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Abstract Invadopodia are finger-like protrusions located at subcellular membrane which
can lead to cancer cell invasion. The formation of invadopodia involves several steps such
as actin polymerizations, degradation of extracellular matrix which produce ligand and
signal stimulation that is occurred from the binding of ligand with epidermal growth factor
receptor. In this paper, a mathematical model of signal transduction is investigated.
Both signal and ligand are represented by Laplace equation with Dirichlet boundary
condition for each region. The cell membrane is treated as free boundary surface to
separate any activity that occurred in intracellular and extracellular regions. The motion
of the interface is taken as gradient of interior signal and the cell membrane is set as zero
level set function. The problem is solved numerically using finite difference scheme of
upwind, interpolation and extrapolation methods. The results showed that the formation
of invadopodia is formed when protrusions exist on the cell membrane.
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1 Introduction

Cancer is the second main cause of death and is estimated to be 9.6 million in 2018. Approx-
imately, 1 in 6 deaths are due to cancer. However, in the next two decades, the rate of death
related to cancer is anticipated to rise by 70%. The most common types of cancer among men
are lung, prostate, colorectal, stomach and liver, while women are usually affected by breast,
colorectal, lung, cervix and thyroid cancer. Hence, from this reported data, we can say that
cancer is a serious problem to human health [1].

At normal condition, proto-oncogenes are responsible for cell division and growth but dur-
ing genetic mutation, they become oncogenes that are dangerous for the existing cell. The
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stimulation of the uncontrolled cell division is due to deficiency of tumor suppressor genes.
Therefore, in the past three decades, studies on substantial volume of information about genes
and proteins with their relationship to cancer growth have been conducted [2-4]. Recently, the
role of mutated genes in cancer cells has become very important. Hence, the potency of gene
expression and defective proteins is considered in [5] to detect the novel cancer biomarkers.

The study of biophysical model of tumor invasion has been conducted in [6]. This model
consist of three coupled partial differential equations (PDEs) to describe the interaction of
cancer cell density, extracellular matrix (ECM) density and matrix degrading enzyme concen-
trations. The relation between cancer cells and the host tissue is considered in this model in
order to investigate the effect of tumor growth and invasion in the real biological phenomena.
At the same time, [6] has proposed a computational model to predict the location and shape of
tumor in realistic geometries at particular instance. The PDEs are discretized in space using
Galerkin finite elements and in time using Crank-Nicolson method [7].

The occurrence of cancer cells is the consequence of malignant transformation [8]. The
genetic instability of genetic causes the cell to proliferate and form a tumor. These biological
capabilities are known as the features of cancer which include self-sufficiency in proliferative
signaling, evasion of growth suppressors, apoptosis, secretion of pro-angiogenic signals, invasion
and metastasis. Metastasis is defined as the migration of the tumor cell from the normal
location to invade another tissue or organ. Metastatic cancer cells have to penetrate several
physical barriers to escape from the primary tumor before spreading to the other tissue or
organ. In order to pass through these barriers, the F-actin rich protrusions or invadopodia are
formed. Hence, these invadopodia will degrade the ECM and enable the invasive tumor cells
pass through it [9,10].

Invadopodia are obtained from the stimulation of signal that make a branched actin as-
sembly at the sites of membrane [11]. The main factor that contributes to this process is the
degradation of ECM mediated by subcellular actin-rich structures. For the process of ECM
degradation, membrane type 1 metalloprotease (MT1-MMP) is the most important proteinase
in invadopodia. However, in addition to MT1-MMP proteinase that encouraged to ECM degra-
dation, many other proteinases that work together are secreted at invadopodia. Hence, [12]
has listed the proteins related to the formation of invadopodia which are responsible for high
levels of proteolysis throughout cancer invasion and metastasis. Thus, these can be considered
as crucial in cancer invasion.

The study on invadopodia has attracted the attention of many researchers for many years.
In the effort to understand more about the formation and maturation of invadopodia, [13] has
proposed a positive feedback loop. The positive feedback loop is rendered from the view of
biology, which includes the integration of several processes that consist of reorganization of
actin, degradation of ECM, the process of signal through epidermal growth factor receptor
(EGFR) and matrix metalloprotease (MMP) synthesis and delivery to the location of the
invading front. In this study, the rate constant of MMP is varied. Hence, it is found that the
cancer cells become more invasive as the rate constant of MMP is larger.

The velocity of membrane is considered as the gradient of inner signal that initiates the
movement of interface. Related to this situations, [14] has studied a free boundary problem for
the formation of protrusions. To deal with the velocity of membrane, level set method is used so
that discontinuities near the interface are avoided. The models consist of Laplace equation with
Dirichlet condition inside the cell while using Neumann condition on the outside. In solving
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this model, first order Cartesian finite difference method is employed. The level set methods
are algorithms for tracing the boundaries and interfaces in the progression of tim [15, 16].

In [17], the problem on the signal transduction in invadopodia formation is solved by using
a fixed domain method. In this method, free boundary is converted to fixed boundary domain.
Signal transduction through the binding between ligand and membrane associated receptor
is important in order to establish the actin polymerization and then push the membrane of
migrating cells. In [17], one-dimensional Stefan-like problem of signal transduction and cell
membrane is treated as free boundary surface to separate any activity that occurred in intra-
and extracellular region. The movement of the free boundary or velocity is calculated by the
decrease of signal gradient on the front. The numerical results indicate that both free boundary
positions and signal distributions are increased as time progresses.

Mathematical modeling is one of the methods to understand the mechanism of cancer, which
includes the cancer growth, cancer invasion and many more. In addition, mathematical ap-
proaches using continuous and discrete models, particularly by considering partial and ordinary
differential equations in tumor growth, play a role in the relationship between mathematics and
oncology which is a branch of medicine [18]. Several mathematical models and approaches have
made it possible to obtain some insights into the dynamics of cancer invasion. Hence, it is one
of the effective methods to access the intricate processes such as infection dynamics and one of
the best tools to test hypotheses on the ideal way to control the spread of an infection [19]. On
the other hand, the development, invasion and metastasis of breast cancer incorporated with
the biological phenomena can be generated using mathematical models [20].

From the fact that signal plays an important role during the formation of invadopodia,
the extension study from [14, 18] are done. In this study, the formation of invadopodia is
investigated in contributions to several steps such as degradation of ECM which produce ligand,
signal transduction that is stimulated from the binding of ligand and EGFR and the movement
of the interface with normal velocity.

2 The Model

2.1 Mathematical Modeling

In this section, three variables including the ligand density, ¢*(«,t), the signal density, o(x,t)
and the velocity on the plasma membrane, v(x,t) are investigated. The interaction between
the variables in this study is defined in the domain Q = O UT; UO? as shown in Figure 1. Tt is
defined by 2 = O7UT,UO¢" . MMPs degrade the ECM. From this degradation, ligand is created.
Ligand binds to the receptor on the plasma membrane and stimulates signaling pathway which
causes up-regulation of MMPs. Assume that at any time ¢, the cell membrane carries the flux
of membrane-type 1 matrix metalloproteinase (MT1-MMP) defined as a function, g(x) where
g(x) = 0.1]2 + cos(3m(z + y)) cos(m(z + 0.3))], [14]. The matrix metalloproteinases (MMPs)
play an important role in degrading the extracellular matrix (ECM) and hence produce the
ligand on the cell boundary.

The ligand binds to the receptor on the plasma membrane and hence stimulates signal
inside the cell. The membrane is moved with normal velocity on the interface and the velocity
is interpreted as the gradient of the inner signal, [14,18]. In the real biological phenomena,
the formation of invadopodia consists of several processes including the production of MMP
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Figure 1: The schematic diagram of (a) the molecular interactions involved for invadopodia for-
mation and (b) the geometrical setting of the complete domain for two dimensional invadopodia
formation.

enzymes, actin polymerizations and others, but in this study, these processes are excluded.
Note that, we only consider steady case problem in which the time derivative is not considered
for both ligand and signal density. For protrusions formation, [14] agreed that the dynamics
are much faster than the characteristics of time.

Therefore, this study explored the cancer cell problem associated with the formation of
invadopodia in two-dimensional signaling pathways. The mathematical modeling on the in-
vadopodia formation is governed by the following system of differential equations

1. For ligand:
Act =0, zeOf, xc(r,y),
C*|aQ = 0, (1)
C*|1"t = g|1"t, te [O,T]

2. For signal:
Ao =0, xeOf, xecxy), )
U|Ft:g|rt7 tE[O>T]

3. For velocity:
v=Vo, ve€ (r,vy). (3)

The cell membrane is taken by the zero level set function, v (, t) which satisfies the equation
of transport 0y +v - Vi) = 0, where the velocity is extended from Vo|r,. Extension of velocity
is significant so that the discontinuities across the interface with the whole domain can be
avoided. Specifically, the velocity extension, w in the whole domain is evaluated using:
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4. For velocity extension:

(VY- Vw=0, in Q we (z,y),
w=v on I}.

(4)

2.2 Non-dimensionalization

The equation system are dimensionalized in order to use realistic parameter values. The
parameters of ¢, 09, vo and wy are densities at the chemical equilibrium [13]. Hence, setting

*

~ C - g - v - w
¢ = o=—, UV=—, wW=—

PP 9
Co (oJy) Vo Wo

we have our non-dimensionalized model by dropping tildes

1. For ligand:
Ac* =0, xcOf, xc(ny),
C*|aQ = 0, (5)
C*|1"t = g|1"t, te [O,T]

2. For signal:
Ao =0, xeOy, xc(z,y),
U|Ft:g|rt7 t€[0>T]

3. For velocity:

v=Vo, ve (x,vy). (7)
4. For velocity extension:

(VY- Vw=0, in Q we (z,y),
w=v on I}

(8)

2.3 Numerical Computation

Equations (5) to (8) are solved using finite difference scheme of upwind, ghost fluid method
with linear extrapolation and level set method. The difficulties in this study are to deal with
regular and neighboring points on the interface (plasma membrane). By using the
finite difference method, first, we should take note of the grid points that lies at regular or
neighboring points. Regular points are defined as the points that are located far from the
interface while neighboring points are the points that are very close to the interface. In order
to avoid the discontinuities across the interface, two numerical values are identified on the grid
points, including the points that are exactly on the grid and ghost values of the points that are
extrapolated from the other side of the interface [21]. Therefore, the numerical algorithm that
is used in this study is as follows:

1. For the regular point I, second order of z-derivative with centered difference is
0 0 0
0 _ Titly 1,7 i—1,5
Vui,j = 72 ) (9)

where the variable u denotes the ligand or signal density.
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. For the neighboring point NV, second order of z-derivative with centered stencil of ghost
fluid method is

2 2 2
0 _ 0 0 0
Vu; ; = mui—l—l,j ~ gop i + mui—l—é)z,j' (10)
. The plasma membrane is taken as zero level set function such that
Ii={x € Q,¢(x,t) = 0} and the initial interface, 1)(x,t) is considered as
0 _ .2, .2 2
i =T Ty =T (11)

where 7 is the radius of a cell (assumed circle shaped).

. The 0, in (6) is defined as the distance of the point z; to the interface, I'; and is calculated
using

e
W, TE [i1,j; Tigl,
(em)g,j = N ngl’] (12)

w?+1,j_w?,j’ [ 2,77 L1+ 7.7]

. The velocity, v in the signal z-region is computed using

0 0
Tit1,j %15
T’ fOrI’
0 _ o001 + 13
(v2)i; = L= for NT, (13)

00, 00
? ¥ 2¥) -
- , forN—,
where N~ and N are the set of neighboring points on the left and right sides respectively.

. The velocity inside the interface is extended to the exterior cell region using formula of
(V. V)w = 0, therefore

0 0
YTV for 0O,

h )
0 0 _y0.
()i = wﬂjhiwﬂ for 9927, "
0 0
%, otherwise.
0 0
0 w; :)z—l,J’ lfwm > 0,
(wa)i; = w? ) "
%7 lfwm < 0’

where 0Q~ and 907" are the left and right boundaries respectively. Notice that, on the
interface, I'y, v = w.

. The level set function, ¥ (x,t) is updated using
i = Uiy — O((02)i ) (02)75) + ((0)75) ((0y)2)]; (16)

where (1,)7; and (¢,)?; is using second order upwind technique.
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3 Results and Discussion

New modeling is introduced in [18] in order to overcome the problem observed in [13]. The new
variable of signal transduction is emphasized. Also, the plasma membrane is treated as a free
boundary interface. In his study, the other variables is excluded for simplicity. Hence, in this
paper, the ligand density is considered since signal is stimulated from the binding of ligand with
epidermal growth factor receptor (EGFR). Study in [18] focused on one-dimensional problem,
however, in this study, two-dimensional is conducted to get clear view of the invadopodia
formation.

Ligand and signal stimulation are computed using finite difference scheme of upwind, ghost
fluid method with linear extrapolation and also level set method. In this study, the domain,
(2 is measured in a square with dimension [—L, L] x [—L, L] where L is taken as 1. In (11),
the radius of the circle is set as » = 0.6667. From the results obtained, the appearance of
invadopodia is discussed.

Figure 2 showed the initial interface of cancer cell where the blue line of the circle indicates
the plasma membrane of the cell. After a time step, the formation of invadopodia can be seen
where the protrusions are generated at the membrane as in Figure 3. This result indicates
that the invadopodia are formed with the presence of signal that is stimulated from ligand and
epidermal growth factor receptor binding.

Based on Figures 4 and 5, the maximum density of ligand and signal can be seen at the
interface. The yellow colors located near to the interface indicate the high density of ligand
and signal. Here, the protrusions are formed as in Figure 3. Since this study is only focused on
the steady case, the ligand and signal distributions for initial and after a timestep are similar.

4 Conclusion

This study was aimed at modeling of invadopodia formation that are observed by the presence
of finger-like protrusions. The model consists of the system of Laplace operator for ligand and
signal densities, in addition to the gradient of signal. The signal is important for the formation
of invadopodia. Hence, the role of ligand is the most crucial since the signal is stimulated from
the binding of ligand and epidermal growth factor receptor. The movement of the membrane
is a consequence of the gradient of signal inside the cell. Meanwhile, the membrane is treated
as a free boundary and is considered as zero level set function initially.

The ligand, signal and velocity variables are solved numerically using finite difference scheme
of upwind, linear extrapolation, ghost fluid method and level set method. After a timestep,
the protrusions are spotted on the interface. Last but not least, several protrusions are formed
at the location of high density of ligand and signal. Hence, from this result we can observe
that, the high density of ligand and signal can lead to the formation of protrusions on the
interface. In conclusion, the protrusions or invadopodia are developed on the membrane due
to the presence of signal density inside the cell.
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Figure 2. The initial interface for psi.

Figure 4: The ligand distribution.
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