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Abstract The hydromagnetic mixed convection flow of Cassonnano fluid under the

influence of chemical reaction,thermal radiation and heat generation or absorption is

investigated. The flow is induced due to unsteady nonlinearly stretching sheet saturated

in a porous medium. The governing nonlinear coupled partial differential equations

are converted into the system of coupled ordinary differential equations using similarity

transformations and then solved numerically via Keller box method. The effects of

pertinent parameters on velocity, temperature and nanoparticles concentration as well

as wall shear stress, heat and mass transfer rate are analyzed and displayed graphically.

The results for skin friction coefficient and local Nusselt number are compared with

previously published work and found to be in good agreement. Findings demonstrate

that increase in Casson parameter enhanced the friction factor and heat transfer rate.

It is noticed that the heat transfer rate is declined with increment in Brownian motion

and thermophoresis parameters. The nanoparticles concentration is seen to be higher

in generative chemical reaction and opposite effect is observed in destructive chemical

reaction. Increase in unsteadiness parameter decreased the fluid velocity, temperature

and nanoparticles concentration. The magnitude of wall shear stress is also reduced with

increase in unsteadiness and porous medium parameters.
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1 Introduction

Nanofluids are engineered colloids made of base fluid and nanoparticles. This new class of fluid
was first discovered by Choi and Eastman [1]. They introduced a new class of heat transfer fluids
created by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting
fluids known as nanofluids are expected to exhibit high thermal conductivities compared to
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those base fluids. The nanoparticles used in nanofluids are made of metals (Al, Cu) or non-
metals (Graphite, carbon nanotubes) and the base fluid is usually liquid such as water, kerosene
oil or ethylene glycol. The thermal conductivity of nanofluids is greater than those base fluids
because the suspended ultrafine particles significantly improve its capability in energy exchange
[2]. Several researchers agreed that a small amount of nanoparticles volume fraction (5% or
less) can enhance thermal conductivity of base fluid by more than 20%. These enhancements
depend upon the shape of particles, dimensions of particles, thermal properties of particles, and
volume fractions of suspended particles [3]. There are several general applications of nanofluids
such as vehicle cooling, reducing fuel in electric power plant, cancer therapy, imaging and
sensing. Wong and De Leon [4] pointed out that in cancer patients, iron-based nanoparticles
can be used as delivery vehicles of drugs and radiation. Later on, Buongiorno [5] carried out
analysis on nanofluids and deduced that outof seven slip mechanisms, only Brownian motion and
thermophoresis are important mechanisms in nanofluids. It was found that Brownian motion
and thermophoresis are responsible for heat transfer enhancement. Based on his predictions, he
proposed a model which is known as Buongiorno’s model. It is worth mentioning that several
researchers have adopted Buongiorno’s model in their study [6-8].

The study of boundary layer flow over a stretching sheet has gained attention due to its
practical applications in several industries such as extrusion of plastic and rubber sheet, glass
manufacturing, paper production, polymer processing and purification of crude oil. Crane [9]
was the first who investigated the flow caused by stretching sheet, whose velocity is varying
linearly from the fixed point. Numerous literatures are available on boundary layer flow of
linear stretching sheet; however, the stretching sheet velocity need not be linear [10]. In view
of this fact, researchers diverted their study to the boundary layer flow caused by exponential,
quadratic and nonlinear stretching sheet. Keeping this in mind, Kumaran and Ramanaiah[11]
examined fluid flow over quadratic stretching sheet. Magyari and Keller [12] analysed heat and
mass transfer in the boundary layers past exponentially stretching sheet. Cortell[13] studied
two-dimensional viscous flow caused by nonlinearly stretching sheet. Hsiao [14] reported the
effect of thermal radiation on mixed convection flow over nonlinearly stretching sheet.

Most of the studies are limited to steady flow over a stretching sheet, yet sudden stretching
of the sheet lead to occurrence of unsteady fluid flow. The unsteadiness cause changes in
wall velocity or wall temperature. Sharidan et al. [15] studied similarity solutions of unsteady
boundary layer flow caused by stretching sheet. Bachok et al. [16] analyzed unsteady boundary
layer flow of nanofluid past a permeable stretching sheet. An analytical solution for unsteady
boundary layer flow of nanofluid due to impulsive stretching sheet is investigated by Mustafa
et al. [17]. The effects of Soret and Dufour on unsteady flow of Casson fluid over a nonlinearly
stretching sheet with slip and convective boundary conditions is explored by Ullah et al.[18].

Casson fluid is classified as a non-Newtonian fluid due to its rheological characteristics
in relation to the shear stress and strain relationship. The Casson fluid is a shear thinning
fluid which exhibits yield stress and high shear viscosity. The Casson model was originally
developed by Casson [19] for printing inks and silicon suspension. Common examples of
Casson fluid are honey, jelly, soup, tomato sauce and concentrated fruit juices. In Casson fluid,
Mukhopadhyay [20] studied boundary layer flow over nonlinearly stretching sheet. Sumalatha
and Bandari [21] reported on boundary layer flow of Casson fluid due to nonlinearly stretching
sheet in the influence of thermal radiation. Oyelakin et al. [22] examined unsteady MHD
Cassonnano fluid generated by stretching surface in the presence of viscous dissipation, Soret
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and Dufour, slip and convective boundary conditions. The study of MHD mixed convection
flow of Casson fluid over an unsteady nonlinearly stretching sheet in a porous medium under the
influence of chemical reaction, thermal radiation and heat generation/absorption is reported
by Ullah et al. [23].

Motivated by the above cited papers, the objective of the present study is to investigate
hydromagnetic mixed convection flow of Cassonnanofluid caused by nonlinearly stretching sheet
embedded in a porous medium in the presence of chemical reaction, thermal radiation and heat
generation or absorption. Further, the effect of viscous dissipation, joule heating, slip and
convective boundary conditions are also considered. The governing equations are transformed
to ordinary differential equation via similarity transformations and then solved numerically
through the Keller-box method. The numerical algorithm for this problem is validated through
comparison with existing literature results and excellent agreement is obtained. The physical
behavior of pertinent parameters on fluid velocity, temperature and nanoparticles concentration
are displayed and analyzed.

2 Mathematical Formulation

Consider an unsteady, two dimensional, incompressible mixed convection MHD flow of
Cassonnanofluid generated by nonlinearly stretching sheet saturated in a porous medium under
the influence of chemical reaction, thermal radiation and heat generation/absorption. Further,
the effects of viscous dissipation, joule heating, slip and convective boundary conditions are also
taken into account. The flow occupies the domainy > 0. The sheet is stretched inx direction
by keeping the origin fixed. Initially at t ≤ 0 both the sheet and fluid are at rest and at
the same temperature T∞ and concentration C∞. The sheet is suddenly stretched with the
nonlinear velocity of the formuw (x, t) = cxn/(1 − εt). Here c > 0, ε ≥ 0 are constants, t is
time and n (> 0) represents the nonlinearly stretching sheet parameter (n = 1 represents linear
stretching sheet and n 6= 1 corresponds to nonlinear stretching sheet). The fluid is electrically

conducted due to an application of magnetic field B (x, t) = B0x
(n−1)/2 (1 − εt)−1/2 normal to

the sheet with constant B0.
The rheological equation of a state for an isotropic and incompressible flow of Casson fluid

is given by Pramanik [24] as

τij =

{

2
(

µB + py

/√
2π1

)

eij, π1 > πc,

2
(

µB + py

/√
2πc

)

eij, π1 < πc,
(1)

where µB is the dynamic viscosity of the non-Newtonian fluid, py is the yield stress of the fluid,
π1 is the product of the component of deformation rate with itself where π1 = eijeij, eij is the

(i, j)th component of the deformation rate and πc is the critical value of this product based on
the non-Newtonian model.

The governing equations of continuity, momentum, energy and concentration for
Cassonnanofluid using the above assumptions with Boussinesq and boundary layer
approximations are given as

∂u

∂x
+
∂v

∂y
= 0, (2)
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∂u

∂t
+ u

∂u
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)
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∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αf

∂2T

∂y2
+ τ

[

DB
∂C

∂y

∂T

∂y
+
DT

T∞

(

∂T

∂y

)2
]

+
νf

cf

(
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)(
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(ρc)f
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+
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(ρc)f
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∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− kc (C − C∞) , (5)

where u and v are the velocity components along the x and y directions respectively, νf is
kinematic viscosity, ρ is the fluid density, σ is the electrical conductivity, β is the Casson
parameter, ϕ is the porosity, k1 (x, t) = k0x

1−n (1 − εt) is the time dependent permeability of
porous medium, k0 is the permeability constant, gx is the gravitational force due to acceleration,
βT is the coefficient of thermal expansion, βC is the coefficient of concentration expansion,
T is the fluid temperature, C is the nanoparticles concentration, αf = k

(ρc)f
is the thermal

diffusivity of the Casson fluid, k is the thermal conductivity of the Casson fluid, cf is the specific

heat of fluid, τ =
(ρc)p
(ρc)f

is the ratio between the heat capacity of the nanoparticle material

and heat capacity of the fluid, cp is the specific heat of nanoparticles, DB is the Brownian
diffusion coefficient, DT is the thermophoretic diffusion coefficient, qr is the radiative heat flux,
Q (x, t) = Q0xn−1

1−εt
is heat generation or absorption coefficient, kc (x, t) = ak2x

n−1 (1 − εt)−1 is
the variable rate of chemical reaction, k2 is the constant reaction rate and a is the reference
length along the flow. The ambient values of temperature and nanoparticles concentration are
T∞and C∞, respectively.

The corresponding boundary conditions are expressed as follows

t < 0 : u = v = 0, T = T∞, C = C∞, for any x, y, (6)

t ≥ 0 : u = uw (x, t) +N1νf

(

1 +
1

β

)

∂u

∂y
, v = 0,

kf
∂T

∂y
= −hf (Tf − T ) , DB

∂C

∂y
= −hs (Cs − C) , at y = 0, (7)

u → 0, T → T∞, C → C∞, as y → ∞. (8)

Here, N1 (x, t) = N0x
−(n−1)/2 (1 − εt)1/2 denotes velocity slip with constant N0hf (x, t) =

h0x
(n−1)/2 (1 − εt)

−1/2
and hs (x, t) = h1x

(n−1)/2 (1 − εt)
−1/2

are the convective heat and mass
transfer with h0 and h1 being constants. The wall of sheet is heated by temperature
Tf (x, t) = T∞ + T0x

2n−1 (1 − εt)−2 with the reference temperature T0. The nanoparticles
concentration is denoted by CS (x, t) = C∞ + C0x

2n−1 (1 − εt)−2 with C0 being the reference
concentration.

Following Roseland approximation, the radiative heat flux is defined as [25]

qr =
−4σ∗

3k∗1

∂T 4

∂y
, (9)



Nur Azlina Mat Noor et al. / MATEMATIKA Special Issue, December 2019, 33–52 37

where σ∗ is the Stefan-Boltzmann constant and k∗1 is the mean absorption coefficient. It is
assumed that the temperature differences within the flow are sufficiently small such thatT 4can
be expressed as linear function of temperature. Hence, expanding T 4 in Taylor series about T∞

and neglecting higher order terms, we obtain the following

T 4 ∼= 4T 3
∞
T − 3T 4

∞
. (10)

Substituting Eqs. (9) and (10) into Eq (4), we obtain
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∂t
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∂x
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∂y
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∞
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)

∂2T

∂y2
+ τ

[

DB
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]
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β
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Q (x, t)

(ρc)f

(T − T∞) . (11)

Now, the following similarity transformations applied by Mukhopadhyay [20] and Ibrahim et
al. [26] are introduced to convert the partial differential equations into ordinary differential
equations;

ψ =

√

2νfc

(n+ 1) (1 − εt)
x(n+1)/2f (η) , η =

√

(n+ 1) c

2νf (1 − εt)
x(n−1)/2y,

θ =
T − T∞

Tf − T∞

, φ =
C − C∞

CS − C∞

,

(12)

where η is the local similarity variable, ψ is the stream function, f (η) is the dimensionless
stream function, θ (η) is a dimensionless temperature of the fluid in the boundary layer region
and φ (η) is a dimensionless concentration of the fluid in the boundary layer region.

The continuity equation (2) is satisfied by introducing the stream function ψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (13)

Using equation (12), the governing Eqs. (3), (5) and (11) are reduced to the following non-
dimensional equations

(

1 +
1

β

)

f ′′′ + ff ′′ − 2n

n+ 1
(f ′)

2 −
(

M +

(

1 +
1

β

)

K

)

f ′ + λ (θ −Nφ)

−A
(

2

n+ 1
f ′ +

1

n+ 1
ηf ′′

)

= 0, (14)

1
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4

3
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)
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n+ 1
f ′θ +

(

1 +
1

β

)
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2
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2
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′)
2 − A

(

4

n+ 1
θ +

1

n + 1
ηθ′
)

= 0, (15)

1

Le
φ′′ + fφ′ − 2 (2n − 1)

n + 1
f ′φ+

Nt

Nb

θ′′ − 2

n+ 1
Rφ− A

(

4

n+ 1
φ+

1

n+ 1
ηφ′

)

= 0, (16)
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subject to the boundary conditions

f (0) = 0, f ′ (0) = 1 + δ

√

n+ 1

2

(

1 +
1

β

)

f ′′ (0) ,

θ′ (0) = −
(

√

2

n+ 1

)

Bi1 [1 − θ (0)] , φ′ (0) = −
(

√

2

n+ 1

)

Bi2 [1 − φ (0)] , (17)

f ′ (∞) = 0, θ (∞) = 0, φ (∞) = 0, (18)

where prime denotes differentiation with respect to η.The physical parameters involved in the
above expressions are the local unsteadiness parameter A, magnetic parameter M , porosity
parameter K, thermal buoyancy parameter λ = ±Grx

Re2
x

where Grx and Rex are Grashof number
and local Reynold number respectively in which λ > 0 denotes the assisting flow, λ = 0 indicates
no convection and λ < 0 corresponds the opposing flow, buoyancy ratio parameter N , slip
parameterδ, Prandtl numberPr, radiation parameter Rd, Eckert number Ec, heat generation
/absorption parameter γ, Brownian motion parameterNb, thermophoresis parameter Nt Biot
numbers Bi1 and Bi2, Lewis number Le and chemical reaction parameter R, and are defined
as

A =
εx

cxn
, M =

2σB2
0

ρfc (n+ 1)
, K =

2νfϕ

k0c (n+ 1)
, Grx =

2gxβT (Tf − T∞)x3

ν2
f (n+ 1)

,

Rex =
xuw

νf
, N =

βc (Cs − C∞)

βT (Tf − T∞)
, δ = N0

√
cνf , Pr =

νf

αf
, Rd =

4σ∗T 3
∞

kfk
∗

1

,

Ec =
u2

w

cf (Tf − T∞)
, γ =

2Q0

ρcf (n+ 1) c
, Nb =

τDB (CS − C∞)

νf
, Nt =

τDT (Tf − T∞)

νfT∞

,

Bi1 =
h0

k

[νf

c

]
1/2

, Bi2 =
h1

DB

[νf

c

]
1/2

, Le =
νf

DB

, R =
νfak2

c
.

The physical quantities of interest which govern the flow are the local skin friction coefficient
Cfx, local Nusselt number Nux and local Sherwood number Shx, which are defined as

Cfx =
τw

ρfu2
w

, Nux =
xqw

αf (Tf − T∞)
, Shx =

xqs

DB (CS − C∞)
,

where τw, qw and qs are the wall skin friction, wall heat flux and wall mass flux respectively
given by

τw = µB

(

1 +
1

β

)[

∂u

∂y

]

y=0

, qw = −
((

αf +
16σ∗T 3

∞

3 (ρc)f k
∗

1

)

∂T

∂y

)

y=0

, qs = −DB

(

∂C

∂y

)

y=0

.

The dimensionless forms of the skin friction coefficient, local Nusselt number, and local
Sherwood number are

(Rex)
1/2

Cfx =
√

n+1
2

(

1 + 1
β

)

f ′′ (0) ,

(Rex)
−1/2

Nux = −
√

n+1
2

(

1 + 4
3
Rd

)

θ′ (0) ,

(Rex)
−1/2

Shx = −
√

n+1
2
φ′ (0) ,

where Rex is the local Reynolds number based on the stretching velocity uw.
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3 Numerical Scheme

The nonlinear coupled ordinary differential equations (14) to (16) with associated boundary
conditions (17) and (18) are solved numerically using implicit finite difference scheme known
as Keller box method. This method is unconditionally stable with a second order convergence.
It is also found to be very suitable in dealing with nonlinear parabolic problems. The details of
this method are described in the book by Cebeci and Bradshaw [27]. The Keller box method
comprises the following four steps that need to be done in order to obtain the numerical
solutions. The four steps involved are as follows:

1. The ordinary differential equations are reduced to a system of first order equations.

2. The first order system is discretized into finite difference form by using central difference
scheme.

3. The system of equations is linearized using Newton’s method and then written in matrix-
vector form.

4. Finally, the linear system can be solved via block tri-diagonal elimination technique.

4 Results and Discussion

The governing nonlinear differential equations (14) to (16) subject to boundary conditions
(17) and (18) are computed numerically via Keller-box method. An algorithm is developed in
MATLAB software in order to generate numerical and graphical results. Further, it is necessary
to make suitable guess for the step size ∆η and boundary layer thickness η∞. In the present
study, ∆η = 0.01 and η∞ = 10are used. The iteration process is repeated until the convergence
criteria 10−5 is satisfied [28].

In order to analyze the behavior of velocity, temperature and concentration profiles,
numerical calculations are carried out for various values A, β, n, M , K, λ, N , Pr, Ec, γ,
Rd, Nb, Nt, Le, R, δ, Bi1 and Bi2. For validation of the present algorithm developed in
MATLAB software, the numerical results for skin friction coefficient and local Nusselt number
are compared with previous published results as limiting cases and presented in Tables 1 and 2.

Table 1 displays the comparison of skin friction coefficient for different values ofβ and M

with the results of Nadeem et al. [29] and Ullah et al. [23]. The results showed an excellent
agreement. In Table 2, the present results of reduced Nusselt number are compared with the
results of Yih [30], Aurangzaib et al. [31] and Pal et al. [32] for various values of Pr and revealed
in a good agreement.

Figures 1 to 3 are plotted to analyze dimensionless velocity profile for various effects of A,
β and n. Figure 1 reveals the effect of Aon fluid velocity for β = 0.6 (Casson fluid) and β → ∞
(Newtonian fluid). It is noteworthy here that A = 0 and A 6= 0 represent the steady and
unsteady case respectively. It is found that fluid velocity reduces as A increases for both fluids.
It is also observed that the momentum boundary layer becomes thinner for larger amplitude of
A. The variation of β on fluid velocity when λ < 0, λ = 0 and λ > 0 is displayed in Figure 2.
It is significant that the present problem reduces to pure Newtonian nanofluidwhen β → ∞.
Clearly, fluid velocity decelerates with increase in β. The reason behind this behavior is that
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Table 1: Comparison of Skin Friction Coefficient for Different Values of β and M when n = 1,
β → ∞, Bi1 → ∞, Bi2 → ∞ and A = K = λ = N = δ = Rd = Le = Nt = Nb = R = 0

−
(

1 + 1
β

)

f ′′ (0)

β M Nadeem et al. [29] Ullahet al. [23] Present results

∞ 1.0042 1.0000 1.0000
5 1.0954 1.0955 1.0955
1 1.4142 1.4144 1.4144
∞ 10 3.3165 3.3166 3.3166
5 3.6331 3.6332 3.6332
1 4.6904 4.6904 4.6904
∞ 100 10.0498 10.0499 10.0499
5 11.0091 11.0091 11.0091
1 14.2127 14.2127 14.2127

Table 2: Comparison of −θ′ (0) for Different Pr with n = 1, β → ∞Bi1 → ∞,,Bi2 → ∞ and
A = M = K = λ = N = δ = Rd = Le = Nt = Nb = R = 0

−θ′ (0)
Pr Yih[30] Aurangzaibet al. [31] Pal et al. [32] Present results

0.72 0.8086 0.8086 0.8086 0.8088
1 1.0000 1.0000 1.0000 1.0000
3 1.9237 1.9237 1.9237 1.9237
10 3.7207 3.7207 3.7206 3.7208
100 12.2940 12.3004 12.2939 12.3003

higher values of β increase the plasticity of fluid that cause the fluid to become more viscous.
Consequently, the momentum boundary layer thickness reduces as β increases. It is also noticed
that momentum boundary thickness reduces faster in case of opposing flow (λ < 0) compared
to assisting flow (λ > 0) when β approaches infinity. The effect of n on velocity profile for
both steady and unsteady cases is plotted in Figure 3. In both cases, fluid velocity is found as
increasing functions of n. It is seen that the momentum boundary layer thinning rapidly when
A 6= 0

Figures 4 to 10 exhibit the variation of dimensionless temperature profile for various values
of A, β, nγ, Rd, Nb and Nt. Figure 4 shows the influence of A on temperature profile for M = 0
and M 6= 0. It can be seen that increasing values of A lead to reduction in fluid temperature
and thermal boundary layer thickness. It is clear from Figure 5 that fluid temperature increases
with the increase in β for both cases of n = 1 and n 6= 1. This phenomenon indicates that
increasing β implies a reduction in yield stress. It is well-known fact that yield stress decreases
with an increase in temperature. Figure 6 illustrates the effect of n on temperature profile for
M = 0 and M 6= 0. It is observed that fluid temperature decreases as n increases. The thermal
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Figure 1: Effect of A on Velocity for Different Values of β

Figure 2: Effect of β on Velocity for Different Values of λ

Figure 3: Effect of n on Velocity for Different Values of A
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boundary layer is thinner when the sheet is stretched in a nonlinear way (n 6= 1) compared to
linear way (n = 1). The effect of Rd on temperature profile for n = 1 and n 6= 1 is illustrated
in Figure 7. It is worth to mention that Rd = 0 shows no radiation and Rd 6= 0 denotes the
presence of thermal radiation. It is noticed that temperature of fluid rises as Rd increases. The
reason is that increasing Rd values enhance the heat energy transferred to the fluid and this
result increase in thermal boundary layer thickness. The influence of γ on temperature profile
for A = 0 and A 6= 0 is shown in Figure 8. It is important to note that γ > 0 corresponds
to heat generation and γ < 0represent heat absorption. It can be seen that temperature
increases when γ > 0, whereas it decreases when γ < 0. The existence of heat source causes
an increase in thermal energy of fluid resulting in the enhancement of fluid temperature and
thickens the thermal boundary layer. Also, an opposite behavior is observed in which thermal
boundary layer thickness reduces in the presence of heat absorption. Figure 9 demonstrates
the effect of Nb on temperature profile for M = 0 and M 6= 0. It is found that temperature
is an increasing function ofNb. It is an agreement with the fact that Brownian motion of
nanoparticles that occurs in nanofluid systems contributes to the enhancement of the thermal
conductivity. Hence, increasing Nb leads to increase in heat transfer properties and resulting in
higher temperature of nanofluids. The variation of temperature profile for different values of Nt

when M = 0 and M 6= 0 is presented in Figure 10. It is found that fluid temperature slightly
increases with increment in Nt. This is due to the fact that larger values of Nt mplies higher
temperature differences between hot surface and ambient fluid. The presence of temperature
gradient imposes thermophoretic force on nanoparticles. Hence, thermophoretic force elevates
the disperse of nanoparticles from the hot surface to the ambient fluid which results in enhancing
fluid temperature.

Figure 4: Effect of A on Temperature for Different Values of M

Figures 11 to 16 examine the variation of nanoparticles concentration profile for various
values of A, β, nNb, Nt and R. Figure 11 presents the effect of A on nanoparticles concentration
profile when n = 1 and n 6= 1. In both cases, concentration of nanoparticles drops as
A increases. A reduction in concentration boundary layer thickness is also observed. The
influence of A on concentration profile is more significant for nonlinear stretching sheet case.
The influence of β on nanoparticles concentration profile in both cases of A = 0 and A 6= 0
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Figure 5: Effect of β on Temperature for Different Values ofn

Figure 6: Effect of n on Temperature for Different Values of M

Figure 7: Effect of Rd on Temperature for Different Values of n
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Figure 8: Effect of γ on Temperature for Different Values of A

Figure 9: Effect of Nb on Temperature for Different Values of M

Figure 10: Effect of Nt on Temperature for Different Values of M
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is portrayed in Figure 12. It is noticed that nanoparticles concentration is slightly enhanced
with increase in β. Figure 13 displays that nanoparticles concentration declines as n increases
for K = 0 and K 6= 0. Consequently, the thickness of concentration boundary layer reduces
when n > 1. Figure 14 exhibits that nanoparticles concentration falls as Nb increases in
both cases of M = 0 and M 6= 0. It is well-known fact that Brownian motion is a diffusion
process. The enhancement of Nb promotes the diffusion rate, and as consequence, the thermal
conductivity becomes higher. Moreover, the nanoparticles raise the sheet surface area for
heat transfer. The increment in random motion of nanoparticles increases the kinetic energy
which lead to reduction in nanoparticles concentration. The influence of Nt on nanoparticles
concentration profile for M = 0and M 6= 0is shown in Figure 15. It is noted that larger values
of Nt increases the nanoparticles concentration. Physically, the existence of thermophoretic
force on nanofluid due to temperature gradient enhances heat transfer from the hot surface
to the moving fluid and apparently thinning the concentration boundary layer. Figure 16
illustrates the variation of R on nanoparticles concentration when A = 0 and A 6= 0. It is found
that nanoparticles concentration slightly increases in the case of generative chemical reaction
(R < 0), while it drops in the case of destructive chemical reaction (R > 0). The explanation for
this behavior is that the mass transfer rate decreases when R < 0, which leads to an increment
in nanoparticle concentration. A decrease in thickness of concentration boundary layer is also
observed. Meanwhile, opposite effect is seen for destructive chemical reaction.

Figure 11: Effect of A on Nanoparticles Concentration for Differentn

Figures 17 to 21 depict the variation of skin friction coefficient, local Nusselt number and
local Sherwood number for various values of A, β, K, λ, n, δ, Rd, Pr, Nb, Nt, M , Le and
R, respectively. Figure 17 presents the influence of skin friction coefficient for different values
of A, β and K. It is observed that the wall shear stress declines with increase in A and
K, whereas opposite effect is shown when β increases. The impact of unsteadiness and porous
medium parameter reduces the fluid flow which causes the momentum boundary layer thickness
decreases and consequently enhances the friction between fluid and solid surface. It is noticeable
that skin friction coefficient is negative for all values of A, β and K because the fluid experiences
a drag force from nonlinear stretching sheet. The effect of λ, n and δ on skin friction coefficient
is displayed in Figure 18. It is found that increasing values of λ and δ enhances the wall shear



Nur Azlina Mat Noor et al. / MATEMATIKA Special Issue, December 2019, 33–52 46

Figure 12: Effect of β on Nanoparticles Concentration for Different A

Figure 13: Effect of n on Nanoparticles Concentration for Different K

Figure 14: Effect of Nb on Nanoparticles Concentration for Different M
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Figure 15: Effect of Nt on Nanoparticles Concentration for different M

Figure 16: Effect of R on Nanoparticles Concentration for Different A

stress, while the increment of n results in the wall shear stress rises when λ < 0 and it reduces
when λ > 0. Figure 19 demonstrates the influence of β, δ and Rd on local Nusselt number. It
is observed that β and Rd boost the heat rate transfer, whereas it drops as δ increases. The
variation of local Nusselt number for different values of Pr, Nb and Nt are portrayed in Figure
20. The heat rate transfer declines with increase in Nb and Nt, while it rises with the increment
of Prandtl number. Since the strength of Brownian motion and thermophoresis enhances the
thermal conductivity of base fluid, it led to reduction in the temperature gradient for both
parameters. Finally, the effect of M , Le and R on local Sherwood number is illustrated in
Figure 21. It is noticed that mass transfer rate rises for increasing values of Le and R, whereas
it slightly reduces with increase in M

5 Conclusions
The present study investigates numerical results of unsteady MHD mixed convection flow
of Cassonnano fluid over nonlinearly stretching sheet immersed in a porous medium in the
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Figure 17: Variation of Skin Friction Coefficient for Various Values of A, β and K

Figure 18: Variation of Skin Friction Coefficient for Various Values of λ, n and δ

Figure 19: Variation of Nusselt Number for Various Values of δ, βand Rd
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Figure 20: Variation of Nusselt Number for Various Values of Nb,Pr and Nt

Figure 21: Variation of Sherwood Number for Various Values of R,Le and M

presence of chemical reaction, thermal radiation and heat generation/absorption. Moreover,
the influence of viscous dissipation, joule heating, slip and convective boundary conditions are
also considered. Similarity transformations are used for the conversion of nonlinear partial
differential equations to nonlinear ordinary differential equations. The resulting equations are
solved numerically via Keller box method. Numerical and graphical results are obtained through
MATLAB software. In order to check the validity of the present method, the numerical solutions
for wall shear stress and heat transfer rate are compared with the results of existing literature
and excellent accuracy is achieved from both results. The effect of physical parameters,
namely, local unsteadiness parameter A, Casson parameterβ, nonlinear stretching parameter n,
magnetic parameter M , porosity parameter K, thermal buoyancy parameter λ, buoyancy ratio
parameter N , Prandtl number Pr, radiation parameter Rd, Eckert number Ec, heat generation
or absorption parameterγ, Brownian motion parameterNb, thermophoresis parameter Nt Lewis
number Le, chemical reaction parameter R, slip parameter δ and Biot numbersBi1, Bi2 on fluid
velocity, temperature, concentration as well as wall shear stress, heat and mass transfer rates
are presented graphically and analyzed. The main findings of present study can be deduced as
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follows:

1. The fluid velocity is a decreasing function of unsteadiness parameter.

2. The magnitude of wall shear stress and heat transfer rate rises for increasing values of β

3. The fluid velocity reduces whereas both temperature and nanoparticles concentration rise
with increment in β

4. The fluid velocity increases in the case of assisting flow (λ > 0), while it decreases in the
case of opposing flow(λ < 0).

5. The heat transfer rate enhances with increase in Rd

6. The concentration boundary layer becomes thinner due to destructive chemical reaction
(R > 0).

7. The enhancement of Ntboosts temperature and nanoparticles concentration.
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