determine the spread of infectious disease in the
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ecosystem, for example, the vector-borne Lyme disease [1]. However, the mechanism behind
this principle is rather complex and may differ between the type of diseases. The effect of
biodiversity on the zoonotic ecological system can be generalized into either the “dilution effect”
or the “amplification effect”. The dilution effect is said to occur when the presence of additional
species or an increase in species richness reduces the prevalence of the disease; the amplification
effect is observed when the increase in diseases prevalence is accompanied by an increase in
diversity [2]. Hence, Randolph and Dobson [3] warned against jumping on the bandwagon of
biodiversity protects against disease without further investigation on the mechanism behind it.
They highlighted the occurrence of dilution or amplification effect is likely dependent on the
specific community composition instead (refer to [4] for a case study example on hantavirus).
Interestingly, the occurrence of both dilution and amplification effects may occur concurrently,
as observed in [5], in the deer mouse population, which is a host for the Sin Nombre virus
(SNV). The authors managed to observe a reduction in the deer mouse density (dilution effect)
as well as an increase in transmission rate of the hantavirus within the deer mouse population
(amplification effect) when small mammal diversity increases. Their study concluded with the
occurrence of a net dilution for the SNV prevalence as the dilution effect was the larger of
the two effects. To better understand the dynamics of such occurrence in the deer mouse
population, we formulated a deterministic mathematical model based on the work of [6] and [5]
and postulated that the carrying capacity of the assemblage and influences of the interspecific
competition strength could have effects on the multi-species community compositions.

Before the model is presented, a brief introduction about hantavirus disease, particularly
on SNV, would be given to understand the traits of the virus and the reasons why the
proposed model was constructed as such. Hantavirus is a genus virus of the Bunyaviridae
family. Humans, whom had contact with the saliva, urine and excreta of the hantavirus
infected animals, may develop hemorrhagic fever with renal syndrome (HFRS) or hantavirus
pulmonary /cardiopulmonary syndrome (HPS/HCPS) depending on the virus strain [7]. HPS
has around 40% mortality rate in humans, and SNV, which is primarily hosted by deer mouse,
Peromyscus maniculatus, is one of the virus strains that caused HPS [8]. Following the HPS
outbreak in the Southwest United States in 1993, numerous studies, both theoretical and
empirical, have been carried out to better examine the relationship between the prevalence
of SNV and the deer mouse population [9-11]. SNV is a lifelong infection in the deer mouse
[12] and is transmitted horizontally through aggressive encounters between the rodents [13].

Following the footstep of the observed dilution effect on the Lyme disease, several
observational and experimental studies have been carried out to investigate the impact of
biodiversity on the non-vector borne SNV prevalence in the deer mouse population [5, 14-17].
While these studies managed to observe the dilution effect, the mechanisms that affect the
spread of this disease differ between them. Some observed a reduction in host density while
others observed a decrease in encounter rate (which directly influences the disease transmission
rate) following the increment of species diversity. As such, we hope our proposed mathematical
model would provide further insights into these contrasting observations.

2 Proposed Model

For simplicity purpose, the proposed model would describe the effects of a non-host species onto
the SNV prevalence in the deer mouse population (a non-host species is defined as a species



L. W. F. Lee and M. H. Mohd / MATEMATIKA 36:2 (2020) 89-98 87

other than the deer mouse which would not be infected by the SNV). This model was inspired
by Peixoto and Abramson’s “single host, single non-host” (abbreviated as PA model) approach
[6] and Luis et al. density-dependent restricted population growth SI model (abbreviated as
Luis model) [5]. Before the proposed model is introduced, the Luis and PA models would be
briefly discussed to give the readers an idea on what they described.

The Luis model was formulated to study the dynamics of the long-term SNV persistence
among the deer mouse population [18]. In this endemic model, there is an immigration of SNV
infected deer mouse into the system, and the SNV can induce death among the deer mouse.
The following depicts the mathematical descriptions of the Luis model.

s N

dl N
— =p0SI—-1 d+ (1 — —
G =811 (s =0y ) o
where S' is the susceptible deer mouse, [ is the infected deer mouse, N is the total deer mouse
population (N = S 4 I). The descriptions for the rest of the parameter can be found in Table 1.

(1)

Table 1: Descriptions of the Parameters in the System (1)

Parameters Descriptions
b Birth rate of deer mouse
d Death rate of deer mouse
r b—d

The proportion of density dependence due to density dependence

¢ in birth rates

I Disease-induced mortality rate
K Carrying capacity

I} SNV transmission rate

0] Immigration rate of

Note: Readers can refer to [5] for more details of the model and parameters

To account for the biodiversity effect, the PA model describes the SNV prevalence in the
presence of a non-host species. Unlike the Luis model, the PA model studies the rapid short-
term outbreaks(epidemic state) of SNV prevalence in the presence of a non-host species. The
PA model was constructed by combining the Lotka-Volterra two species competition model with
Abramson and Kenkre model [11], which describes the epidemic state of the SNV prevalence
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in the deer mouse population. The PA model is as follows.

s SS+I1+q2)

. —b(S+1)-diS 7 aST

dl I(SHT1+qZ)

— = —diI — I 2
o d; i, +aS (2)
dz ZZ+q(S+1)]

i =byoZ — dy 7/ e

where S, I and Z represent the susceptible deer mouse, infected deer mouse and non-host
population. The description of the other parameters is presented in Table 2.

Table 2: Descriptions of the Parameters in the System (2)

Parameters Descriptions

b1 The birth rate of deer mouse population

dy The death rate of deer mouse population

K, The carrying capacity of the deer mouse population

a The SNV transmission rate among deer mouse population

bo The birth rate of the non-host population

ds The death rate of the non-host population

Ky The carrying capacity of the non-host population

0 The interspecific competition strength exerted by the non-host
population onto the deer mouse population

Q2 The interspecific competition strength exerted by the deer mouse
population onto the non-host population

To construct the proposed model, a non-host species is introduced into the Luis model.
This idea is similar to how PA model was formulated. Unlike the PA model, the proposed model
allows the non-host to have a direct influence on the SNV transmission rate. This effect was
incorporated to account for the observed transmission rate increment along with the increasing
small mammal diversity (see [5]). We believed it was a sensible choice as the additional species
may act as the dilution or amplification agent [2].

The proposed model is as such

s N N
dgz =N {bl—arl (ﬂ)} — My {dl%—ﬁ (1—a) (ﬂ)} — (1 +d2) mgmy

K1 Kl
i N
dgz =5 (1+90z) msm; —my {,u%—dl%—rl(l—a) (ﬂ)} (3)
d—z—r 1_72+q2N z
at '’ K,




L. W. F. Lee and M. H. Mohd / MATEMATIKA 36:2 (2020) 89-98 89

where N = mg 4+ m; is the total density of the host individuals, mg is the density of the
susceptible individuals, m; is the density of the infected individuals and z is the density of the
non-host individuals. The descriptions for the rest of the parameters are presented in Table 3.

Based on our literature findings, we observed that the presence of the non-host could
influence the disease transmission rate. However, we were uncertain whether the influence
acted on the encounter rate of the host or on the probability of transmission. Clay et al. [19]
observed a decrease in contact rates along with an increase of species diversity, while Rubio et
al. [20] did not find any change in the encounter rate in their experimental study. Luis et al.
[5] hypothesized the change of the disease transmission rate might be due to the probability of
transmission or immunity of the host, as Brenner and Moynihan [21] observed that stress could
induce a decrease in the immunity of the host. Thus, we chose to express the transmission rate
with v (1 4 §z) where we believed the density of the non-host affects the host transmission rate
with a proportional constant §.

We shall present 2 case studies for this model. The first case study considered the non-
host has a relatively weaker interspecific strength than the host species and does not influence
the transmission rate, e.g. the desert pocket mouse, Chaetodipuspenicillatus. The second
case was to consider the non-host has a relatively stronger interspecific strength compared to
the host and has a direct effect on the transmission rate, e.g. the Merriam’s kangaroo rat,
Dipodomysmerriami [20]. The latter case’s belief was based on Rubio et al.’s findings on the
avoidance behaviour of the deer mouse from the Merriam’s kangaroo rat and the hypothesized
stress increment due to the presence of a larger body Merriam’s kangaroo rat which may
indirectly influence the transmission rate. For abbreviation purposes, we shall term the non-
host in case study 1 as a dilution agent and as an amplification agent in case study 2 for the
rest of this paper.

2.1 Choice of Parameter Value

In order to make sense of the parameter value in ecological point of view, we shall limit the
values of by, by, dy, do, a, Ky, Ko, ypu > 0, 0 < q1, g2 < 1 (to ensure the existence of both
species, see [23] Table 1) and § > 0 in this study. For the choice of the parameter values chosen
for both studies, please refer to Table 3.

3 Results

By setting the left-hand side of the equations in the system (3) to zero, we would then obtain
the critical points. Due to the difficulty to solve the system analytically, we relied on the
mathematical software, Maple 2016, to obtain the solutions. We obtained eight critical points
(mg*, m;*, z*) in total.Out of the eight points, there were three negative solutions, one trivial
solution, two solutions of either species goes extinct, one solution where the susceptible deer
mouse coexists with the non-host, and a solution where the susceptible, infected and non-host
coexisted. By solving system (3) with K; = 20and K> = 15, the population density versus
time plots are as shown in Figure 1.

Although both cases have the same carrying capacity, we noted that the population density
of the infected is much higher in the case of the amplification agent (Figure 1(b)) compared
to the case of the dilution agent (Figure 1(a)). This is indeed what we have expected as we
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Table 3: Descriptions and the Values of the Parameters in the System (3)

90

Parameters | Descriptions Parameter Value
Case Study 1 | Case Study 2

K The carrying capacity of the host. 20

Ky The carrying capacity of the non-host. 15

. The net density dependent growth rate 31496 x 10~
for the host, by — d;.

by The density dependent birth rate for 0.315°
the host.

I The disease induced mortality rate. 0.085*

dy The death rate of the host. 3.66 x 102

” The interspecific pressure exerted by 0.2 0.4
the non-host onto the host.
The proportion of density dependence

a due to density dependence of the host 0.614*
in birth rates.

- The net density dependent growth rate 39996 x 10~
for the non-host, by — ds.

b The density dependent birth rate for 0.4

2 .

the non-host.

do The death rate of the non-host. 4.0 x 107°P

q The interspecific pressure exerted by 0.3b

2 the host onto the non-host. '

Initial disease transmission rate of the

v host without the influence of additional 0.0130°¢
species.
Proportional constant of the disease

) transmission rate with the non-host 0.05434
density.

*The values were based on [22].
PThe values for ¢1, ba, do and ga were assumed due to the lack of data. However, we chose values that were
closed to the deer mouse by assuming the non-host is of a similar rodent species.

-1
R

¢~y was estimated by regressing the Simpson’s D diversity index, D = (Z pf) , where p; is the proportion
i=1

abundance of species i, and R is the small mammal species richness against the transmission rate, 8 in [5]
Table 1, with suppressed constant. Thus, 4 = 0.0130 by setting D = 1.0, where D = 1.0 indicates the
presence of the host species only/absence of species richness (refer to Table 4 for the detailed regression
result).

dTo estimate & for case study 2, we assumed the community consisted of 2 species only with deer mouse
density being more abundance than the Merriam’s kangaroo rat by a 3:2 ratio (estimated from the capture
rate of the empirical study in [14]) and the Merriam’s kangaroo rat density has a round up value of z = 17,
which was estimated from the deer mouse density of 26 (rounded up value of 25.65) in Cascade.11, Montana

in [5]. By solving D = (0.62 +0.42) "' = 1 + 6z, we obtained § = 0.0543.
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Table 4: Regression Result of Simpson’s D Diversity Index against Transmission Rate.

Transmission Coofficient Standard ¢ statistics | p-value 95% Confidence
Rate Error Interval
Simpson’s D? 0.0130 0.0015 8.43 <0.001 (0.0097, 0.0162)

#The regression was carried out with the 18 observational data from [5] Table 1 with the constant
variable being suppressed.

hypothesized the inclusion of any non-host into the deer mouse dynamical system will not
always cause a dilution. It should also be noted that a non-host with a higher “strength” of
interspecific competition with the host population may not always be effective in suppressing
the prevalence of infection without further exploring its impact on the ecological behaviour of
the host population, and at times, a non-host with a relatively “lower” interspecific competition
strength may serve as a better diluting agent in suppressing the infection.

To further explore the dynamical system (3), bifurcation analysis up to co-dimension two
was carried out primarily on K7, K5 and ¢; for both case studies. The bifurcation analyses were
all done through XPPAUT’s AUTO, and the co-dimension one bifurcation plots can be found
in Figure 2, while Figure 3 shows the co-dimension two bifurcation diagrams.

C.ellse. Study 1 Case Study 2
201 (Dilution Agent) 20 (Amplification Agent)
41=0.2,92=0.3 q1-0.4,92-0.3
) z
W w
& 157 T 151
a o
= =
2 S
® k]
= 101 = 10+
(=3 =N
g g
5' 5./
] 2I0 4.0 6.0 SIO 1 (I][] 0 2lC| 4.0 6.0 8.0 1 (.J[]
Time Time
|— Infected Susceptible Non-host| [—— mnfected Susceptible Non-host|
(a) (b)

Figure 1: Population Density Versus Time Graph for Case Study 1 (a) and 2 (b) with K; =
20 and Ky = 15, where the Infected Population Stabilised at 1.85 in Case Study 1 and 4.45 in
Case Study 2

3.1 Co-dimension 1 Bifurcation Analysis

In Figure 2(a), there were two steady states for both cases. The horizontal line at m; = 0
represents the stead ystate where the infected population is absent while the other represents
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the growing presence of the infected population steady state. Transcritical bifurcation was
observed at the intersection between these two lines as the stable steady state at m; = 0 was
switched to the growing presence of the infected population stable steady state. This indicates
that a certain threshold of the host’s carrying capacity needs to be attained for the infection
population to exist in the system. In case study 1 (dilution agent), the threshold K p was larger
compared to case study 2’s K7 o (amplification agent). This indicates that it is easier for the
infected population to exist in the presence of the amplification agent although its interspecific
competition strength is stronger than the dilution agent (amplification agent’s ¢; = 0.4 >0.2).
When K has reached >60, the stable steady state of the growing infected population for both
case studies converged and resulted in similar infected population for the value of K; beyond
that. Hence, we may conclude that the role of the non-host maybe irrelevant on the infected
population when the carrying capacity of the host is enormous given that the other parameters
were kept at the values presented in Table 3.

40
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Figure 2: Co-dimension 1 Bifurcation Diagrams of Kj(a), K3(b)andg(c) for the Infected
Population, m;, where “D” Refers to Dilution Agent (Case Study 1) and “A” Refers to
Amplification Agent (Case Study 2)
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For the bifurcation analysis on K, (Figure 2(b)), there were 3 steady states and 2
transcritical bifurcation points in the system. Based on Figure 2(b), case study 1 and 2 shared
the same first transcritical bifurcation point, Ky p;. This indicated the effect of a dilution agent
and an amplification agent is the same in affecting SNV prevalence if the carrying capacity of
both dilution and amplification agents are below the critical threshold K5 p;. However, the
infected population density behaved differently between case study 1 and 2 when Ky > K p;.
For case study 1, the infected population started to decrease after Ky > Ks p; and eventually
went extinct at the second transcritical bifurcation point, K3 ps. On the other hand, the
infected population momentarily increased in the range of Ky p1 < Ky < Ky 41 and then
decreased towards the extinction point at Ky 49 for case study 2. We hypothesized that this
observed momentary increase represents the amplification effect of the amplifying agent. When
the carrying capacity of the amplifying agent is not relatively large enough(Ks < Ks 41), the
infected population might not decrease. In the worst case, the presence of the amplifying agent
will in turn promote the increment of the infected population when Ky p; < Ky < Ky 4.
This phenomenon is rather counterintuitive to the idea of biodiversity protects against disease
transmission. Hence, this provides support to our hypothesis that the role played by other
species in the species assemblage is crucial in subduing the infection prevalence.

In Figure 2(c), both case studies had 2 steady states and only experienced 1 transcritical
bifurcation. The infected deer mouse population for both cases started to decrease across ¢;
and eventually went extinct after the transcritical bifurcation point, ¢; p for case study 1 and
q1,4 for case study 2 respectively. However, the interspecific competition strength required by
the amplification agent for driving out the infection was around twice the strength required by
the dilution agent; thus, highlighting the efficiency of suppressing the infection lies within the
role played by the other species.

3.2 Co-dimension 2 Bifurcation Analysis

By extending the analysis from the transcritical bifurcation points in Figure 2, we were able
to obtain the co-dimension 2 bifurcation diagrams as shown in Figure 3. In the diagrams, the
area between the lines corresponds to the stable steady state of the system for some particular
choice of parameters; for example, by choosing K; = 10 and Ky = 15 in Figure 3(a)(i), this
corresponds to the absence of infected population stable steady state; and if we increase K to
20, the system will experience a transcritical bifurcation and the stable steady state will switch
to the presence of infected population.

By comparing Figure 3(a)(i) and (ii), we can see that the absence of the infected population
region has been significantly reduced as the line separating the absence and presence of the
infected population stable steady state has curved to the left for the amplification agent case.
This indicates that it is easier for the infected deer mouse to exist if the non-host species is an
amplification agent compared to a dilution agent. This can be seen from the narrower region
for the absence of infected population stable steady state in Figure 3(a)(ii) compared to Figure
3(a)(i). Similarly, the line between the absence and presence of infected population stable
steady states in Figure 3(b)(ii) was shifted to the left. This resulted in a narrower infection-
free stable region, and a much stronger ¢ is required for the amplification agent to compensate
the growing K compared to the dilution agent. In Figure 3(c)(ii), the line between the absence
and presence of the infected population stable steady states has shifted upwards compared to
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Figure 3(c)(i). This indicates that the dilution agent would only require a lower combination of
values of K5 and ¢; to suppress the infection prevalence as opposed to the amplification agent.

In summary, our bifurcation results have shown that a dilution agent is much more efficient
in subduing the infection population despite its ¢; is relatively lower than an amplification
agent. Thus, it is important to investigate the relationship between the host and other species
when the subject of suppressing infection is of concern.

4 Discussion

From the above results, we observed that the role played by the non-host species (as
amplification or dilution agent) is equally important as the carrying capacity and the
interspecific competition strength of both deer mouse and non-host species in regulating the
SNV prevalence. Our results in Figure 2(a) match with Dearing and Dizney [24] findings. They
found that climate change, e.g. El Nino, or even a small-scale climate differences [25] is likely to
enhance the hantavirus prevalence due to the increase in food availability (carrying capacity) for
the host population. Furthermore, our investigations on the interspecific competition strength
and the role played by the non-host species in the host population may shed some light onto
the observed insignificant change in infection prevalence for site 2 — 5 in [14] and the Montana
site in [5], despite the presence of high species diversity (indicated by the Simpson index) in
those sites. Our results have shown the non-host species as the amplification or dilution agent
has dire effects on the host dynamics and a richer biodiversity may not necessarily give rise to
a dilution effect but rather the identity of the assemblage species is more crucial in determining
such effect [20], e.g. Clay et al. [16] observed that pinyon mice may act as the dilution agent (its
population density has a negative relationship with the SNV prevalence) and the kangaroo rats
may be the amplification agent (its frequency has positive relationship with SNV prevalence),
and Galindo and Krebs [26] observed neither meadow voles nor red-backed voles competitive
interactions have any influence on the habitat use and relative abundance of deer mice in the
southwestern Yukon.

Our study has a few shortcomings as we only considered non-host species in our theoretical
model. Other researchers managed to observe other Peromyscus species [27] or desert woodrat
[28], serving as secondary reservoirs to SNV. The presence of secondary host may not necessarily
amplify the disease prevalence, and surprisingly, it may serve as a dilution agent, depending
on its quality in disease transmission [29]. Perhaps the generalized mathematical model on
disease transmission between the population of two host species, proposed in [23], can be of
use to describe such phenomenon. Besides that, we did not consider dispersal effect in our
model. In an ecological study conducted by Mohd et al. [30], they observed the formation
of multi-species communities through the interactions of the bistability phenomenon with the
species dispersal mechanisms. In another study, Mohd et al. [31] showed that the inclusion of
dispersal effect would reduce competitive exclusion effect between species and promotes multi-
species coexistence. These studies highlight the importance of investigating the dispersal effect
in a multi-species community. For the case of deer mouse, Falkenberg and Clarke [32] reported
a shift in the microhabitat use of deer mice in the presence of Ord’s kangaroo rats. Hence,
we were unsure how this would affect the SNV prevalence in deer mouse. Furthermore, the
different elevations in the environment may contain different amount of carrying capacity. For
example, the theoretical spatio-temporal model in [11] observed the existence of “refugia” for
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Figure 3: Co-dimension 2 bifurcation diagrams where the ones on the left refers to the dilution
agent case while the ones on the right refers to the amplification agent case; (a) depicts K;
versus Ko, (b) depicts K versus ¢; and (c) depicts g; versus Ko
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SNV at the site with higher amount of carrying capacity while the environmental conditions
are less favorable at others. Stochastic models can even be considered for further investigations
as different findings may be observed between the deterministic and stochastic models. For
instance, Mohd et al. [33] observed contrasting results on priority effects in multiple species
between their individual based model and deterministic model. Besides that, our study only
focused on the competition effect between small mammal species but not on the prey-predator
relationship. The effect of prey-predator is of importance as well as a diverse community will
surely contain such mechanism and Packer et al. [34] have warned the consequences of predator
removal in terms of disease ecology point of view.

5 Conclusion

Our study was aimed to highlight the importance of investigating the role played by the non-
host species on the SNV transmission in deer mouse. We analyzed our proposed model in terms
of carrying capacity and interspecific competition strength to compare the effect between an
amplification agent and a dilution agent. Based on our findings, our proposed theoretical
model may explain the lack of reduction in the SNV prevalence despite a relatively high
biodiversity observed in some empirical studies. We suggest future empirical studies related
to SNV prevalence to investigate the species assemblage, and the mechanisms, which regulate
the SNV prevalence in the deer mouse population. With this data, the current mathematical
models can then be refined to better reflect the dynamics of the deer mouse population in
transmitting SNV.
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