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Abstract In this paper, we present a deterministic model for the transmission dynamics

of HIV, in which educational campaigns and therapy are both important for disease
management. We propose and analyze an optimal control problem to investigate the

effectiveness and cost-effectiveness of three control measures (educational campaigns,
therapy on infected individuals in the asymptomatic stage, and therapy on infected
individuals in the pre-AIDS class). We formulate the appropriate optimal control problem

and investigate the necessary conditions for disease control in order to determine the
role of asymptomatic infection, pre-AIDS, and full-blown AIDS in the spread of HIV.

Pontryagin’s Maximum Principle was employed to derive the necessary conditions for
the existence of optimal control. The fourth-order Runge-Kutta forward-backwards

sweep numerical approximation method was used to solve the optimal control system.
The Incremental Cost-Effectiveness Ratio (ICER) was calculated to investigate the cost-

effectiveness of all possible combinations of the three control measures. Using cost-
effectiveness analysis, we showed that control of therapy on pre-AIDS and a combination

of control of educational campaigns and therapy on pre-AIDS provides the most cost-
effective strategy to control the disease.

Keywords Human Immunodeficiency virus (HIV); optimal control measure;

Hamiltonian; cost-effective intervention; numerical simulations.
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1 Introduction

The national (government) response for the HIV/AIDS epidemic focuses on a variety of
comprehensive policies and programs. One of the pillars that are key to the success of
HIV/AIDS prevention is care, support, and treatment with the provision of antiretroviral
therapy and prevention through educational campaigns of condoms use for groups at risk of
HIV/AIDS transmission. At present, the development of the effectiveness of condoms use
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campaign programs and antiretroviral therapy is inadequate, even though program coverage
has increased.

Mathematical modeling plays an important role in understanding the dynamics of epidemics
and describing epidemiological problems[1, 2, 3]. Mukandavire et al. [4] examined the
problem of the spread of HIV/AIDS in association with public health education interventions.
Furthermore, some studies [5, 6, 4] have included educational campaigns. Treatment (therapy)
is important to reduce the spread of HIV/AIDS [7, 5, 4, 6, 8, 9]. Other studies are related to
the modeling of the effect of risky sexual behavior on the spread of HIV/AIDS [5, 10].

Optimization and optimal control problems have received much attention from researchers
[11, 12, 5, 13, 14, 15, 16, 4, 6, 10, 17, 18]. Okosun et al. [17] presented optimal control
strategies and cost-effectiveness analysis of a malaria model. Furthermore, one study [17]
presented the impact of optimal control on the treatment of HIV/AIDS and the screening of
unaware infected individuals. From this study, it was concluded that a combination of three
intervention strategies was more effective than without intervention. If the costs and health
outcomes of these interventions are available, then the cost-effectiveness between one strategy
and another can be compared. To achieve this goal, it is necessary to calculate the incremental
cost-effectiveness ratio (ICER), which is the ratio between the difference in costs and health
outcomes from the intervention.Motivated by the results of Okosun et al. [17], in this paper
we propose to improve the work by Marsudi et al. [6] by including the aspect of antiretroviral
therapy on full-blown AIDS in a homogeneous population. It is well known that antiretroviral
therapy on full-blown AIDS may also play a major role in the transmission dynamics of the
disease.

The following is the organization of the paper. In Section 2, we present the model
formulation. Section 3 presents the analysis of optimal control. Section 4 presents the numerical
simulations of the model and the cost-effectiveness analysis. Finally, we end with a conclusion
in Section 5.

2 Model Formulation

In this paper, the model refers to the model proposed in Marsudi et al. [6] by adding
control of antiretroviral therapy on full-blown AIDS. The model considers six disjoint classes:
S(t) represents susceptible individuals, E(t) represents susceptible individuals who receive
educational campaigns, I(t) represents asymptomatic infected individuals, P (t) represents
symptomatic infected individuals or pre-AIDS individuals, A(t) represents full-blown AIDS
individuals, and T (t) represents infected individuals who receive antiretroviral therapy, or
treated individuals. The total population at any time t, denoted by N(t), is the sum of
individual populations in each class, such that N(t) = S(t) + E(t) + I(t)+ P (t) + T (t)+ A(t).

The formulation of the model is based on the interactions among classes and the following
assumptions:

1. Susceptible individuals can be infected through sexual contact with the two infected
classes I and P . It is assumed that the rates of contact of susceptible individuals with
classes I and P are at different rates of β1 and β2 respectively, where β2 < β1. We use
standard incidence to model the disease transmission.

2. The rate of recruitment of susceptible individuals by birth or immigration is Λ.
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3. Susceptible individuals can be educated at a rate of u1 and the effectiveness of the
educational campaign is δ.

4. Pre-AIDS and full-blown AIDS individuals are treated with therapy at successive rates
of u2 and u3.

5. Only infected pre-AIDS individuals will become full-blown AIDS individuals at a rate
of σ2.

6. The progression rate from asymptomatic infection to pre-AIDS infection is σ1.

7. The natural death of all classes is µ. The disease-induced death rate of T is α1 and the
disease-induced death rate of A is α2.

8. All parameters are assumed to be non-negative.

The HIV/AIDS model was developed with respect to time-dependent control variables
(models with controls), which are control of educational campaigns on susceptible individuals
(u1), control of antiretroviral therapy on pre-AIDS individuals (u2), and control of antiretroviral
therapy on full-blown AIDS individuals (u3). The control functions u1, u2, and u3, were defined
at the closed interval [0, Tf ], where 0 ≤ ui(t) ≤ 1, t ∈ [0, Tf ], i = 1, 2, 3 and Tf denotes the
end time of controls.

Based on the above assumptions, we can formulate our model as the following deterministic
system of non-linear differential equations:

dS

dt
= Λ − βS − u1S − µS

dE

dt
= u1S − (1 − δ)βE − µE

dI

dt
= βS + (1 − δ)βE − (σ1 + µ)I

dP

dt
= σ1I − (σ2 + u2 + µ)P

dT

dt
= u2P + u3A − (α2 + µ)T

dA

dt
= σ2P − (u3 + α1 + µ)A

(1)

where we denote β = (β1I + β2P )/N and N = S + E + I + P + T + A with initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, P (0) = P0, T (0) = T0, and A(0) = A0. (2)

It is not difficult to verify that all feasible solutions of system (1) are bounded and enter the
region

Ω =

{

(S, E, I, P, T, A) ∈ R6
+

∣

∣

∣

∣

N ≤
Λ

µ

}

.
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Our goal is to minimize the number of cases in infected subpopulations (I, P and A) as well as
to minimize the cost of control for educational campaigns (u1), therapy of pre-AIDS individuals
(u2), and therapy of full-blown AIDS individuals (u3). The objective function J is given by

J(u1, u2, u3) =

∫ Tf

0

[I + P + A + 1

2
(C1u

2
1 + C2u

2
2 + C3u

2
3)] dt. (3)

The constants Ci ≥ 0 (i = 1, 2, 3) are weights of the relative costs of the associated controls
u1, u2, and u3, respectively. In other words, we seek an optimal control triple (u∗

1, u∗

2, u∗

3)
such that

J(u∗

1, u
∗

2, u∗

3) = min {J(u1, u2, u3) | u1, u2, u3 ∈ U } (4)

where U = {(u1, u2, u3) | 0 ≤ ui ≤ 1, i = 1, 2, 3 , ∀t ∈ [0, Tf ]} is the control set.

3 Analysis of Optimal Control

In this section, we analyze system (1) with its control functions u1, u2, and u3 and theobjective
functional equation (3).The optimal control triple (u∗

1, u∗

2, u∗

3) must satisfy the necessary
conditions that are formulated by Pontryagin’s Maximum Principle [16, 20]. This principle
converts Equations (1) and (3) into a problem of minimizing pointwise a Hamiltonian H with
respect to the controls (u1, u2, u3). We formulate the Hamiltonian from the cost function of
Equation (3) and the governing dynamics equation (1) to obtain the optimality conditions. The
Hamiltonian function H associated without problem is

H = I + P + A + 1

2
(C1u

2
1 + C2u

2
2 + C3u

2
3) + λs

[

Λ −
(β1I + β2P )S

N
− u1S − µS

]

+ λE

[

u1S −
(1 − δ)(β1I + β2P )E

N
− µE

]

+ λI

[

(β1I + β2P )S

N
+

(1 − δ)(β1I + β2P )E

N
− (σ1 + µ)I

]

+ λP [σ1I − (σ2 + u2 + µ)P ] + λT [u2P + u3A − (α2 + µ)T ]

+λA [σ2P − (α1 + u3 + µ)A] .

(5)

with λ = (λS , λE , λI , λP , λT , λA) being the adjoint vector related to the state variables x =
(S, E, I, P, T, A). Assume that (x, u) is an optimal solution of the optimal control problem
(1)-(3). Then, there is a non-trivial vector function λ = (λS, λE , λI , λP , λT , λA) such that

dx

dt
=

∂H

∂λ
,

∂H

∂u
= 0

dλ

dt
= −

∂H

∂x
. (6)

with the transversality condition

λj(Tf) = 0, j = S, E, I, P, T, A. (7)

Hence, we obtain the following result:

Theorem 1 Let (S∗, E∗, I∗, P ∗, T ∗, A∗) be optimal state solutions with associated optimal
control variables (u∗

1, u∗

2, u∗

3) for the optimal control problem (1)-(3) with given initial conditions
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(S(0), E(0), I(0), P (0), T (0), A(0)) and fixed final time Tf. Then, there exist the adjoint
variables λj , j = S, E, I, P, T, A satisfying

dλS

dt
= (λS − λI)

[

β1I + β2P

N
−

(β1I + β2P )S

N2

]

+ (λI − λE)

[

(1 − δ)(β1I + β2P )E

N2

]

+ (λS − λE)u1 + λSµ

dλE

dt
= (λE − λI)

[

(1 − δ) (β1I + β2P )

N
−

(1 − δ) (β1I + β2P )E

N2

]

+ (λI − λS)

[

(β1I + β2P )S

N2

]

+ λEµ

dλI

dt
= −1 + (λS − λI)

[

β1S

N
−

(β1I + β2P )S

N2

]

+ (λE − λI )

[

(1 − δ)β1S

N
−

(1 − δ)(β1I + β2P )E

N2

]

+ (λI − λP )σ1 + λIµ
dλP

dt
= −1 + (λS − λI )

[

β2S

N
−

(β1I + β2P )S

N2

]

+ (λE − λI)

[

(1 − δ)β2E

N
−

(1 − δ)(β1I + β2P )E

N2

]

+ (λP − λA)σ2 + (λP − λT )u2 + λP µ

dλT

dt
= (λI − λS)

[

(β1I + β2P )S

N2
] + (λI − λE)

[

(1 − δ)(β1I + β2P )E

N2

]

+ λT (α2 + µ)

dλA

dt
= −1 + (λI − λS)

[

(β1I + β2P )S

N2
] + (λI − λE)

[

(1 − δ)(β1I + β2P )E

N2

]

+ (λA − λT )u3 + λA(α1 + µ).

(8)

and with transversality condition (7).
Furthermore, when boundary conditions for 0 ≤ ui ≤ 1, i = 1, 2, 3 are used in the control,

the optimal control (u∗

1, u∗

2, u∗

3) is obtained such that

u∗

1 = min

{

max

(

0,
(λS−λE)S∗

C1

)

, 1

}

,

u∗

2 = min

{

max

(

0,
(λP−λT)P∗

C2

)

, 1

}

,

u∗

3 = min

{

max

(

0,
(λA−λT)A∗

C3

)

, 1

}

.

(9)

Proof The existence of optimal control can be obtained using a result by Fleming and
Rishel [13]. The adjoint equation is found by differentiating the Hamiltonian equation (5)
with respect to state variables.

dλS

dt
= −

∂H

∂S
, λS(Tf) = 0,

dλP

dt
= −

∂H

∂P
, λP (Tf) = 0,

dλE

dt
= −

∂H

∂E
, λE(Tf ) = 0,

dλT

dt
= −

∂H

∂T
, λT (Tf) = 0,

dλI

dt
= −

∂H

∂I
, λI(Tf) = 0,

dλA

dt
= −

∂H

∂A
, λA(Tf) = 0,

Furthermore, by differentiating the Hamiltonian H with respect to u1, u2, and u3on U ,
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respectively,
∂H

∂u1

= C1u1 − (λS − λE)S = 0 at u1 = u∗

1,

∂H

∂u2

= C2u2 − (λP1
− λT P = 0 at u2 = u∗

2,

∂H

∂u3

= C3u3 − (λA − λT )A = 0 at u3 = u∗

3.

Hence, solving for u∗

1, u∗

2 and u∗

3 on the interior sets gives

u∗

1 =
(λS − λE)S∗

C1

,

u∗

2 =
(λP − λT )P ∗

C2

,

u∗

3 =
(λA − λT )A∗

C3

.

Now, let us consider the control bound, 0 ≤ u∗

i ≤ 1 for i = 1, 2, 3. By using the bounds for
control u∗

1, we get the following solution:

u∗

1 =































0 if
(λS − λE)S∗

C1

≤ 0

(λS − λE)S∗

C1

if 0 <
(λS − λE)S∗

C1

< 1

1 if
(λS − λE)S∗

C1

≥ 1.

The compact representation of the control u∗

1 is

u∗

1 = min

{

max

(

0,
(λS − λE) S∗

C1

)

, 1

}

.

Similarly, controls u∗

2 and u∗

3can be obtained in the same way and hence are written as

u∗

2 = min

{

max

(

0,
(λP−λT )P∗

C2

)

, 1

}

,

u∗

3 = min

{

max

(

0,
(λA−λT )A∗

C3

)

, 1

}

.

Thus, we get the characterization of the optimal control as in Equation (9). 2

4 Numerical Simulations and Cost-effectiveness Analysis

In this section, we study numerically the effect of optimal control strategies such as educational
campaigns, therapy on pre-AIDS, and therapy on full-blown AIDS using parameter values given
by a study [8] as the following:

Λ = 33.638, β1 = 0.1422, β2 = 0.711, α1 = 0.0909, α2 = 0.0667, δ = 0.3,
σ1 = 0.198, σ2 = 0.4621, and µ = 0.0139.

(10)
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The optimal control set is obtained by completing the optimality system, which consists of
the state system (1) and the adjoint system (8) through the forward-backward Sweep method
[16]. We start to solve system (1) with a guess for the controls forward in time using the
fourth-order Runge-Kutta scheme. Based on the transversality condition (7) as initial values,
the adjoint system (8) is solved backward in time using the fourth-order Runge-Kutta scheme
and the current solution iteration of the system. Then, the controls are updated using a convex
combination of the previous control values and the new control values from (9). This process
is repeated and iterations are stopped if the values of the state equation at the present is very
close to the previous iteration values. We describe the controls in the following strategies using
parameter values (10) and the final time Tf=10;the values of the weight function are taken as

w1 = 20, w2 = 75, w3 = 85, (11)

and the initial state of the variables are

S(0) = 957263, E(0) = 959, I(0) = 67, P (0) = 34, T (0) = 996, A(0) = 89. (12)

Furthermore, we investigate and compare the numerical results of the effects of different
optimal control strategies on the spread of HIV in a population; we will consider the following
combinations of educational campaigns, therapy on pre-AIDS, and therapy on full-blown AIDS
with seven strategies:

Strategy 1: control of educational campaigns,

Strategy 2: control of therapy on pre-AIDS,

Strategy 3: control of therapy on full-blown AIDS,

Strategy 4: control of educational campaigns and therapy on pre-AIDS,

Strategy 5: control of educational campaigns and therapy on full-blown AIDS,

Strategy 6: control of therapy on pre-AIDS and therapy on full-blown AIDS,

Strategy 7: control of educational campaigns, therapy on pre-AIDS, and therapy on full-blown
AIDS.

4.1 Strategy 1: Control of Educational Campaigns

In Strategy 1, control of educational campaigns (u1) is used to optimize the objective function J .
Figures 1(a)-(c) show that the control of educational campaigns resulted in the graph of
asymptomatic infection (I), pre-AIDS infection (P ), and full-blown AIDS (A) coinciding
between cases with control and cases without control. This means that the control of
educational campaigns has no effect on decreasing the number of asymptomatic infected, pre-
AIDS infected and full-blown AIDS cases. The control profile of the control of educational
campaigns is at the lower bound from the beginning to the end of the period, except at
t = 9.99 years, where the control u1 is at 2.28 × 10−4. (Figure 1(d)).
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Figure 1: : Effect of the Control of Educational Campaigns (u1)on the Spread of Infection

4.2 Strategy 2: Control of Therapy on Pre-AIDS

When only control of antiretroviral therapy on pre-AIDS individuals is applied while other
controls are set to zero, the significant effect occurs on the class of asymptomatic infected,
pre-AIDS, and full-blown AIDS individuals (Figure 2(a)-(c)). The control profile of u2 is at
the maximum level for 2.88 years and declines gradually towards zero at the end of the period
(Figure 2(d)).

4.3 Strategy 3: Control of Therapy on Full-blown AIDS

It can be seen that the control of antiretroviral therapy on full-blown AIDS (u3) used to optimize
the objective function resulted in a significant drop in the number of full-blown AIDS individuals
compared to without controls, while the graph of asymptomatic infected (I) and infected pre-
AIDS (P ) coincide between cases with control and cases without control (Figure 3(b)-(c)).
This means that Strategy 3 has no effect on decreasing the number of asymptomatic infected
and pre-AIDS individuals. Figure 3(d) shows that the control profile of therapy on full-blown
AIDS (u3) is at the upper limit for 0.28 years before slowly decreasing, then slowly increasing
to timet = 7.55 years and dropping sharply towards zero at the end.

4.4 Strategy 4: Control of Educational Campaigns and Therapy on Pre-AIDS

The combination of control of educational campaigns and therapy on pre-AIDS produced the
same resultsas Strategy 2 in decreasing the number of asymptomatic infected, pre-AIDS, and
full-blown AIDS individuals compared to without controls (Figure 4(a)-(c)). Figure 4(d) shows
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Figure 2: Effect of Control of Therapy on Pre-AIDS (u2) on the Spread of Infection

Figure 3: Effect of Control of Therapy on Full-blown AIDS (u3) on the Spread of Infection
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that the control profile of therapy on pre-AIDS is also the same as in Strategy 2, while the
control profile of the control of educational campaigns is at the lower limit within the period
of time.

Figure 4: Effect of Control on Educational Campaigns (u1) and Therapy on Pre-AIDS (u2) on
the Spread of Infection

4.5 Strategy 5: Control of Educational Campaigns and Therapy on Full-blown

AIDS

Figure 5(a)-(c) shows that the combination of control of educational campaigns and control of
therapy on full-blown AIDS produced the same results as Strategy 3 in decreasing the number
of asymptomatic infected, pre-AIDS infected, and full-blown AIDS individuals compared to
without controls. The control profile of therapy on pre-AIDS in Strategy 5 is also the same as
in Strategy 2 (Figure 5(d)) and the control profile of the control of educational campaigns is
at the lower limit within the period of time.

4.6 Strategy 6: Control of Therapy on Pre-AIDS and Therapy on Full-blown

AIDS

In Figure 6 (a)-(c), it can be seen that the control strategy combination of therapy on pre-AIDS
and therapy on full-blown AIDS resulted in a significant drop in the number of asymptomatic
infected, pre-AIDS, and full-blown AIDS individuals compared to without controls. The control
profile of antiretroviral therapy on pre-AIDS (u2) is at the upper limit for 2 years before
decreasing gradually towards the lower limit at the end. The control profile of antiretroviral
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Figure 5: Effect of Control of Educational Campaigns (u1) and Therapy on Full-blown AIDS
(u3) on the Spread of Infection

therapy on full-blown AIDS (u3)is at the upper limit for 0.38 years before decreasing periodically
to the lower limit at the end (Figure 6 (d)).

4.7 Strategy 7: Control of Educational Campaigns, Therapy on Pre-AIDS, and

Therapy on Full-blown AIDS

Figure 7(a)-(c) shows that the combination of all three controls (educational campaigns, therapy
on pre-AIDS, and therapy on full-blown AIDS) produced the same result as Strategy 6 in
decreasing the number of asymptomatic infected, pre-AIDS infected, and full-blown AIDS
individuals compared to without controls. The control profile of therapy on pre-AIDS and
therapy on full-blown AIDS in Strategy 7 is also the same as in Strategy 6,while the control
profile of the control of educational campaigns is at the lower limit within the period of time
(Figure 5(d)).

4.8 Cost-Effectiveness Analysis

In this section, we focus on comparing the four control strategies in Section 4.1-4.4 to determine
the most cost-effective strategy using cost-effectiveness analysis. To perform cost-effectiveness
analysis, we follow the method as applied in several studies [11, 17, 19]. To achieve this, we
evaluate the costs using the incremental cost-effectiveness ratio ICER to compare the differences
between the various costs and health outcomes of the two competing intervention strategies.
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Figure 6: Effect of Control of Therapy on Pre-AIDS (u2) and Therapy on Full-blown AIDS
(u3) on the Spread of Infection

Figure 7: Effect of Control of Educational Campaigns (u1), Therapy on Pre-AIDS (u2), and
Therapy on Full-blown AIDS (u3) on the Spread of Infection.
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The ICER is defined by:

ICER =
Defference in costs in strategies i and j

Defference in infected averted in strategies i and j
.

The ICER numerator includes differences in intervention costs, averted disease costs, and costs
of prevented cases,as well as averted productivity losses, if applicable. The ICER denominator
is the difference in health outcomes (for example the total number of infections averted andthe
number of susceptibility cases prevented).

Given two competing Strategies Pand Q, where Strategy Q has higher effectiveness than
Strategy P , the ICER values are calculated with the below equations.

ICER(P ) =
TC(P )

TA(P )
,

ICER(Q) =
TC(Q)− TC(P )

TA(Q)− TA(P )
.

(13)

In this paper, the total costs (TC ) and the total cases averted (TA) as implemented during the
given period for strategy i for i = 1, 2, 3, 4 are

TC(i) =

∫ Tf

0

(C1u
∗

1(t)S∗(t) + C2u
∗

2(t)P ∗(t) + C3u
∗

3(t)A∗(t)) dt

TA(i) =

∫ Tf

0

[(I(t) + P (t) + A(t)) − (I∗(t) + P ∗(t) + A∗(t))] dt

where Ci corresponds to the person unit cost of the three possible interventions: control of
educational campaigns for condom use (C1), antiretroviral therapy for pre-AIDS individuals
(C2), and antiretroviral therapy for full-blown AIDS individuals (C3), while (I∗(t), P ∗(t), A∗(t))
is the optimal solution associated to the optimal control (u∗

1, u∗

2, u∗

3).
Next, we simulate the model using seven intervention strategies. Using these simulation

results, the control strategies are ranked in order of increased numbers of averted infections.
The difference between the total infected individuals without control and the total infected
individuals with controls are used to determine the “total infection averted” used in the cost-
effectiveness analysis table.

The total cost generated by the control strategy is proportional to the number of controls
used. Table 1 presents control strategies ranked in ascending order according to the total
averted infections.

Strategy 1 is compared with Strategy 3 with respect to increased effectiveness, in reference
to Table 1. Using Equation (13), the ICER values are calculated below:

ICER(1) =
1.0437 × 10−7

2.2574 × 10−9
= 4.6235.

ICER(3) =
301.513 − 1.0437 × 10−7

937.1 − 2.2574 × 10−9
= 0.3218.

ICER(5) = ICER(3).

The comparison between Strategy 1 and Strategy 3 indicates that ICER(3) < ICER(1).
This means that Strategy 1 is dominated by Strategy 3. Similarly, Strategy 1is dominated by
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Table 1: Total Costs for Strategies 1-7 in Increasing Order of Total Averted Infections

Strategy Total averted infections (TA) Total cost(TC )
1 2.2574 ×10−9 21.0437 ×10−8

3 937.1 301.513
5 937.1 301.513
2 1920.8 485.218
4 1920.8 485.218
6 2486.7 633.859
7 2486.7 633.859

Strategy 5. Hence, Strategy 1 is less effective than Strategies 3 and 5. Therefore, Strategy 1 is
excluded from the set of alternatives.

Next, Strategies 3 and 5 are compared with Strategy 2. The ICER values for Strategy 3
and Strategy 2 are calculated below:

ICER(3) =
301.513

937.1
= 0.3218.

ICER(5) = ICER(3).

ICER(2) =
485.218 − 301.513

1920.8 − 937.1
= 0.1867.

ICER(4) = ICER(2).

The comparison of ICER (5) and ICER (2) reveals a cost savings of 0.1867 for Strategy 2 over
Strategies 3 and 5. The smaller ICER (2) for Strategy 2 implies that Strategies 3 and 5 are
dominated by Strategy 2. Similarly, Strategies 3 and 5 are dominated by Strategy 4. This
means that Strategies 3 and 5 are more expensive and less effective than Strategies 2 and 4.
Therefore, Strategies 3 and 5 are excluded from the set of alternatives.

Finally, Strategies 2 and 4 are compared with Strategy 6. The ICER values for Strategy 2
and Strategy 6 are calculated below:

ICER(2) =
485.218

1920.8
= 0.2526.

ICER(4) = ICER(2)

ICER(6) =
633.859 − 485.218

2486.7 − 1920.8
= 0.262.

ICER(7) = ICER(6).

The comparison of Strategies 2 and 4 with Strategy 3 indicates that Strategy 6 is more costly
and less effective than Strategy 2, as ICER(2) < ICER(6). Hence, Strategy 6 is dominated
by Strategy 4, as ICER(4)=ICER(2). Similarly, Strategy 7 is dominated by Strategies2 and 4.
This means that Strategies 6 and 7 are more expensive and less effective than Strategies 2 and
4. Therefore, Strategies 6 and 7 are excluded from the set of alternatives. Thus,the conclusion
is that Strategy 2 (control of therapy on pre-AIDS)and Strategy 4 (the combination of the
control of educational campaigns and therapy on pre-AIDS) are the most effective strategies.
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5 Conclusion

In this paper, we performed an optimal control analysis for the HIV model to investigate the
effect of educational campaigns, antiretroviral therapy on pre-AIDS, and antiretroviral therapy
in full-blown AIDS on HIV dynamics. Pontryagin’s Maximum Principle was used to derive
and analyze the necessary conditions for optimal control strategies: condom campaigns (u1),
antiretroviral therapy on pre-AIDS (u2) and antiretroviral therapy on full-blown AIDS (u3) to
minimize the spread of HIV.

Numerically, the optimal strategies that include antiretroviral therapy on pre-AIDS
(Strategies 2, 4, 6 and 7) showed significant differences in the number of asymptomatic infected,
pre-AIDS infected, and full-blown AIDS individuals compared to without controls. The optimal
strategies that include antiretroviral therapy on full-blown AIDS (Strategy 3 and 5) only have
positive effects in decreasing the number of full-blown AIDS individuals and have no positive
impact on asymptomatic infected and pre-AIDS class individuals. The control profile of the
control of educational campaigns is at the lower limit until the end of the period and does not
have a positive effect on reducing the number of infected individuals. In the case of limited
resources, Strategy 2 (control of therapy on pre-AIDS) and Strategy 4 (the combination of
control of educational campaigns and antiretroviral therapy on pre-AIDS) are the optimal and
most effective strategies.
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