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Abstract We discuss the convergence rate of a positive-definite scaled symmet-
ric rank one (SSR1) method. This method is developed by Malik et al. (2002).
In general, a restart procedure is derived and used together with the symmetric
rank one (SR1) method. The restart procedure provides a replacement for the
non-positive definite Hk with a positive multiple of the identity matrix. How-
ever if we choose the initial approximation for the inverse Hessian as an identity
matrix, the sequences of steps produced by the SSR1 do not usually seem to
have the “uniform linear independence” property that is assumed in some re-
cent convergence analysis for SR1. Therefore, we present a new analysis that
shows that the SSR1 method with a line search is n+1 step q-superlinearly con-
vergent without the assumption of linearly independent iterates. This analysis
only assumes that the Hessian approximations are positive-definite and bounded
asymptotically, which are the actual conditions given by SSR1. Numerical ex-
periments indicate that the SSR1 method is very competitive with the BFGS
method and is easily implemented.

Keywords SSR1 method, BFGS method, q-superlinear rate of convergence.

Abstrak Kami membincang kadar penumpuan bagi suatu kaedah terskala
pangkat satu yang simetri (SSR1) dan tentu-positif. Kaedah tersebut diban-
gunkan oleh Malik et al. (2002). Secara umum, suatu prosidur mula-semula
diterbitkan dan digunakan bersama dengan kaedah pangkat satu yang simetri
(SR1). Prosidur mula-semula ini membekalkan suatu penggantian untuk Hk

yang tidak tentu-positif dengan suatu gandaan positif bagi matriks identiti.
Walau bagaimanapun, jika kita memilih hampiran awal bagi songsangan Hessian
sebagai matriks identiti. jujukan langkah yang dihasilkan oleh SSR1 tidak
semestinya mempunyai sifat “kemerdekaan linear seragam” yang diandaikan
dalam beberapa analisis penumpuan yang terkini bagi SR1. Justeru itu, kami ke-
mukakan suatu analisis baru yang menunjukkan kaedah SSR1 dengan gelintaran
garis menumpu pada n+1 langkah q-superlinear tanpa andaian lelaran merdeka
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linear. Analisis tersebut hanya mengandaikan bahawa hampiran Hessian adalah
tentu-positif dan terbatas secara asimptot, yang merupakan syarat sebenar yang
dipaparkan oleh SSR1. Ujikaji berangka menunjukkan bahawa SSR1 setanding
dengan kaedah BFGS dan mudah diimplementasikan.

Katakunci Kaedah SSR1, kaedah BFGS, kadar penumpuan q-superlinear.

1 Introduction

We consider the quasi-Newton methods for finding a local minimum of the unconstrained
optimization problem

min
x∈<n

f(x) (1)

with f(x) assumed to be at least twice continuously differentiable.
The algorithms for solving (1) are iterative with the basic framework of an iteration of

a secant method described as follows:
Given the current iteration xc, f (xc), ∇f(xc) or finite difference approximation, and

Bc ∈ <n×n symmetric (secant approximation to ∇2f (xc)), select the new iterate x+ by a
line search method. Update Bc to B+ such that B+ is symmetric and satisfies the secant
equation B+sc = yc, where sc = x+ − xc and yc = ∇f(x+) −∇f(xc).

In this paper, we consider the SR1 update for the Hessian approximation,

B+ = Bc +
(yc − Bcsc) (yc − Bcsc)

T

sT
c (yc − Bcsc)

(2)

and the BFGS update

B+ = Bc +
ycy

T
c

yT
c yc

+
Bcscs

T
c Bc

sT
c yc

. (3)

Throughout if H = B−1, the inverse update respected to SR1 is given by

H+ = Hc +
(sc − Hcyc) (sc − Hcyc)

T

yT
c (sc − Hcyc)

(4)

and, the inverse BFGS update is

H+ = Hc +
(

1 +
yT

c Hcyc

sT
c yc

)
scs

T
c

sT
c yc

−
(

scy
T
c Hc + Hcycs

T
c

sT
c yc

)
. (5)

For the literature of these updates and others see Fletcher [10], Gill et al. [11], and Dennis
and Schnabel [8].

The BFGS update has been the most commonly used secant update for many years. It
makes a symmetric, rank two change to the previous Hessian approximation Bc, and if Bc

is positive definite and sT
c yc > 0, then B+ is positive definite.

The BFGS method has been shown by Broyden et al. [1] to be locally q-superlinearly
convergent provided that the initial Hessian approximation is sufficiently accurate. Powell
[14] proved a global superlinear convergence result for the BFGS method when applied
to strictly convex functions and used in conjunction with line searches that satisfy the
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conditions of Wolfe [16] (eqs. 9-10). The BFGS update has been used successfully in many
production codes for unconstrained optimization.

The SR1 formula, on the other hand, makes a symmetric rank one change to the pre-
vious Hessian approximation Bc. Compared with other secant updates, the SR1 update is
simpler and may require less computation per iteration. A basic disadvantage to the SR1
update, however, is that the SR1 update may not preserve positive-definiteness even if this
is positive, i.e., when Bc is positive-definite and sT

c yc > 0. A simple remedy by Malik et
al. [12] to this problem (SSR1 method) is to replace the non-positive definite B+ with a
positive multiple of the identity matrix whenever this difficulty arises.

In the next section, we present the algorithm of the SSR1 method using standard line
search for unconstrained optimization problems. We also report on situations that the
assumption of uniform linear independence of the sequence of steps which is required by the
theory of Conn et al. [5] may not be satisfied for many problems. Therefore in Section 3,
we prove a new convergence result without the assumption of uniform linear independence
steps. Instead, it requires the assumption of boundedness and positive-definiteness of the
Hessian approximation. In Section 4, we compare the results from the SSR1 method with
the widely used BFGS method.

2 SSR1 Algorithm

Algorithm 2.1 SSR1 method

Step 0. Given an initial point x0, an initial positive matrix H0 = I , set k = 0.

Step 1. If the convergence criterion

‖ ∇f(xk) ‖≤ ε × max (1, ‖ xk ‖) (6)

is achieved, then stop.

Step 2. Compute a quasi-Newton direction

pk = −Hk∇f(xk), where Hk is given by

H+ = Hc +
(sc − Hcyc)(sc − Hcyc)T

yT
c (sc − Hcyc)

. (7)

Step 3. If pT
k ∇f(xk) > 0, (Hk is not positive definite) or k = 1, set Hk = δ̃k−1I ,

δ̃k−1 =
sT

k−1sk−1

yT
k−1sk−1

−

{(
sT

k−1sk−1

)2

(
yT

k−1sk−1

)2 −
sT

k−1sk−1

yT
k−1sk−1

}1/2

(8)

and subsequently pk = −δ̃k−1∇f(xk). Else retain (7).

Step 4. Using a backtracking line search, find an acceptable steplength, λk such that the
Wolfe’s condition

f(xk + λkpk) ≥ f(xk) + αλk∇f(xk)T pk (9)
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and
∇f(xk + λkpk)T pk ≤ α′∇f(xk)T pk (10)

are satisfied. (λk = 1 is always tried first, α = 10−4 and α′ = 0.9)

Step 5. Set xk+1 = xk + λkpk.

Step 6. Compute the next inverse Hessian approximation Hk+1 .

Step 7. Set k = k + 1, and go to Step 1.

Fiacco and McCormick [9] showed that if the SR1 update is applied to positive-definite
quadratic function in a line search method, then, provided that the updates are all well
defined, the solution is reached in at most n + 1 iterations. Furthermore, if n + 1 iterations
are required, then the final Hessian approximation is the actual Hessian at the solution.
This result is not true, in general, for BFGS update or other members of the Broyden
family, unless exact line searches are used.

For non-quadratic functions, however, convergence of the SR1 is not as well understood
as convergence analysis of the BFGS method. In fact, Broyden et al. [1] have shown that
under their assumptions the SR1 update can be undefined, and thus their convergence
analysis cannot be applied in this case. Also, no global convergence result similar to that
for the BFGS method given by Powell [14] exists, so far, for the SR1 method when applied
to a non-quadratic function.

Recent work by Conn et al. [3], [4], and [5] has sparked renewed interest in the SR1
update. Conn et al. [5] proved that the sequence of matrices generated by the SR1 formula
converges to the actual Hessian at the solution ∇2f(x∗), provided that the steps taken
are uniformly linearly independent, that the SR1 update denominator is always sufficiently
different from zero, and that the iterates converge to finite limit (Using this result it is
simple to prove that the rate of convergence is q-superlinear).

The condition of linear independence of the sequence {sk} under which Conn et al. [5]
analyze the performance of the SR1 method may be too strong in practice. Therefore in
this paper we consider the convergence rate of the SR1 method without this condition. We
will show that if we drop the condition of uniform linear independence of {sk} but add
instead the condition that the sequence {Bk} remains positive definite and bounded, then
the line search Algorithm 2.1 generate at least p q-superlinear steps out of every n+p steps.
This will enable us to prove that convergence is 2n-step q-quadratic.

The basic idea behind our proof is that, if any step falls close enough to a subspace
spanned m ≤ n recent steps, then the Hessian approximation must be quite accurate in
this subspace. Thus, if in addition the step is the full secant step −B−1

k ∇f(xk), it should
be a superlinear step. But in a line search method, for the step to be the full secant step,
Bk must be positive definite, which accounts for the algorithm by Malik et al. [12]. In the
following section we will give the convergence proof.

3 Convergence Rate of the SR1 without Uniform
Linear Independence

Throughout this section the following assumptions will frequently be made:
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Assumptions 1

A1. The function f has a local minimizer at a point x∗ such that ∇2f(x∗) is positive
definite, and its Hessian ∇2f(x) is Lipschitz continuous near x∗, that is, there exists
a constant γ > 0 such that for all x, y in some neighborhood of x∗,

‖ ∇2f(x) −∇2f(y) ‖≥ γ ‖ x − y ‖ .

A2. The sequence {xk} converges to local minimizer x∗.

We first state the following result, due to Conn et al. [5], which does not assume linear
independence of the step directions.

Lemma 3.1 Let {xk} be a sequence of iterates defined by xk+1 = xk + sk. Suppose that
Assumptions 1 hold, that the sequence of matrices {Bk} is generated from the SR1 updates,
and that for each iteration

|sT
k (yk − Bksk) | ≥ r ‖ sk ‖‖ yk − Bksk ‖ (11)

where r ∈ (0, 1) is a constant. Then, for each j, ‖ yj − Bj+1sj ‖= 0 , and

‖ yj − Bisj ‖≤ γ

r

(
2
r

+ 1
)i−j−2

ηi,j ‖ sj ‖ (12)

for all i ≥ j + 2, where ηi,j = max {‖ xq − xt ‖ |j ≤ t ≤ q ≤ i}, and γ is the Lipschitz
constant from Assumptions 1.

Actually, it is apparent from the proof of Lemma 3.1 by Conn et al. [5] that, if the
update is skipped whenever (11) is violated, then (12) still holds for all j for which (11) is
true.

In the lemma below, proven by Byrd et al. [2] it is shown that if the sequence of steps
generated by an iterative process using the SR1 update satisfies (11), and the sequence of
matrices is bounded, then out of any set of n + 1 steps, at least one is very good. As in the
previous lemma, condition (3.1) actually needs only hold at this set of n + 1 steps, as long
as the update is not made when that condition fails.

Lemma 3.2 Suppose the assumptions of Lemma 3.1 are satisfied for the sequences {xk}
and {Bk} , and that in addition there exists M for which ‖ Bk ‖≤ M for all k. Then there
exist K ≥ 0 with S =

{
skj : K ≤ k1 ≤ · · · ≤ kn+1

}
and an index km, m ∈ {2, 3, · · · , n + 1},

such that
‖ (Bkm −∇2f(x∗))skm ‖

‖ skm ‖
< cε1/n

s

where
εs = max

i≤j≤n+1

{
‖ xkj − x∗ ‖

}

and

c = 4

[
γ +

√
n

γ

r

(
2
r

+ 1
)kn+1−k1−2

+ M+ ‖ ∇2f(x∗) ‖

]
.
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In order to use this lemma to establish a rate of convergence we need the following
result, which is closely related to the well-known superlinear convergence characterization
of Dennis and Moré [6].

Lemma 3.3 Suppose the function f satisfies Assumption 1. If the quantities

ek =‖ xk − x∗ ‖ and
‖

(
Bk −∇2f(x∗)

)
sk ‖

‖ sk ‖

are sufficiently small, and if Bksk = −∇f(xk), then

‖ xk + sk − x∗ ‖≤‖
(
∇2f(x∗)

)−1 ‖

[
2
‖

(
Bk −∇2f(x∗)

)
sk ‖

‖ sk ‖
ek +

γ

2
e2

k

]
.

Proof. By the definition of sk

∇2f(x∗)sk =
(
∇2f(x∗) − Bk

)
sk −∇f(xk)

so that

sk = −(xk −x∗)+
(
∇2f(x∗)

)−1 [(
∇2f(x∗) − Bk

)
sk −∇f(xk) + ∇2f(x∗)(xk − x∗)

]
. (13)

Therefore, using Taylor’s theorem and Assumptions 1,

‖ xk − x∗ + sk ‖≤‖
(
∇2f(x∗)

)−1 ‖
[
‖

(
∇2f(x∗) − Bk

)
sk ‖ +

γ

2
e2

k

]
. (14)

Now it follows from (13) that if ‖
(
∇2f(x∗)

)−1 ‖
‖

(
Bk −∇2f(x∗)

)
sk ‖

‖ sk ‖
≤ 1

3
, then by

Taylor’s theorem,

‖ sk ‖≤
3
2

[
‖ xk − x∗ ‖ + ‖

(
∇2f(x∗)

)−1 ‖
γ

2
‖ xk − x∗ ‖2

]
≤ 2 ‖ xk − x∗ ‖,

if ek is sufficiently small. Using this inequality together with (13) gives the result. �
Using these lemmas one can show that for any p > n , Algorithm 2.1 will generate at

least p−n superlinear steps for every p iterations provided that Bk is safely positive definite,
which implies that Hk is not replaced by δ̃k−1I in Step 3. This results, which is contained in
the following theorem, is proven and used to establish a rate of convergence for Algorithm
2.1 under the assumption that the sequence {Bk} becomes, and stays, positive definite. In
a corollary we also show that this implies that the rate of convergence for Algorithm 2.1
is 2n-step q-quadratic. We are assuming here that if Bk is positive definite, then it is not
replaced in Step 3, i.e., we are assuming that “safely positive definite” just means positive
definite.

Theorem 3.1 Consider Algorithm 2.1 and suppose that Assumptions 1 hold. Assume also
that for all k ≥ 0, ∣∣sT

k (yk − Bksk)
∣∣ ≥ r ‖ sk ‖‖ yk − Bksk ‖,
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for a fixed r ∈ (0, 1), and that ∃M for which ‖ Bk ‖≥ M ∀k. Then, if ∃K0 such that Bk

is positive definite for all k ≥ K0, then for any p ≥ n + 1 there exists K1 such that for all
k ≥ K1,

ek+p ≤ αe
p/n
k (15)

where α is a constant and ej is defined as ‖ xj − x∗ ‖.

Proof. Since ∇2f(x∗) is positive definite, there exists K1, β1 > 0, and β2 > 0 such that

β1 [f(xk) − f(x∗)]1/2 ≤‖ xk − x∗ ‖≤ β2 [f(xk) − f(x∗)]1/2 (16)

for all k ≥ K1. Therefore, since we have a descent method, for all l > k > K1,

‖ xl − x∗ ‖≤ β1

β2
‖ xk − x∗ ‖ .

Now, given k > K1 we apply Lemma 3.2 to the set {sk, sk+1, · · · , sk+n}. Thus, there exists
l1 ∈ {k + 1, · · · , k + n} such that

‖
(
Bl1 −∇2f(x∗)

)
sl1 ‖

‖ sl1 ‖
< c

(
β2

β1
ek

)1/n

(17)

(If there is more than one such index l1, we choose the smallest.) Equation (17) implies
that for ‖ xl1 −x∗ ‖ sufficiently small, by Dennis and Moré’s theorem [7], which states that
if {xk} converges to a point x∗ at which ∇2f(xk) is positive definite and

lim
k→∞

‖ ∇f(xi) + ∇2f(xk)pk ‖
pk

= 0,

then Algorithm 2.1 will choose λl1 = 1 so that xl1+1 = xl1 + sl1 . This fact, together with
Lemma 3.3 and (17), implies that if ek is sufficiently small, than

el1+1 ≤ α̂e
1/n
k el1 (18)

for some constant α̂. Now we can apply Lemma 3.2 to the set

{sk, sk+1, · · · , sk+n, sk+n+1} − {sl1}

to get l2. Repeating this n − p times we get a set of integers l1 < l2 < · · · < lp−n, with
l1 > k and lp−n < k + p such that

el1+1 ≤ α̂e
1/n
k el1 (19)

for each l1. Now letting hj = [f(xj) − f(x∗)]1/2, since we have a descent method,

hj+1 ≤ hj (20)

and using (16) we have that for the arbitrary k ≥ K1,

hli+1 ≤ 1
β1

eli+1

≤ α̂

β1
e
1/n
k eli

≤ α̂β2

β1
e
1/n
k hli (21)
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for i = 1, 2, · · · , p − n. Therefore using (20) and (21) we have that

hk+p ≤
(

α̂β2

β1
e
1/n
k

)p−n

hk

which, by (16) implies that

ek+p ≤ β2

β1

(
α̂β2

β1
e
1/n
k

)p−n

ek.

Therefore,

ek+p ≤ α̂p−n

(
β2

β1

)p−n+1

e
p/n
k

and (15) follows. �

Corollary 3.1 Under the assumptions of Theorem 3.1, the sequence {xk} generated by
Algorithm 2.1 is n + 1-step q-superlinear, i.e.,

ek+n+1

ek
→ 0,

and is 2n-step q-quadratic, i.e.,

lim
k→∞

sup
ek+2n

e2
k

≤ ∞.

Proof. Let p = n + 1, and p = 2n in Theorem 3.1. �
Note that a 2n-step q-quadratically convergent sequence has an r order of

(√
2
)1/n

.
Since the integer p in the theorem is arbitrary, an interesting, purely theoretical question is
what value of p will prove the highest r-convergence order for the sequence. It is not hard to
show that, by choosing p to be an integer close to en, the r order approaches e1/en ≈ 1.441/n

for n sufficiently large, and that this value is optimal for this technique of analysis.

4 Comparison of the SSR1 and BFGS Methods

Using the above outlined assumptions, we tested the SSR1 method and the BFGS method
(TOMS 500 algorithm, Shanno and Phua, [15]) on a set of test problems selected from Moré
et al. [13], i.e. Penalty function I, II, Rosenbrook function, Powell function, Wood function,
Beale function and Trigonometric function.

First derivatives were calculated analytically. The stopping tolerance, ε used in both
methods was 10−5. The upper bound used on the number of functions was 999. The symbol
‘EX’ was given when the number of functions exceeded 999. As done in Conn et al. [4] and
our convergence proofs, we skipped the SR1 update if

∣∣sT
k (yk − Bksk)

∣∣ < r ‖ sk ‖‖ yk − Bksk ‖,

where r = 10−2. All experiments were run using double precision arithmetic that has a
machine epsilon of order 10−16. Table 1 reports the performance of the SSR1 and BFGS
methods.

Tabel 1 indicates that the SSR1 is very competitive with the widely used BFGS method.
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Table 1: Comparison of the SSR1 and the BFGS methods

SSR1 BFGS
nI nf nI nf

Penalty I
n = 4 31 44 26 65
n = 20 50 84 51 64
n = 400 61 83 58 77
Penalty II
n = 4 28 34 30 35
n = 20 284 439 692 816
n = 400 EX EX EX EX
Trigonometric
n = 4 9 11 17 20
n = 20 41 55 44 50
n = 400 38 44 48 58
Rosenbrook
n = 4 30 40 29 39
n = 20 37 42 33 41
n = 400 34 48 33 44
Powell
n = 4 39 47 42 43
n = 20 35 50 36 37
n = 400 36 38 54 55
Wood
n = 4 28 40 36 43
n = 20 27 36 31 44
n = 400 38 48 35 49
Beale
n = 4 16 21 15 16
n = 20 17 27 15 17
n = 400 14 18 16 18
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5 Conclusion

We have attempted, in this paper, to investigate theoretical and numerical aspects of the
SSR1 formula for unconstrained optimization.

We tested the SSR1 method on a set of standard test problems from Moré et al. [13].
Our test results shows that on the set of problems we tried, the SSR1 method, generally
requires somewhat fewer iterations than the BFGS method in a line search algorithm.

Under conditions that do not assume uniform linear independence of the generated steps,
but do assume positive definiteness and boundedness of the Hessian approximations, we were
able to prove n + 1-step q-superlinear convergence, and 2n step quadratic convergence, of a
line search SSR1 method.
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