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Abstract This study presents a two-strain deterministic model which incorporates

Dengvaxia vaccine and insecticide (adulticide) control strategies to forecast the dynamics
of transmission and control of dengue in Madeira Island if there is a new outbreak
with a different virus serotypes after the first outbreak in 2012. We construct suitable

Lyapunov functions to investigate the global stability of the disease-free and boundary
equilibrium points. Qualitative analysis of the model which incorporates time-varying

controls with the specific goal of minimizing dengue disease transmission and the costs
related to the control implementation by employing the optimal control theory is carried

out. Three strategies, namely the use of Dengvaxia vaccine only, application of adulticide
only, and the combination of Dengvaxia vaccine and adulticide are considered for the

controls implementation. The necessary conditions are derived for the optimal control of
dengue. We examine the impacts of the control strategies on the dynamics of infected

humans and mosquito population by simulating the optimality system. The disease-free
equilibrium is found to be globally asymptotically stable whenever the basic reproduction

numbers associated with virus serotypes 1 and j (j ∈ {2, 3, 4}), respectively, satisfy
R01,R0j ≤ 1, and the boundary equilibrium is globally asymptotically stable when the
related R0i (i = 1, j) is above one. It is shown that the strategy based on the combination

of Dengvaxia vaccine and adulticide helps in an effective control of dengue spread in the
Island.

Keywords Dengue model; Lyapunov function; optimal control; stability analysis.
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1 Introduction

Dengue fever is a mosquito-borne disease caused by the dengue virus of the family Flaviviridae,
which has four distinguished but closely related serotypes (or strains) identified as DEN-1, 2, 3, 4
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[1, 2]. The disease is transmitted to human by the bites of its infected primary and secondary
vectors Aedes aegypti and Aedes albopictus, respectively [2,3]. Of the four dengue virus serotypes
that affect humans, DEN-2 and DEN-3 have potential to cause more severe dengue than DEN-1
and DEN-4 [4]. Human recovery from an infection by one dengue virus strain confers lifelong
immunity to the strain, but only temporary cross-immunity to the rest [2], which increases the
susceptibility of such individual to the other three virus serotypes [2]. Epidemiological studies
of dengue revealed that dengue haemorrhagic fever (DHF) or dengue shock syndrome is more
likely to occur in secondary infection [5, 6].

Up to date, there is no perfect dengue vaccine. Live attenuated Dengvaxia vaccine was
licensed for the disease in December 2015 [3]. It is evident from studies that the vaccine
is efficacious and safe in seropositive individuals (that is, persons confirmed to have had
dengue infection before vaccination) and exposes the seronegative individuals (i.e, persons
with first dengue infection after vaccination) to a severe risk of the infection based on the
outcome of clinical trials. As a result, the World Health Organization (WHO) recommended
pre-vaccination screening strategy, which aims at vaccinating seropositive individuals [3].
Meanwhile, effective control strategy of dengue focuses on its vector, which depends on the
reduction of mosquito population. This includes administering larvicide at mosquito breeding
sites, open space spraying using insecticide, removal of artificial mosquito breeding sites, and
personal protection against mosquito bites [3].

Compartmental models have been used to describe the transmission dynamics of dengue
between the interacting host and vector populations. The models have helped to facilitate
the comprehension of mechanisms involved in the dynamic of dengue disease transmission.
Single strain models have been used to examine the transmission dynamics of dengue [7, 8].
Others have examined the impact of vaccination on the transmission dynamics of dengue [9],
investigate the efficacy of vector control strategies on dengue spread [10, 11], and assessed
the impact of combining vector controls and imperfect vaccine on the spread of dengue [12].
However, two-strain deterministic models have been used to describe the transmission dynamics
of the coexistence of two dengue virus serotypes [1, 13–15] and examine the impact of control
strategies on the transmission of dengue [4, 16, 17]. Mishra and Gakkhar [18] used a two-strain
mathematical model to assess the impacts of awareness and vector controls on the dynamics of
transmission of dengue.

In another developments, investigation of optimal strategies for preventing and controlling
dengue disease transmission has been carried out by employing optimal control (OC) theory.
For instance, Agusto and Khan [19] and Pongsumpun et al. [20] derived the optimal levels of
vaccination and insecticide for dengue disease prevention and control. Also, optimal insecticide
control was determined in Rodrigues et al. [21]. In another study, Buonomo and Marca [22]
formulated an OC problem governed by a system of ordinary differential equations (ODEs)
to obtain the optimal bed net and insecticide controls. However, non of the authors that
incorporated vaccination into their models took into consideration the suggestion by WHO
on the use of Dengvaxia vaccine. Hence, a reliable two-strain deterministic model is essential
to better comprehend the mechanism of dengue disease spread and control using Dengvaxia
vaccine and adulticide.

Our interest in this work is to propose an OC framework based on a two-strain dengue model
which does not only consider the open field spraying of adulticide, but also the vaccination of
seropositive individuals with the consideration of the recommendation by WHO [3] on the use
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of Dengvaxia. The underlying idea is to examine the effect of an integrated form of the control
strategy (use of adulticide only) adopted in Rocha et al. [4] on the dynamical system of dengue
disease transmission with coexistence of two virus serotypes. More precisely, we use information
from the 2012 dengue outbreak in Madeira Island, Portugal as reported by Rocha et al. [4] to
forecast the scenarios of coexistence of two virus strains in the Island. Three strategies, namely
use of Dengvaxia vaccine only, use of adulticide only, and combination of Dengvaxia vaccine
and adulticide, are adopted for implementing the controls.

The rest of this paper is organized as follows. In Section 2, a two-strain dengue model
which incorporates two control parameters u1 and u2 accounting for Dengvaxia vaccine and
adulticide, respectively, is proposed. Section 3 presents the analysis of the model. In Section
4, formulation of OC problem is taken up by considering the controls u1 and u2 as time-
dependent variables. We employ Pontryagin’s maximum principle (PMP) in order to examine
the necessary conditions for the optimal strategies for the control of dengue disease spread, and
numerical simulations are conducted on the resulting optimality system. Results and discussion
are taken up in Section 5. Conclusion is finally drawn in Section 6.

2 The Model

The two-strain deterministic model formulated in this paper is based on the single-strain dengue
model proposed in Rodrigues et al. [21] and the consideration of the two-strain models presented
in James [13] and Rocha et al. [4]. The model describes the interactions between human and
mosquito populations. The model subgroups human population into eight epidemiological
states:

HS(t)− Susceptible individuals who can contract both serotypes 1 and j;

HI1(t)− Infected individuals with serotype-1;

HIj
(t)− Infected individuals with serotype-j;

HS1j
(t)− Recovered individuals from serotype-1 and susceptible to serotype-j;

HSj1
(t)− Recovered individuals from serotype-j and susceptible to serotype-1;

HI1j
(t)− Infected individuals by serotype-j after recovery from infection by serotype-1;

HIj1
(t)− Infected individuals by serotype-1 after recovery from infection by serotype-j; and

HR(t)− Recovered individuals from secondary infection.

The mosquito population, which includes only female mosquitoes, is compartmentalized into
three:

MS(t)− Susceptible mosquitoes that can contract both serotypes 1 and j;

MI1(t)− Infected mosquitoes by serotype-1; and

MIj
(t)− Infected mosquitoes by serotype-j.
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The 2012 first dengue outbreak in Madeira Island was caused by DEN-1 [4] and there may be
a new disease outbreak, if anyone of the other three serotypes surfaces in the Island. Therefore,
we are not specific about the virus serotype to be responsible for the new outbreak. Then,
we use the same idea adopted in Rocha et al. [4] by letting the index j denotes the second
virus serotype, which is a member of the set {2, 3, 4} representing DEN-2, DEN-3 and DEN-4,
respectively. We retain the same notation henceforth unless otherwise specified.

In the formulation of our model, variable population sizes for both human and mosquito
populations are considered. This is due to the consideration of the value different from zero
for the disease-induced death rate (µD 6= 0), which represents the probability of death from
DHF, and increasing mortality rate of mosquito at a rate u2(t). Therefore, the total human
and mosquito populations at any time t are given by Equations (1) and (2), respectively, as

HN = HS(t) + HI1(t) + HIj
(t) + HS1j

(t) + HSj1
(t) + HI1j

(t) + HIj1
(t) + HR(t) (1)

and
MN = MS(t) + MI1(t) + MIj

(t) = mHN (2)

for some constant m [21].
Also, two control measures (insecticide and vaccination) are considered for interventions.

Control parameter u1, which represents the rate of vaccinating seropositive individuals, is
incorporated into the model in line with WHO directives on the use of the licensed live
attenuated Dengvaxia vaccine on seropositive individuals [3]. Also, the model includes control
parameter u2 which accounts for adulticide control. One of the underlying ideas of this study is
the fact that secondary infection increases the chance of developing DHF which can be justified
by Antibody-Dependent Enhancement (ADE) phenomenon [4].

Formulation of the proposed model is made under the following assumptions:

i. There is no state to describe resistant mosquitoes because of their short lifespan;

ii. There is no state equation for secondary infected mosquitoes. Thus a mosquito, once
infected, remains infectious for the rest of its lifetime [23];

iii. There is no immigration or emigration;

iv. It is assumed that humans and mosquitoes are born susceptible;

v. Human and mosquito populations are homogeneously mixing so that vector have an equal
probability to bite any individual;

vi. Both vector and host can transmit the virus only during the infectious state;

vii. There is no vertical transmission of the virus in the vector and host; and

viii. Humans cannot be infected by more than one virus serotype at the same time.

Hence, the dynamics of vector-host interactions in the presence of two dengue virus strains
is described by the system of ODEs for model 3 as shown in Equation (3).
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dHS(t)

dt
= µHHN (t) −

[

BβMH1

MI1(t)

HN (t)
+ BβMHj

MIj
(t)

HN (t)
+ µH

]

HS(t),

dHI1(t)

dt
= BβMH1

MI1(t)

HN (t)
HS(t) − θH1

HI1(t) − µHHI1(t),

dHIj
(t)

dt
= BβMHj

MIj
(t)

HN (t)
HS − θHj

HIj
(t) − µHHIj

(t),

dHS1j
(t)

dt
= θH1

HI1(t) − σjBβMHj

MIj
(t)

HN (t)
HS1j

(t) − µHHS1j
(t) − u1(t)HS1j

(t),

dHSj1
(t)

dt
= θHj

HIj
(t) − σ1BβMH1

MI1(t)

HN (t)
HSj1

(t) − µHHSj1
(t)− u1(t)HSj1

(t),

dHI1j
(t)

dt
= σjBβMHj

MIj
(t)

HN (t)
HS1j

(t)− θHj
HI1j

(t)− µHHI1j
(t) − µDHI1j

(t),

dHIj1
(t)

dt
= σ1BβMH1

MI1(t)

HN (t)
HSj1

(t) − θH1
HIj1

(t) − µHHIj1
(t)− µDHIj1

(t),

dHR(t)

dt
= θH1

HIj1
(t) + θHj

HI1j
(t) + u1(t)HS1j

(t) + u1(t)HSj1
(t)− µHHR(t),

dMS(t)

dt
= µMMN (t) −

[

BβHM1

(HI1(t) + HIj1
(t))

HN (t)
+ BβHMj

(HIj
(t) + HI1j

(t))

HN (t)

]

MS(t)

− (µM + u2(t))MS(t),

dMI1(t)

dt
= BβHM1

(HI1(t) + HIj1
(t))

HN (t)
MS(t) − µMMI1(t) − u2(t)MI1(t),

dMIj
(t)

dt
= BβHMj

(HIj
(t) + HI1j

(t))

HN (t)
MS(t) − µMMIj

(t) − u2(t)MIj
(t),

(3)

subject to the initial conditions (ICs):

HS(0) = H0S , HI1 (0) = H0I1 , HIj
(0) = H0Ij

, HS1j
(0) = H0S1j

,

HSj1
(0) = H0Sj1

, HI1j
(0) = H0I1j

, HIj1
(0) = H0Ij1

, HR(0) = H0R,

MS(0) = M0S , MI1(0) = M0I1, MIj
(0) = M0Ij

.

(4)

Description of the parameters of Model (3) is presented in Table 1.
The 8th ODE in Equation (3) describes the population of recovered individuals in the

dynamical system decouples and can be excluded from Model 3 based on the condition in
Equation (1), and use

HR(t) = HN (t) −HS(t) − HI1(t)− HIj
(t) − HS1j

(t) −HSj1
(t) −HI1j

(t)− HIj1
(t).
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Table 1: Model Parameter Values and Their Description

Parameter Description
Value

Source
Scenario 1 Scenario 2

HN Total human population 112000 112000 [4, 11]

MN Total mosquito population m × HN m × HN

σ1, σj Susceptibility indexes for secondary infection by virus serotypes 1 and j, respectively 1.1, 1.1 1.1, 1.1 [4]

βMH1
, βMHj

Transmission probabilities of dengue virus from infected mosquito by serotypes 1 and
j, respectively, to human (per bite)

0.25, 0.25 0.25, 0.33 [4]

µH Per capita birth rate and natural death rate of humans (per day) 1
79×365

1
79×365

[4, 11]

B Average mosquito biting rate (per day) 1
3

1
3

[4, 11]

βHM1
, βHMj

Transmission probabilities of dengue virus from infected human by serotypes 1 and j,
respectively, to mosquito (per bite)

0.25, 0.25 0.25, 0.33 [4]

1
µM

Per capita death rate of mosquito (in days) 15 15 [4, 11]

1
θH1

, 1
θHj

Average periods of infectiousness of virus strains 1 and j in human (in days) 7, 5 7, 9 [4]

µD Dengue virus disease-induced death rate 0.02 0.02 [4]

m Number of female mosquito per human 6 6 [10]
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Then, the equivalent system for human and mosquito populations for model 5 is described
in Equation (5).

dHS(t)

dt
= µHHN(t) −

[

BβMH1

MI1
(t)

HN(t)
+ BβMHj

MIj
(t)

HN(t)
+ µH

]

HS(t),

dHI1
(t)

dt
= BβMH1

MI1
(t)

HN(t)
HS(t) − θH1

HI1
(t) − µHHI1

(t),

dHIj
(t)

dt
= BβMHj

MIj
(t)

HN(t)
HS − θHj

HIj
(t) − µHHIj

(t),

dHS1j
(t)

dt
= θH1

HI1
(t) − σjBβMHj

MIj
(t)

HN(t)
HS1j

(t) − µHHS1j
(t) − u1(t)HS1j

(t),

dHSj1
(t)

dt
= θHj

HIj
(t) − σ1BβMH1

MI1
(t)

HN(t)
HSj1

(t) − µHHSj1
(t) − u1(t)HSj1

(t),

dHI1j
(t)

dt
= σjBβMHj

MIj
(t)

HN(t)
HS1j

(t) − θHj
HI1j

(t) − µHHI1j
(t) − µDHI1j

(t),

dHIj1
(t)

dt
= σ1BβMH1

MI1
(t)

HN(t)
HSj1

(t) − θH1
HIj1

(t) − µHHIj1
(t) − µDHIj1

(t),

dMS(t)

dt
= µMMN (t) −

[

BβHM1

(HI1
(t) + HIj1

(t))

HN(t)
+ BβHMj

(HIj
(t) + HI1j

(t))

HN(t)

]

MS(t)

− (µM + u2(t)) MS(t),

dMI1
(t)

dt
= BβHM1

(HI1
(t) + HIj1

(t))

HN(t)
MS(t) − µMMI1

(t) − u2(t)MI1
(t),

dMIj
(t)

dt
= BβHMj

(HIj
(t) + HI1j

(t))

HN(t)
MS(t) − µMMIj

(t) − u2(t)MIj
(t),

(5)

with
HS(t) + HI1(t) + HIj

(t) + HS1j
(t) + HSj1

(t) + HI1j
(t) + HIj1

(t) ≤ HN (t)

and
MN (t) = MS(t) + MI1(t) + MIj

(t) = mHN (t).

Since Model (5) is used to describe the interactions between host and vector, it is necessary
to carry out some analyses of it.

3 Analysis of the Model

3.1 Region of Biological Interest

Theorem 1 The region Γ defined as

Γ =
{

(HS(t), HI1(t), HIj
(t), HS1j

(t), HSj1
(t), HI1j

(t), HIj1
(t), MS(t), MI1(t), MIj

(t)) ∈ R
10
+

∣

∣

∣

HS(t) ≤ HN (t), HI1(t) ≤ HN (t), HIj
(t) ≤ HN(t), HS1j

(t) ≤ HN (t), HSj1
(t) ≤ HN(t),

HI1j
(t) ≤ HN(t), HIj1

(t) ≤ HN(t), MS(t) ≤ MN (t), MI1(t) ≤ MN (t), MIj
(t) ≤ MN (t),

HS(t) + HI1(t) + HIj
(t) + HS1j

(t) + HSj1
(t) + HI1j

(t) + HIj1
(t) ≤ HN(t)

and MS(t) + MI1(t) + MIj
(t) = MN (t)

}

(6)

is positively invariant with respect to Model (5).
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Proof See Rodrigues et al. [10]. 2

3.2 Existence of Equilibria

The equilibrium points related to Model (5) are attained when the differential equation
describing each compartment is at steady state. By setting the right-hand side of each ODE of
the system, Model (5), to zero, we identify four equilibrium points:

i. Disease-Free Equilibrium (DFE) obtained as

E0 =

(

HN , 0, 0, 0, 0, 0, 0,
µMMN

(µM + u2)
, 0, 0

)

. (7)

ii. Two boundary equilibrium (BE) points E1 and E2, given by

E1 =
(

(HS)∗1, H
∗

I1
, 0, H∗

S1j
, 0, 0, 0, (MS)∗1, M

∗

I1
, 0

)

(8)

where only strain 1 survives, and

E2 =
(

(HS)∗j , 0, H
∗

Ij
, 0, H∗

Sj1
, 0, 0, (MS)∗j , 0, M

∗

Ij

)

(9)

where only strain j survives.

iii. Endemic Equilibrium (EE) given as

E3 =
(

H∗

S, H∗

I1
, H∗

Ij
, H∗

S1j
, H∗

Sj1
, H∗

I1j
, H∗

Ij1
, M∗

S , M∗

I1
, M∗

Ij

)

. (10)

In this case, virus serotypes 1 and j coexist.

3.3 Global Stability of the Disease-Free Equilibrium

Consider the DFE given by Equation (7). Adopting the next generation matrix method outlined
in van den Driessche and Watmough [24], the basic reproduction number associated with Model
(5) is given as

R2
0 = max {R01,R0j} (11)

with

R0i =
B2βHMi

βMHi
µMMN

HN (µM + u2)2(θHi
+ µH)

, i = 1, j, (12)

where u2 is a constant parameter representing insecticide (adulticide) control measure, and R01

and R0j are the basic reproduction numbers related to virus serotypes 1 and j, respectively.
Now, we present Theorem 2 below to discuss the dynamical behaviour of Model (5) as its

solutions tend to the disease free.

Theorem 2 If σ1, σ2 ≤ 1 and both R01,R0j ≤ 1, then the DFE E0 is Globally Asymptotically
Stable (GAS) in the region Γ defined by Equation (6).
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Proof Consider the Lyapunov function of the form

W = (µM + u2)HI1 + (µM + u2)HIj
+

R2
0j(µM + u2)(θHj

+ µH)

(θHj
+ µH + µD)

HI1j

+
R2

01(µM + u2)(θH1
+ µH)

(θH1
+ µH + µD)

HIj1
+ BβMH1

MI1 + BβMHj
MIj

.

(13)

The time derivative of W in Equation (13) along the solutions of Model (5), after some algebraic
simplifications, is obtained as

dW

dt
= −C − D +

[

B2βMH1
βHM1

MS

HN

− (µM + u2)(θH1
+ µH)

]

HI1

+

[

B2βMHj
βHMj

MS

HN

− (µM + u2)(θHj
+ µH)

]

HIj

+

[

B2βMH1
βHM1

MS

HN

−R2
01(µM + u2)(θH1

+ µH)

]

HIj1

+

[

B2βMHj
βHMj

MS

HN

−R2
0j(µM + u2)(θHj

+ µH)

]

HI1j
,

(14)

with

C = BβMH1
(µM + u2)MI1

[

1 −
HS

HN

−
σ1(θH1

+ µH)R2
01

(θH1
+ µH + µD)

HSj1

HN

]

,

D = BβMHj
(µM + u2)MIj

[

1 −
HS

HN

−
σj(θHj

+ µH)R2
0j

(θHj
+ µH + µD)

HS1j

HN

]

.

At MS ≤ M∗
S = µM MN

(µM +u2)
, it is clear that the last two terms in Equation (14) vanish. Also,

note that HS

HN
+

HSj1

HN
≤ 1 and HS

HN
+

HS1j

HN
≤ 1. Hence,

[

1 − HS

HN
−

σ1(θH1
+µH)R2

01

(θH1
+µH+µD )

HSj1

HN

]

≥ 0 and
[

1 − HS

HN
−

σj (θHj
+µH )R2

0j

(θHj
+µH+µD )

HS1j

HN

]

≥ 0 if both σ1, σj ≤ 1. This implies that C, D ≥ 0 in Equation

(14). Consequently, dW
dt

≤ 0 if σ1, σj ≤ 1 and E ≤ 0, where

E =

[

B2βMHi
βHMi

µMMN

HN (µM + u2)
− (µM + u2)(θHi

+ µH)

]

, i = 1, j. (15)

It follows from Equation (15) that

E = (µM + u2)(θHi
+ µH)(R2

0i − 1), i = 1, j. (16)

Therefore, dW
dt

≤ 0 if σi ≤ 1 and R0i < 1 for i = 1, j. In addition, dW
dt

= 0 if and only
if HIi

= 0, MIi
= 0 and R0i = 1 for i = 1, j. This implies that the largest invariant set

in
{

(HS , HI1 , HIj
, HS1j

, HSj1
, HI1j

, HIj1
, MS, MI1 , MIj

) ∈ Γ
∣

∣

∣

dW
dt

= 0
}

is the singleton set {E0}.

Therefore, by LaSalle’s invariance principle [25], the DFE E0 is GAS if σi ≤ 1 and R0i ≤ 1,
i = 1, j. 2
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3.4 Global Stability of the Boundary Equilibrium Points

We consider the case when only a single strain of dengue virus survives in the interacting
populations. Then, Model (5) decouples to the following Subsystem (17) for serotype i (where
i = 1, j):

d(HS)i

dt
= µHHN − BβMHi

MIi

HN

(HS)i − µH(HS)i,

dHIi

dt
= BβMHi

MIi

HN

(HS)i − θHi
HIi

− µHHIi
,

dHSik

dt
= θHi

HIi
− µHHSik

,

d(MS)i

dt
= µMMN − BβHMi

HIi

HN

(MS)i − µM (MS)i − u2(MS)i,

dMIi

dt
= BβHMi

HIi

HN

(MS)i − µMMIi
− u2MIi

, for i, k = 1, j, i 6= k.

(17)

Next, we obtain the EE points of Subsystem (17) for i = 1, j and discuss their global
asymptotic stability. Let E4 and E5 be the EE points of Subsystem (17) for i = 1, j, respectively.
According to the theory of asymptotically autonomous system [26], if we could show that E4

and E5 are GAS on the sets

Γ1 =
{

(HS, HI1 , HS1j
, MS, MI1) ∈ R

5
+

∣

∣

∣
HS + HI1 + HS1j

= HN and MS + MI1 = MN

}

(18)

and

Γ2 =
{

(HS, HIj
, HSj1

, MS, MIj
) ∈ R

5
+

∣

∣

∣
HS + HIj

+ HSj1
= HN and MS + MIj

= MN

}

(19)

respectively, then it would imply that the BE points E1 and E2 are GAS for Model (5) on the
set Γ given in Equation (6). This is because the unique EE points E4 and E5, respectively, are
equivalent to the BE points E1 and E2 of Model (5). We find E4 and E5 as given by

E4 =
(

(HS)∗1, H
∗

I1
, H∗

S1j
, (MS)∗1, M

∗

I1

)

(20)

and
E5 =

(

(HS)∗j , H
∗

Ij
, H∗

Sj1
, (MS)∗j , M

∗

Ij

)

(21)

where,

H∗

Ii
=

(µM + u2)
2µHHN (R2

0i − 1)

[(µM + u2)µHHN + BβMHi
µMMN ] BβHMi

HN ,

H∗

Sik
=

θHi

µH

H∗

Ii
, (HS)∗i = HN −

(θHi
+ µH)

µH

H∗

Ii
,

(MS)∗i =
µMMN

[

µM + u2 + BβHMi

H∗

Ii

HN

] , M∗

Ii
=

BβHMi
µMMN

H∗

Ii

HN

(µM + u2)
[

µM + u2 + BβHMi

H∗

Ii

HN

] ,

(22)
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for i, k = 1, j, i 6= k.
Hence, the mathematical expressions for the BE points E1 and E2 expressed by Equations

(8) and (9), respectively, are immediately obtained as

E1 =
(

(HS)∗1, H
∗
I1

, 0, H∗
S1j

, 0, 0, 0, (MS)∗1, M
∗
I1

, 0
)

,

E2 =
(

(HS)∗j , 0, H
∗
Ij

, 0, H∗
Sj1

, 0, 0, (MS)∗j , 0, M
∗
Ij

)

,

where the components of E1 and E2 are as obtained in Equation (22).
Now, the global asymptotic stability of the EE E4 of Subsystem (17) for i = 1, given by

Equation (20), is presented by the following Theorem 3.

Theorem 3 Whenever R01 > 1, then the EE E4 of Subsystem (17) (for i = 1) is GAS in the
region Γ1.

Proof Consider the Goh-Volterra type Lyapunov function [27] given as

V = d1

(

HS − H∗

S −H∗

S ln
HS

H∗
S

)

+ d2

(

HI1 − H∗

I1
− H∗

I1
ln

HI1

H∗
I1

)

+ d3

(

MS − M∗

S − M∗

S ln
MS

M∗
S

)

+ d4

(

MI1 − M∗

I1
− M∗

I1
ln

MI1

M∗
I1

)

.

(23)

With suitably determined coefficients, d1 = d2 =
BβHM1

M∗

S

HN
and d3 = d4 =

BβMH1
M∗

I1
H∗

S

HN H∗

I1

, the

time derivative of V in Equation (23) along the solutions of Subsystem (17) yields

dV

dt
=

BβHM1
M∗

S

HN

(

µHH∗

S

(

2 −
HS

H∗
S

−
H∗

S

HS

)

+
BβMH1

M∗
I1

H∗
S

HN

−
BβMH1

M∗
I1

H∗
S

HN

H∗
S

HS

)

+
BβHM1

M∗
S

HN

{

−
BβMH1

H∗
I1

HN

MI1HS

HI1

+ (θH1
+ µH)H∗

I1

}

+
BβMH1

M∗
I1

H∗
S

HNH∗
I1

{

(µM + u2)M
∗

S

(

2 −
MS

M∗
S

−
M∗

S

MS

)

+
BβHM1

H∗
I1

M∗
S

HN

−
BβHM1

H∗
I1

M∗
S

HN

M∗
S

MS

}

+
BβMH1

M∗
I1

H∗
S

HNH∗
I1

{

(µM + u2)M
∗

I1
−

BβHM1
M∗

I1
HI1MS

HNMI1

}

.

(24)

At steady state, the following relations hold from Subsystem (17):

µHHN = BβMH1

M∗
I1

HN

H∗

S + µHH∗

S, θH1
+ µH =

BβMH1
M∗

I1
H∗

S

HNH∗
I1

,

µMMN = BβHM1

H∗
I1

HN

M∗

S + (µM + u2)M
∗

S , µM + u2 =
BβHM1

H∗
I1

M∗
S

HNMI∗
1

.

(25)

Using Equation (25) in Equation (24) and simplifying lead to

dV

dt
=

µHBβHM1
M∗

SH∗
S

HN

(

2 −
HS

H∗
S

−
H∗

S

HS

)

+
B2βMH1

βHM1
H∗

SM∗2
S

H2
N

(

2 −
MS

M∗
S

−
M∗

S

MS

)

+
B2βMH1

βHM1
M∗

I1
M∗

SH∗
S

H2
N

(

4 −
H∗

S

HS

−
M∗

S

MS

−
H∗

I1
MI1HS

HI1M
∗
I1

H∗
S

−
M∗

I1
MSHI1

MI1M
∗
SH∗

I1

)

.

(26)
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Hence, since arithmetic mean ≥ geometric mean, we have
(

2 −
HS

H∗
S

−
H∗

S

HS

)

≤ 0,

(

2 −
MS

M∗
S

−
M∗

S

MS

)

≤ 0,

(

4 −
H∗

S

HS

−
M∗

S

MS

−
H∗

I1
MI1HS

HI1M
∗
I1

H∗
S

−
M∗

I1
MSHI1

MI1M
∗
SH∗

I1

)

≤ 0.

Therefore, dV
dt

≤ 0 since all the model parameters are positive. Furthermore, dV
dt

= 0 if and only
if HS = H∗

S , HI1 = H∗
I1

, MS = M∗
S, MI1 = M∗

I1
. It then follows that HS1j

→ H∗
S1j

as t → ∞,
and by LaSalle’s invariance principle, the EE E4 is GAS whenever R01 > 1. This completes the
proof. 2

Consequently, the global asymptotic stability of the BE E1 is summarized in the following
result.

Theorem 4 The BE E1 of Model (5), presented by Equation (8), is GAS in the region Γ if
R01 > 1, and unstable otherwise.

Proof The proof of this theorem is similar to that of Theorem 3. 2

Using the results of Theorems 3 and 4, the global asymptotic stability of the EE and BE
points E2 and E5 are presented in the next two theorems, respectively.

Theorem 5 The EE E5 of Subsystem (17) (for i = j) is GAS in the region Γ2, given by
Equation (19), if R0j > 1. Otherwise, it is unstable.

Theorem 6 The BE E2 associated with Model (5), defined by Equation (9), is GAS in the
region Γ whenever R0j > 1, and unstable otherwise.

Proof The proof of Theorems 5 and 6 can be established by using the same approach adopted
in proving Theorems 3 and 4. 2

Theorems 3 and 4 epidemiologically implicate that when virus serotype 1 is predominant,
dengue disease invades the interacting human and mosquito populations whenever R01 > 1
regardless of the value of initial sizes of the infected subgroups in the populations. Similarly,
Theorems 5 and 6 suggest that dengue disease with virus serotype j persists in the population
when R0j > 1 irrespective of the initial data values of the infected classes in the populations.

In the next section, we formulate OC problem for the dynamics of dengue spread.

4 Formulation of Optimal Control Problem

In this section, we present the OC problem formulation for the dynamics of dengue transmission
in order to derive the optimal levels of the time-dependent controls u1(t) and u2(t) that
minimize the number of infected individuals, total mosquito population and costs of control
implementation. Thus, our specific objective is to determine an OC strategy for prevention
and control of dengue spread using OC theory.

First, we standardized Model (3) by using the following scales:

x1 =
HS

HN

, x2 =
HI1

HN

, x3 =
HIj

HN

, x4 =
HS1j

HN

, x5 =
HSj1

HN

, x6 =
HI1j

HN

,

x7 =
HIj1

HN

, x8 =
HR

HN

, x9 =
MS

mHN

, x10 =
MI1

mHN

, x11 =
MIj

mHN

.

(27)
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So, Model (3) becomes

dx1(t)

dt
= µH − (mB(βMH1

x10(t) + βMHj
x11(t)) + µH)x1(t),

dx2(t)

dt
= mBβMH1

x1(t)x10(t)− (θH1
+ µH)x2(t),

dx3(t)

dt
= mBβMHj

x1(t)x11(t)− (θHj
+ µH)x3(t),

dx4(t)

dt
= θH1

x2(t)− (σjmBβMHj
x11(t) + µH + u1(t))x4(t),

dx5(t)

dt
= θHj

x3(t) − (σ1mBβMH1
x10(t) + µH + u1(t))x5(t),

dx6(t)

dt
= σjmBβMHj

x4(t)x11(t)− (θHj
+ µH + µD)x6(t),

dx7(t)

dt
= σ1mBβMH1

x5(t)x10(t) − (θH1
+ µH + µD)x7(t),

dx8(t)

dt
= θHj

x6(t) + θH1
x7(t) + u1(t)x4(t) + u1(t)x5(t)− µHx8(t),

dx9(t)

dt
= µM − (BβHM1

(x2(t) + x7(t)) + BβHMj
(x3(t) + x6(t)) + µM + u2(t))x9(t),

dx10(t)

dt
= BβHM1

(x2(t) + x7(t))x9(t) − (µM + u2(t))x10(t),

dx11(t)

dt
= BβHMj

(x3(t) + x6(t))x9(t) − (µM + u2(t))x11(t),

(28)

together with the ICs:

x1(0) = x01, x2(0) = x02, x3(0) = x03, x4(0) = x04, x5(0) = x05, x6(0) = x06,

x7(0) = x07, x8(0) = x08, x9(0) = x09, x10(0) = x010, x11(0) = x011.
(29)

Here,
x1(t) + x2(t) + x3(t) + x4(t) + x5(t) + x6(t) + x7(t) + x8(t) = 1

and
x9(t) + x10(t) + x11(t) = 1.

The normalized system, Equation (28) along with ICs (29), allows us to deal with population
proportions instead of the actual population sizes without any loss of generality. As from now
on, we let y(t) = y, where y(t) ∈ {x1(t), x2(t), · · · , x11(t), u1(t), u2(t)}.

In the formulation of OC problem, the cost functional (CF) is constructed such that it is
quadratic in the control terms. This is in line with other studies [20–22]. Hence, we present
our OC problem as follows:

min J(u1, u2) =

∫ tf

0

L(t, x2, x3, x6, x7, x9, x10, x11, u1, u2)dt (30)
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subject to System (28) together with the state ICs, Equation (29). The Lagrangian L, in
Equation (30), is given by

L(t, x2, x3, x6, x7, x9, x10, x11, u1, u2) = w1(x2 + x7) + w2(x3 + x6) + w3x9 + w4x10

+ w5x11 +
1

2
w6u

2
1 +

1

2
w7u

2
2,

(31)

where u1 and u2 represent the rates of vaccinating seropositive individuals and adulticiding at
time t, respectively, tf is the final time for administering the control interventions, and the
admissible control set u, with ui max = 0.9, is defined as

u = {(u1, u2)|ui is Lebesgue measurable, 0 ≤ ui ≤ ui max ≤ 1, i = 1, 2} . (32)

We chose ui max = 0.9 because it is more realistic to admit the possibility of vaccinating 90%
rather than 100% of seropositive individuals. Also, 90% level of administering adulticide is
practical.

The CF specification involves the number of infected individuals, total mosquito population
and cost related to the application of controls u1 and u2. In the Lagrangian L in Equation
(31), the coefficients wi (i = 1, 2, · · · , 5) are the weight constants associated with proportions
of primary and secondary infected individuals with virus serotype 1, primary and secondary
infected individuals with virus serotype j, susceptible mosquitoes, and infected mosquitoes
with virus serotype 1 and serotype j, respectively. They help to balance each term of the
integrand so that none of them dominates. The quantities w6 and w7 are the weight constants
for vaccination and adulticide, respectively. The costs associated with controls u1 and u2 are
respectively represented by the terms 1

2
w6u

2
1 and 1

2
w7u

2
2. However, wi (i = 1, 2, · · · , 5) are the

measures of the importance of reducing the associated states on the disease transmission, while
w6 and w7 are the relative measures of the costs or efforts required to implement the respective
controls. In Subsections 4.1 and 4.2, we discuss the existence and characterization of OCs.

4.1 Existence of Optimal Controls

In this subsection, the sufficient condition for the existence of a solution to the OC problem is
considered.

Theorem 7 There exists an OC set u∗ = (u∗
1, u

∗
2) with a corresponding states solution

(x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8, x

∗
9, x

∗
10, x

∗
11) to System (28) such that

min
(u1,u2)∈u

J(u1, u2) = J(u∗

1, u
∗

2). (33)

Proof Similar to the proof of Theorem 4.1 in Khan et al. [28]. 2

4.2 Characterization of Optimal Controls

Here, the OCs (u∗
1, u

∗
2) that give the optimal levels for the control variables and the

corresponding optimal states (x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8, x

∗
9, x

∗
10, x

∗
11) are characterized. The

necessary conditions to be satisfied by the OCs are derived using PMP [29]. This principle
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converts the CF in Equation (30) and the constraints, System (28), into a problem of pointwise
minimization of a Hamiltonian H with respect to the controls u1 and u2, where H is defined as

H = w1(x2 + x7) + w2(x3 + x6) + w3x9 + w4x10 + w5x11 +
1

2
w6u

2
1 +

1

2
w7u

2
2

+
11

∑

i=1

λT
i gi(t, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11).

(34)

In Equation (34), gi is the right-hand side of System (28) and λi (where i = 1, 2, . . . , 11) are
the adjoint (or costate) variables.

Theorem 8 (Necessary Conditions) Let (u∗
1, u

∗
2) ∈ u be an OC pair with the corresponding

optimal states (x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8, x

∗
9, x

∗
10, x

∗
11). Then, there exist costate variables λi

(i = 1, 2, . . . , 11) that satisfy

dλ1

dt
= λ1µH + (λ1 − λ2)mBβMH1

x10 + (λ1 − λ3)mBβMHj
x11,

dλ2

dt
= λ2µH + (λ2 − λ4)θH1

+ (λ9 − λ10)BβHM1
x9 − w1,

dλ3

dt
= λ3µH + (λ3 − λ5)θHj

+ (λ9 − λ11)BβHMj
x9 − w2,

dλ4

dt
= λ4µH + (λ4 − λ6)σjmBβMHj

x11 + (λ4 − λ8)u1,

dλ5

dt
= λ5µH + (λ5 − λ7)σ1mBβMH1

x10 + (λ5 − λ8)u1,

dλ6

dt
= λ6(µH + µD) + (λ6 − λ8)θHj

+ (λ9 − λ11)BβHMj
x9 − w2,

dλ7

dt
= λ7(µH + µD) + (λ7 − λ8)θH1

+ (λ9 − λ10)BβHM1
x9 − w1,

dλ8

dt
= λ8µH ,

dλ9

dt
= λ9(µM + u2) + (λ9 − λ10)BβHM1

(x2 + x7) + (λ9 − λ11)BβHMj
(x3 + x6) − w3,

dλ10

dt
= (λ1 − λ2)mBβMH1

x1 + (λ5 − λ7)σ1mBβmH1
x5 + λ10(µM + u2) − w4,

dλ11

dt
= (λ1 − λ3)mBβMHj

x1 + (λ4 − λ6)σjmBβMHj
x4 −w5,

(35)

and the transversality (or boundary) conditions:

λi(tf ) = 0, (i = 1, 2, . . . , 11), (36)

with the OCs defined by

u∗

1 = min

{

max

{

0,
(λ4 − λ8)x

∗
4 + (λ5 − λ8)x

∗
5

w6

}

, 0.9

}

,

u∗

2 = min

{

max

{

0,
λ9x

∗
9 + λ10x

∗
10 + λ11x

∗
11

w7

}

, 0.9

}

.

(37)
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Proof Using PMP [29], Equation (35) is obtained from

−
dλi

dt
=

∂H

∂xi

(i = 1, 2, . . . , 11).

Also, it is clear from Equation (30) that the transversality conditions have the form (36), since
all the states are free at the terminal time tf . The Hamiltonian H is minimized with respect
to the controls at u∗ = (u∗

1, u
∗
2) by solving

∂H

∂ui

= 0 at ui = u∗

i , for i = 1, 2,

respectively, to obtain

∂H

∂u1
= w6u1 − (λ4 − λ8)x4 − (λ5 − λ8)x5 = 0, at u1 = u∗

1,

∂H

∂u2
= w7u2 − λ9x9 − λ10x10 − λ11x11, at u2 = u∗

2.

(38)

Now, solving Equation (38) for u∗
i (i = 1, 2) and imposing the bounds 0 ≤ ui ≤ 0.9 (i = 1, 2)

on the results obtained yield the characterization of the OC in Equation (37). 2

Next, we find the OC and state by solving the optimality system which consists of
System (28), initial conditions (29), the costate system (35), boundary conditions (36) and
the characterized OCs in Equation (37) numerically. It is clear from Equation (38) that the
second derivative of H with respect to u1 and u2 are positive. This indicates that both u∗

1 and
u∗

2 are minimizers for the OC problem, Equation (30) subject to System (28).

4.3 Numerical Simulations

In this subsection, numerical simulation is carried out on the resulting optimality system in
order to obtain the optimal strategy for the minimization of dengue disease spread and control
costs. The optimality system is solved numerically in MATLAB with ode45 routine using a
fourth-order Runge-Kutta scheme based on the forward-backward-sweep procedure. For details
about this method, see Lenhart and Workman [30]. The initial values for the system of ODEs
representing human population: HS(0) = 109809, HI1(0) = 10, HIj

(0) = 10, HS1j
(0) = 2161,

HSj1
(0) = 0, HI1j

(0) = 10, HIj1
(0) = 0 and HR(0) = 0 are taken from [4], while those related to

mosquito population are taken as MI1(0) = 1000 [21], IMj
(0) = 1000 and MS = 670000. With

these values, we obtain the respective scaled initial values, Equation (29), for System (28) using
Equation (27). There are two possibilities of dengue scenario when a second disease outbreak
occur in Madeira Island, namely less aggressive and more aggressive cases [4], referred to as
Scenarios 1 and 2, respectively. In Scenario 1, j = 4 and the values of 1

θHj

, βMHj
are both lower

than those of 1
θH1

, βMH1
. Also, j = 2/3 and both the values of 1

θHj

, βMHj
are greater than those

of 1
θH1

, βMH1
in Scenario 2. Hence, the model parameter values used for our simulations are as

described in Table 1. Also, we take the state and control balancing weight values as w1 = 25,
w2 = 15, w3 = 25, w4 = 1, w5 = 5, w6 = 25 and w7 = 25 in both scenarios. For the control
interventions, we implement the three strategies for each scenario. The results of our numerical
implementation are presented and discussed in the next section.
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5 Results and Discussion

In the current section, we present and discuss the results of numerical implementation on the
optimality system.

Figure 1: Simulations of System (28) Displaying the Impact of u1 (Dengvaxia Vaccine) on
Dengue Spread with Coexistence of DEN-1 and DEN-4 for Scenario 1

Figures 1-3 present the results of our numerical simulations for Scenario 1. Figure 1
illustrates the impacts of control u1 on the dynamics of primary and secondary infected
subpopulations of human and total mosquito population. Unlike in the absence of control,
the sizes of the primary and secondary infected humans with control decline more rapidly with
higher number of secondary infected humans as seen in Figures 1a–1d. However, Figure 1eshows
that control u1 has less effect on mosquito as the population of mosquito with control remained
constant over time. Also, it is observed from the control profile in Figure 1f that the OC u1 is
at the upper bound between the 15th and 128th days after which it drops to the lower bound
at the final time. Our results agree with the results of the study on the optimal strategy for
preventing and controlling a single strain dengue epidemic using vaccination by Rodrigues et
al. [9], which revealed that the number of infected humans can be reduced close to zero by
keeping vaccination control at the upper bound.
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Figure 2: Simulations of System (28) Displaying the Impact of u2 (Adulticide) on Dengue
Spread with Coexistence of DEN-1 and DEN-4 for Scenario 1

Figure 2 presents the significant impacts of control u2 on the dynamical behaviours of the
size of infected humans and the total mosquito population. Figures 2a and 2d reveal that
the presence of control u2 diminishes the numbers of primary and secondary infected humans
by DEN-1 to zero throughout the period of intervention. Also, the sizes of the primary and
secondary infected humans by DEN-4 with control decrease more rapidly than the situation
without control as shown in Figures 2b and 2c These results are in line with the results obtained
in Rocha et al. [4]. Although, the authors did not consider the optimal strategy for distributing
adulticide control (u2), but their study of the efficacy of u2 on the dynamics of dengue disease
spread with the coexistence of two virus serotypes showed that the use of u2 is significant to
decrease the numbers of primary and secondary infected humans. It is shown in Figure 2e that
the size of the mosquito population with control decreased by 80% at the end of the intervention
against the case of no control. Control u2 takes effect from the second day of its administration,
and is expected to be sustained maximally until time t = 197 days before dropping sharply to
the minimum value at the final time (see Figure 2f).

The impact of combined Dengvaxia vaccine and adulticide controls on the dynamical
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Figure 3: Simulations of System (28) Displaying the Impacts of Combined Controls u1

(Dengvaxia Vaccine) and u2 (Adulticide) on Dengue Spread with Coexistence of DEN-1 and
DEN-4 for Scenario 1

transmission of dengue is illustrated in Figure 3. It can be seen from Figures 3a–3e that
the numbers of primary and secondary infected humans, and the total mosquito population
with controls stay near zero than in the case of no control. These results are corroborated by
the results of the study of optimal vaccination and adulticide for controlling a single strain
dengue transmission in Agusto and Khan [19]. It is revealed by Figure 3f that controls u1

and u2 must be sustained at the maximum value for 121 and 197 days, respectively, before
decreasing to the minimum value at the final time.

Numerical experimentation is carried out on the optimality system for Scenario 2 as well.
The graphical results associated with Scenario 2 are omitted here because they are similar to
those obtained for Scenario 1. The numbers of primary and secondary infected humans with
control u1 diminish sharply near zero than in the case of no control when DEN-1 and DEN-2/3
virus co-circulate. It is also observed that mosquito population, in case of control, is constant
throughout the period of intervention. The OC u1 is sustained at the upper bound from time
t = 12 days to time t = 126 days before dropping slowly to the lower bound at time tf .
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A huge impact of control u2 on the numbers of primary and secondary infected humans by
DEN-1 and DEN-2/3, and the total mosquito population is depicted. It is revealed that the
numbers of primary and secondary infected humans by DEN-1 and DEN-2/3 in the presence
of control remained close to zero from time t = 20 days till final time t = 200 days. This
is consistent with the result of the efficacy of u2 on the dynamics of dengue disease spread
with the coexistence of DEN-1 and DEN-2/3 obtained in Rocha et al. [4]. In addition, the
size of mosquito population with control remained near zero from the 3rd day till the end of
intervention. It is also found that the OC u2 should be maximally sustained for 197 days before
dropping sharply to the lower bound in final time.

The result of combined effort of controls u1 and u2 reveal that the numbers of primary
and secondary infected humans by DEN-1 and DEN-2/3 in case of control diminish to zero
after about 20 days, and remained there till final time t = 200 days. Furthermore, the size of
mosquito population with control declined by 81% at time t = 8 days and remained steady until
time t = 197 days. The OC profiles for this strategy reveal that OC u1 should be sustained at
the upper bound between the time t = 16 days and t = 140 days before reducing slowly to the
lower bound in time tf , while u2 should be maximally sustained for 197 days and then drop
sharply to lower bound in final time.

Furthermore, when there is no any intervention, the R0 values for this dengue
epidemic in Madeira Island for Scenarios 1 and 2, respectively, are approximately R0 =
max{2.0889, 1.7671} = 2.0889 > 1 and R0 = max{2.0908, 3.1292} = 3.1292 > 1. Similar
results were reported in other studies on dengue [14, 18]. Epidemiologically, these results
indicate that the two co-circulating dengue virus strains persist in the population in both
scenarios. Also, virus serotype 1 is predominant in Scenario 1, whereas in the case of Scenario
2, virus serotype j = 2/3 predominates.

6 Conclusion

This study has proposed and analyzed a two-strain compartmental model for the dynamics of
transmission and control of dengue disease spread if two virus serotypes coexist in Madeira
Island. The work is divided into two parts. In the first part, two control parameters u1 and u2

representing Dengvaxia vaccine and adulticide, respectively, were incorporated into the model.
The global asymptotic stability of the model with respect to the DFE and BE points were
established. It was showed that the DFE is GAS when both R01,R0j ≤ 1, and the BE points
are GAS if the associated basic reproduction number is above unity.

In the other part, the controls u1 and u2 were considered as time-dependent variables, and
incorporated into the model in order to examine the OC strategy for dengue transmission. We
employed PMP to analyse the model. Numerical simulation was performed on the optimality
system by adopting three control strategies: use of Dengvaxia vaccine only, application of
adulticide only, and combination of Dengvaxia and adulticide. It was found that a strategy,
which is made up of Dengvaxia vaccine and adulticide is optimal for the minimization of the
spread of dengue and the costs associated with the control implementation for both less and
more aggressive cases in Madeira Island. These findings can be helpful to the concerned Madeira
Island authorities in bringing the disease under control, if a new outbreak with different virus
serotype surfaces in the Island.
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