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Abstract In this work, we obtained an analytical solution to the problem of viscous

fluid flow past a pair of porous separated spheres. Stokesian approximation of the Navier-
Stokes equation for the viscous fluid governs the flow in the region outside the two spheres,

whereas Brinkman’s model describes the flow in the porous region (within the spheres).
Since the bipolar coordinate system is the most convenient system to represent separated

spheres’ geometry, we formulated this problem in the bipolar coordinate system. We
then eliminated the pressure term from the equations governing the flow in the region

outside the spheres, and they got reduced to a separable equation in terms of the stream
function. Further, the flow governing equations inside the porous spheres gave rise to

the Helmholtz equation. As the Helmholtz equation is not separable in the bipolar
system, we used the spherical coordinate system to describe the fluid flow within each
separated spheres and solved the resulting problem in the spherical coordinate system.

Because of this, the flow variables on either side of the interface (spheres) are in different
coordinate systems. To match the values of the field variables at the boundary, we used the

transformation equations between the bipolar and spherical systems and transformed all
the variables into the bipolar coordinate system. We then solved the governing equations

with appropriate boundary conditions for the arbitrary constants and derived expressions
for the stream and pressure functions.We plotted the respective functions for various values

of the mathematical model’s parameters to understand the flow pattern and pressure
distribution in the flow domain and noted our observations. This study revealed an

intuiting insight that the pressure distribution inside the porous spheres is independent
of the non-dimensional parameter related to the medium’s permeability and the fluid’s
viscosity.

Keywords Bipolar coordinates, Brinkman’s model, Helmholtz equation, Coordinate
transformation, Separated spheres.
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Nomenclature:

(ξ, η, φ) : bipolar coordinates,

(êξ, êη, êϕ) : base vectors in the bipolar coordinate system,

(hξ, hη, hφ) : scale factors in the bipolar coordinate system,

a: parameter that has the dimension of L,

τ = cos η,

(R, θ, z) : Spherical coordinates,

E2 : the Stokes stream function operator,

S0 : the region outside the porous spheres,

Si, i = 1, 2 : the region within spheres ξ = ξi,

ψ(i), is the stream function in the region Si,

E2 − α2 : Helmholtz operator,

U: Uniform velocity of the stream at infinity (LT−1),

q̄(i) : Velocity of the fluid in the region Si(LT−1),

p(i) : pressure in the region Si(ML−1 T −2),

u(i), v(i) : velocity components in the region Si(LT−1),

k(i)i = 1, 2 : permeability of the porous spheres ξ = ξi(L
2),

µ∗ : macroscopically averaged quantity pertaining to the porous medium (ML−1 T −1),

µ : viscosity of the fluid (ML−1 T −1),

λ2
i =

µ

µ∗k(i)
is a parameter that has the dimension of (L−1 ),

ϑn+1/2 (τ ) : Gagenbauer function of the first kind,

Pn (τ ) : Legendre polynomials,

Kn+1/2 (R) : modified Bessel function of the first kind.

1 Introduction

Fluid flow past separated spheres or flow past two spheres is a classical problem with its
origin at the beginning of the 19th century. While considering the flow of viscous fluid past
separated spheres, Jeffery found the Laplace equation solution in the bipolar coordinate system
[1]. Later, Stimson and Jeffery [2] formulated an equivalent problem of viscous fluid flow past
separated spheres in the bipolar coordinate system. They studied the motion set up in the
viscous fluid by two solid spheres moving with small constant and equal velocities. Further,
they determined the stream function as an infinite series in terms of Legendre polynomials
and hyperbolic trigonometric functions and calculated the forces necessary to maintain the two
spheres’ motion. Dyuro Endo [3] considered the potential flow of fluid past two solid spheres
in the bipolar system and derived an expression for the velocity potential as an infinite series
in associated Legendre polynomials. Sneddon and Fulton [4] solved the irrotational flow of a
perfect fluid past two spheres problem using two sets of spherical polar coordinates (one for
each sphere). Payne and Pell [5] studied Stokes flow for a class of axially symmetric bodies with
flow past solid separated spheres formulated in the peripolar coordinate system. They derived
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an expression for the stream function in terms of associated Legendre polynomials. Later, many
investigations carried out on fluid flow past two or cluster of solid spheres, wherein analytical
or numerical solutions presented as in the references [6–14].

We find very few works related to flow past a pair of separated porous spheres in the
literature. Neale et al. [15] derived solution to creeping flow relative to an isolated permeable
sphere problem and generalised the results to cover flow relative to a swarm of permeable
spheres. Wu et al. [16] evaluated the hydrodynamic drag force experienced by two highly
porous spheres moving along their centerline, wherein the equations governing the flow were
solved using CFD software. Recently Radhika et al. [17] studied the creeping flow past a pair of
porous separated spheres with Darcy’s law governing the porous region’s flow. They formulated
the problem in the bipolar coordinate system and derived an analytical solution to it. Though
several researchers studied the problem of flow past porous spheres, to our knowledge, the
problem of flow past porous separated spheres was given scant attention, as also observed by
Wu et al. [16].

Thus, in this paper, we propose to work on the problem of viscous fluid flow past porous
spheres. For this, we considered the stokesian approximation of the Navier-Stokes equations
to describe the flow in the region outside the two porous spheres and Brinkman equations for
the flow in the porous domain. Unlike the work presented by Radhika et al. [17], where the
bipolar coordinate system suffices to describe the entire fluid flow domain, we had to use two
different coordinate systems, one within the porous region (spheres) and the other in the region
outside the porous spheres. The reason is, Brinkmann equations used to describe the fluid
flow within the porous spheres reduced to Helmholtz form (partial differential equation), which
is inseparable in the bipolar coordinate system. While the Navier- Stokes equations taken to
describe the flow outside the porous region are separable.

Thus, we derived the flow equations within the porous spheres in the spherical coordinate
system and the bipolar system to describe the fluid flow under stokesian approximation outside
these spheres.

We assumed that the fluid is incompressible, the flow axisymmetric, then the equations
governing the flow in the region S0 (the region outside the porous spheres) took the form
E4ψ(0) = 0, where E2 is the Stokes stream function operator and ψ(0) is the stream function
in the region S0. This equation is separable in the bipolar coordinate system, and hence,
an analytical expression for the stream function is derived using the method of separation of
variables. In terms of the stream function, the flow equations in the porous region took the
form E2 (E2 − α2)ψ(i) = 0, where E2 − α2 is the Helmholtz operator. We know that this
operator is not separable in the bipolar coordinate system. However, as mentioned earlier,
we opted to work on the bipolar system in the present problem. Thus we formulated the
flow problem within the spheres in the spherical coordinate system wherein the Helmholtz
equation is known to be separable. The challenge is now to implement the interface’s boundary
conditions, wherein two different coordinate systems used, one on either side. Thus, to match
the field variables’ values at the interface, we used the coordinate transformation between the
spherical and bipolar coordinate systems and converted the boundary conditions into a single
system, i.e. the bipolar system. The resulting system of equations involving the arbitrary
constants is solved using MATHEMATICA software ,and the analytical expressions for the
stream and pressure functions are derived. We also plotted these functions for different values
of the parameters and discussed them.
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2 Mathematical Formulation and the Problem

Consider the flow of a viscous fluid (with a uniform velocity U at infinity) past a pair of
separated porous spheres fixed in the flow domain, as shown in Figure 1.

Figure 1: Schematic Diagram of Flow Past Separated Porous Spheres in Bipolar Coordinates

The bipolar system is represented by the coordinates (ξ, η, φ), with (êξ, êη, êϕ) as base vectors
and (hξ, hη, hφ) as the corresponding scale factors where

x =
a sinh ξ

cosh ξ − cos η
and r =

a sin η

cosh ξ − cos η
. (1)

hξ =
a

cosh ξ − cos η
; hη =

a

cosh ξ − cos η
; hφ =

a sin η

cosh ξ − cos η
(2)

where −∞ < ξ <∞, 0 ≤ η < π.
ξ = c > 0, where c is constant, represents spheres on the positive x-axis with center at

a distance of a coth c from the origin (along the x-axis) and with radius equals a cosech c.
ξ = c < 0 describes spheres on the negative x-axis with their center at a distance of −a coth c
from the origin (along the x-axis) and with radius equals a cosech c.

2.1 Equations Governing the Fluid Flow in the Region S0

Let
(

q̄ (0), p(0)
)

be the velocity vector and pressure function in the region S0. Assuming that

the flow axisymmetric, we have q̄ (0) = u(0) (ξ, η) êξ + v(0) (ξ, η) êη and the pressure as p(0) (ξ, η).
Further, considering the fluid to be incompressible and the flow as steady, the momentum
equations under Stokesian approximation take the form:

grad p(0) + µ curl (curl q̄ (0)) = 0 (3)

Now, introducing the stream function through,

hηhφu
(0) = −∂ψ

(0)

∂η
; hξhφv

(0) =
∂ψ(0)

∂ξ
(4)

we see that

curl ~q (0) =

{

1

hφ
E2ψ(0)

}

~eϕ (5)
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curl curl~q(0) =
1

hξhηhφ

{

hξ
∂

∂η

(

E2ψ(0)
)

~eξ − hη
∂

∂ξ

(

E2ψ(0)
)

~eη

}

(6)

in which the Stokes stream function operatorE2 is given by

E2 =
hφ

hξhη

{

∂

∂ξ

(

hη

hξhφ

∂

∂ξ

)

+
∂

∂η

(

hξ

hηhφ

∂

∂η

)}

(7)

Using expressions (5) and (6), equation (3) takes the form

1

hξ

∂p(0)

∂ξ
+

µ

hηhφ

∂

∂η

(

E2ψ(0)
)

= 0 (8)

1

hη

∂p(0)

∂η
− µ

hξhϕ

∂

∂ξ

(

E2ψ(0)
)

= 0 (9)

Eliminating p(0) from (8) and (9) gives

E4ψ(0) = 0 (10)

which is the equation governing the fluid flow in the region S0 .

2.2 Equations Governing the Fluid Flow in Regions Si, i = 1, 2

Let
(

q̄(i), p(i)
)

denote the velocity and pressure in the regions Si, i = 1, 2, where S1 represents
the region inside the porous sphere ξ = ξ1 and S2 is the region inside the porous sphere ξ = ξ2.

In these regions,we consider Brinkman’s law given by

div q̄(i) = 0 (11)

grad p(i) +
µ

k(i)
q̄(i) + µ∗curl curl q̄(i) = 0 (12)

where k(i)i = 1, 2 is the permeability of the porous spheres Si, i = 1, 2 respectively, µ∗ is a
macroscopically averaged quantity pertaining to the porous medium and µ is the viscosity of
the fluid [18].

Eliminating p(i) from equations (11) and (12), we get

E2
(

E2 − λ2
i

)

ψ(i) = 0, i = 1, 2 (13)

which is the governing equation in regions Si, i = 1, 2.
Here

λ2
i =

µ

µ∗k(i)
. (14)

2.3 Boundary Conditions

The determination of the relevant flow field variables ψ(0) and pi, i = 0, 1, 2 is subject to the
following boundary and regularity conditions.

(i) Continuity of the normal velocity component at interfaces:

u(i) = u(0) on Si, i = 1, 2. (15)
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(ii) Tangential velocity component vanish at interfaces:

v(0) = 0 on Si, i = 1, 2 (16)

(iii) Continuity of pressure at interfaces:

p(i) = p(0) on Si, i = 1, 2. (17)

(iv) The velocities are regular on the axis, and far away from S0, the flow is a uniform stream
which means, at infinity

ψ(0) = −1

2
Ur2, i.e. lim

ξ→0
u(0) = −U, lim

ξ→0
v(0) = 0. (18)

3 Solution to the Equations Governing the Flow in S0

In view of the linearity property of equation (10) that governs the fluid flow in the region S0,
we find the solution of

E2ψ(0) = f, (19)

where f is the solution to
E2f = 0. (20)

Solution to Equation (20):

Equation (20) in the bi-polar coordinate system is

cosh ξ − cos η

a2

(

a sin η
∂

∂ξ

(

cosh ξ − cos η

a sin η

∂

∂ξ

)

+
∂

∂η

(

(cosh ξ − cos η)
∂

∂η

))

f = 0 (21)

Following [2], let us take cos η = τ . Then equation (21) takes the form

cosh ξ − τ

a2

(

∂

∂ξ

(

(cosh ξ − τ)
∂

∂ξ

)

+
(

1 − τ 2
) ∂

∂τ

(

(cosh ξ − τ)
∂

∂τ

))

f = 0 (22)

Now, following the method of separation of variables, we assume the solution to (22) as

f (ξ, τ ) = (cosh ξ − τ )n
g (ξ, τ ) (23)

Substituting expression shown in (23) in equation (22) and after a straight forward calculation,
we get

f (ξ, τ ) = (cosh ξ − τ )−1/2
∞
∑

n=1

(

An cosh

(

n+
1

2

)

ξ +Bn sinh

(

n+
1

2

)

ξ

)

ϑn+1 (τ ) (24)

where An and Bn are arbitrary constants.
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3.1 Solution to Equation (19)

Using the expression (24) in equation (19), we get

cosh ξ − τ

a2

(

∂

∂ξ

(

(cosh ξ − τ)
∂

∂ξ

)

+
(

1 − τ 2
) ∂

∂τ

(

(cosh ξ − τ)
∂

∂τ

))

ψ(0)

= (cosh ξ − τ )
−1/2

∞
∑

n=1

(

An cosh

(

n +
1

2

)

ξ +Bn sinh

(

n+
1

2

)

ξ

)

ϑn+1 (τ ) . (25)

Again, using the method of separation of variables, we assume the solution of (25) in the form

ψ(0) (ξ, τ ) = a2 (cosh ξ − τ )−3/2
∞
∑

n=1

hn (ξ) ϑn+1 (τ ) (26)

Now, substitute the above expression in equation (25). Using the following relations in
Gegenbaur functions:

(

1 − x2
)

ϑ′
n+1 (x) = − (n + 1)xϑn+1 (x) + (n− 1)ϑn (x) , (27)

(n+ 1) ϑn+1 (x) = (2n − 1)xϑn (x)− (n− 2)ϑn−1 (x) , (28)

and the orthogonality property of the Legendre polynomials, we get

ψ(0) (ξ, τ ) = a2 (cosh ξ − τ )−3/2
∞
∑

n=1

(

Cn cosh

(

n − 1

2

)

ξ +Dn sinh

(

n− 1

2

)

ξ

+En cosh

(

n+
3

2

)

ξ + Fn sinh

(

n+
3

2

)

ξ

)

ϑn+1 (τ ) , (29)

where

− (2n− 1)Cn + (2n + 3)En = An and − (2n − 1)Dn + (2n + 3)Fn = Bn. (30)

3.2 Expression for Pressure in the Region S0

We now derive the expression for the pressure function from equations (8) and (9). For this,
let us consider equations (8) and (9) and substitute the expressions for the scale factors from
(2) to get

∂p(0)

∂ξ
= −µ (cosh ξ − τ )

a

∂

∂τ

(

E2ψ(0)
)

, (31)

∂p(0)

∂τ
= −µ (cosh ξ − τ)

(1 − τ 2)

∂

∂ξ

(

E2ψ(0)
)

. (32)

Eliminating ψ(0) from these equations, we get

∂

∂ξ

(

(cosh ξ − τ )−1 ∂p
(0)

∂ξ

)

+
∂

∂τ

(

(cosh ξ − τ )−1 (1 − τ 2
) ∂p(0)

∂τ

)

= 0. (33)
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Using the method of separation of variables, we get

p(0) (ξ, τ ) = (cosh ξ − τ )1/2
∞
∑

n=0

(

Hn+1 cosh

(

n+
1

2

)

ξ +Gn+1 sinh

(

n+
1

2

)

ξ

)

Pn (τ ) (34)

where’s are Legendre’s polynomials.
Substituting the expression for pressure from (34) in equation (31), we have

1

2
(cosh ξ − τ )−1/2 sinh ξ

∞
∑

n=0

(

Hn+1 cosh

(

n+
1

2

)

ξ +Gn+1 sinh

(

n +
1

2

)

ξ

)

Pn (τ )+

(cosh ξ − τ)1/2
∞
∑

n=0

(

n+
1

2

)(

Hn+1 sinh

(

n+
1

2

)

ξ +Gn+1 cosh

(

n+
1

2

)

ξ

)

Pn (τ ) =

µ

a













1
2
(cosh ξ − τ)−1/2

∞
∑

n=1

(

An cosh

(

n+
1

2

)

ξ +Bn sinh

(

n+
1

2

)

ξ

)

ϑn+1 (τ )+

(cosh ξ − τ)1/2
∞
∑

n=1

(

An cosh

(

n +
1

2

)

ξ +Bn sinh

(

n +
1

2

)

ξ

)

ϑ′
n+1 (τ )













(35)

Multiplying on both sides by (cosh ξ − τ )−1 and integrating the resulting equation with respect
to τ between the limits –1 and 1 gives,

1

2
sinh ξ

∞
∑

n=0

(

Hn+1 cosh

(

n+
1

2

)

ξ +Gn+1 sinh

(

n+
1

2

)

ξ

)
∫ 1

−1

Pn (τ )

(cosh ξ − τ )3/2
dτ+

∞
∑

n=0

(

n+
1

2

)(

Hn+1 sinh

(

n +
1

2

)

ξ +Gn+1 cosh

(

n +
1

2

)

ξ

)∫ 1

−1

Pn (τ )

(cosh ξ − τ )1/2
dτ =

− µ

2a

(

∞
∑

n=1

(

An cosh

(

n+
1

2

)

ξ +Bn sinh

(

n+
1

2

)

ξ

)
∫ 1

−1

ϑn+1 (τ )

(cosh ξ − τ )3/2
dτ

)

(36)

Using the formulae given in expressions (37) and (38), integrals in the above expression can be
evaluated to find the equation involving the constants Gn, Hn, An and Bn.

∫ 1

−1

Pn (x)

(cosh ξ − x)
1/2
dx =

2
√

2

2n+ 1
e−(n+ 1

2
)|ξ|. (37)

∫ 1

−1

Pn (x)

(cosh ξ − x)
3/2
dx =

2
√

2

sinh |ξ|e
−(n+ 1

2
)|ξ|. (38)
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Substituting the expression for pressure from (34) in equation (32), we have

−1

2
(cosh ξ − τ )−1/2

∞
∑

n=0

(

Hn+1 cosh

(

n+
1

2

)

ξ +Gn+1 sinh

(

n+
1

2

)

ξ

)

Pn (τ )+

(cosh ξ − τ)1/2
∞
∑

n=1

(

Hn+1 cosh

(

n+
1

2

)

ξ +Gn+1 sinh

(

n+
1

2

)

ξ

)

P ′
n (τ ) = − µ

a (1 − τ 2)












−1

2
(cosh ξ − τ )−1/2 sinh ξ

∞
∑

n=1

(

An cosh

(

n+
1

2

)

ξ +Bn sinh

(

n+
1

2

)

ξ

)

ϑn+1 (τ )+

(cosh ξ − τ )1/2
∞
∑

n=1

(

n+
1

2

)(

An sinh

(

n +
1

2

)

ξ +Bn cosh

(

n+
1

2

)

ξ

)

ϑn+1 (τ )













(39)
Multiplying on both sides by (cosh ξ − τ)−1and integrating the resulting equation with respect
to τ between the limits -1 and 1 gives,

−
∞
∑

n=0

(

Hn+1 cosh

(

n+
1

2

)

ξ +Gn+1 sinh

(

n+
1

2

)

ξ

)
∫ 1

−1

d

dτ

((

1 − τ 2
)

Pn (τ )
)

(cosh ξ − τ )1/2
dτ+

∞
∑

n=1

(

Hn+1 cosh
(

n+ 1
2

)

ξ +Gn+1 sinh

(

n+
1

2

)

ξ

)∫ 1

−1

(1 − τ 2)P ′
n (τ )

(cosh ξ − τ )
1/2

dτ =

−µ
a













−1

2
sinh ξ

∞
∑

n=1

(

An cosh

(

n+
1

2

)

ξ +Bn sinh

(

n+
1

2

)

ξ

)∫ 1

−1

ϑn+1 (τ )

(cosh ξ − τ)3/2
dτ+

∞
∑

n=1

(

n+
1

2

)(

An sinh

(

n+
1

2

)

ξ +Bn cosh

(

n+
1

2

)

ξ

)
∫ 1

−1

ϑn+1 (τ )

(cosh ξ − τ )1/2
dτ













(40)

Using the relations in (37), (38), and the recurrence relations in Legendre polynomials [19],
we can derive the expressions for Hn’s and Gn’s in terms of An’s and Bn’s. These expressions
can be written in terms of Cn, Dn, En and Fn using the relations in (30) and thus, the pressure
function is completely determined.

4 Solution to the Equations Governing the Flow in Regions
Si, i = 1, 2

From equations (13), using the superposition principle, we see that each ψ(i), i = 1, 2 can be
written as ψ(i) = φ1 + φ2, i = 1, 2 where

E2ϕ1 = 0, and (41)
(

E2 − λ2
i

)

ϕ2 = 0 (42)

Since the solutions to equations in (41) and (41) are to be sought in the spherical coordinate
system (R, θ, φ). We assume two separate spherical coordinate systems to describe the two
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spheres, with each one at each sphere’s center. Following Happel and Brenner [20], the stream
function in the region S1 is

ψ(1) (R, θ) =

∞
∑

n=1

(

LnR
n+1 +Mn

√
RKn+1/2 (λ1R)

)

ϑn+1 (ς) , (43)

where ς = cos θ, and Kn+1/2 (λ1R) is the modified Bessel function of the first kind and Ln,Mn

are arbitrary constants.
Substituting the expression for the stream function ψ(1) (R, θ) from (43) in (12), we get the

pressure function as

p(1) (R, θ) = λ2
1µ

∗

∞
∑

n=1

LnR
n

n
Pn (ς) (44)

Going along the same line, we have the stream function and the pressure in S2 respectively as

ψ(2) (R, θ) =

∞
∑

n=1

(

QnR
n+1 + Sn

√
rKn+1/2 (λ1R)

)

ϑn+1 (ς) , (45)

where Qn and Sn are arbitrary constants, and

p(2) (R, θ) = λ2
2µ

∗

∞
∑

n=1

QnR
n

n
Pn (ς) (46)

We introduce the non-dimensional quantities defined as to derive the non-dimensional
expressions for the pressure and stream function in all three regions.

r∗ =
r

a
, z∗ =

z

a
, p(0) =

p(0)∗µU

a
, R∗ =

R

a
, ψ(0) = Ua2ψ(0)∗,

p(i) =
p(i)∗µ∗U

a2
, i = 1, 2 and λ∗i = aλi, i = 1, 2.

However, we shall drop ‘*’ from these expressions.

5 Determination of Arbitrary Constants

The eight sets of arbitrary constants Ln, MnQn, Sn,Cn, Dn, En and Fn, in expression (29), (43)
and (45), are to be determined using the boundary conditions given in (15)–(18). As mentioned
earlier, at the interface, we have the field variables on either side in two different coordinate
systems, namely bi-polar and spherical. Thus, we use the following transformation equations
(in their non-dimensional form) to transform all the boundary conditions in the bi-polar system.

R2 =

(

cosh ξ + τ

cosh ξ − τ

)

, θ = tan−1

(
√

1 − τ 2

sinh ξ

)

(47)

(i) Continuity of the normal velocity component at interfaces: u(0) = u(1) on ξ = ξ1
gives,

−(cosh ξ − τ )2

sin η

∂ψ(0)

∂τ
= − 1

R2 sin θ

∂ψ(1)

∂θ
on ξ = ξ1. (48)
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Integrating the above expression with respect to τ between the limits -1 and 1 gives,
∫ 1

−1

sin η

(R2 sin θ)|ξ=ξ1
(cosh ξ1 − τ)

2

∂ψ(1)

∂θ
dτ = 0 (49)

Using the coordinate transformations given in (47) and the expression for ψ(1) (r, θ) from
(43), we get an expression involving the constants Ln,Mn. and u(0) = u(2) on ξ = ξ2
gives,

∫ 1

−1

sin η

(R2 sin θ)|ξ=ξ2
(cosh ξ2 − τ)2

∂ψ(2)

∂θ
dτ = 0 (50)

(ii) Tangential velocity component vanishes at interfaces: v(0) = 0 on ξ = ξ1 gives

∂ψ(0)

∂ξ
= 0 on ξ = ξ1. (51)

− 3

2

sinh ξ1

sinh
∣

∣

∣
ξ1

∣

∣

∣

∗

∞
∑

n=1

(

Cn cosh
(

n− 1

2

)

ξ1 +Dn sinh
(

n − 1

2

)

ξ1 + En cosh
(

n+
3

2

)

ξ1

+ Fn sinh
(

n+
3

2

)

ξ1

)

(

e−(n−1/2)|ξ1| − e−(n+3/2)|ξ1|

2n + 1

)

+
∞
∑

n=1

1

2n + 1

((

n− 1

2

)

Cn sinh
(

n− 1

2

)

ξ1 +
(

n− 1

2

)

Dn cosh
(

n − 1

2

)

ξ1

+
(

n+
3

2

)

En sinh
(

n+
3

2

)

ξ1 +
(

n+
3

2

)

Fn cosh
(

n+
3

2

)

ξ1

)

(

e−(n−1/2)|ξ1|

2n− 1
− e−(n+3/2)|ξ1|

2n+ 3

)

= 0. (52)

Furthermore, v(0) =0 on ξ = ξ2 gives,

∂ψ(0)

∂ξ
= 0 on ξ = ξ2. (53)

− 3

2

sinh ξ2
sinh

∣

∣

∣
ξ2

∣

∣

∣
∗

∞
∑

n=1

(

Cn cosh
(

n− 1

2

)

ξ2 +Dn sinh
(

n− 1

2

)

ξ2 + En cosh
(

n +
3

2

)

ξ2

+ Fn sinh
(

n+
3

2

)

ξ2

)

(

e−(n−1/2)|ξ2| − e−(n+3/2)|ξ2|

2n + 1

)

+
∞
∑

n=1

1

2n+ 1

((

n − 1

2

)

Cn sinh
(

n− 1

2

)

ξ2 +
(

n− 1

2

)

Dn cosh
(

n− 1

2

)

ξ2

+
(

n+
3

2

)

En sinh
(

n+
3

2

)

ξ2 +
(

n+
3

2

)

Fn cosh
(

n+
3

2

)

ξ2

)

(

e−(n−1/2)|ξ2|

2n − 1
− e−(n+3/2)|ξ2|

2n + 3

)

= 0. (54)
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(iii) Continuity of pressure at interfaces: p(1) = p(0) on ξ = ξ1 gives

λ2
1

∞
∑

n=1

Ln

n

(

RnPn(ς)
)∣

∣

∣

ξ=ξ1

=
(

cosh ξ1 − τ
)1/2

∞
∑

n=0

(

Hn+1 cosh
(

n +
1

2

)

ξ1

+Gn+1 sinh
(

n+
1

2

)

ξ1

)

Pn

(

τ
)

, (55)

and p(2) = p(0) on ξ = ξ2 gives

λ2
2

∞
∑

n=1

Rn

n

(

RnPn(ς)
)∣

∣

∣

ξ=ξ2

= (cosh ξ2 − τ
)1/2

∞
∑

n=0

(

Hn+1 cosh
(

n+
1

2

)

ξ2

+Gn+1 sinh
(

n+
1

2

)

ξ2

)

Pn(τ
)

, (56)

(iv) Regularity condition at infinity:

lim
ξ→0

u(0) = −U

⇒ 3

2
(1 − τ )−1/2

∞
∑

n=1

(Cn + En)ϑn+1 (τ )− (1 − τ )1/2
∞
∑

n=1

(Cn + En)ϑ′
n+1 (τ ) = −1, (57)

lim
ξ→0

v(0) = 0 ⇒
∞
∑

n=1

((

n− 1

2

)

Dn +

(

n+
3

2

)

Fn

)

ϑn+1 (τ ) = 0. (58)

We see that the above sets of equations to determine the arbitrary constants are infinite
series in infinite sets of constants. Solving these equations for the constants is the most crucial
and complex task in this study. We handled the complexity in the following way: For this, we
used the definition for equality of two infinite series that states that “Two infinite series are
equal if and only if the corresponding partial sums are equal”.

Thus, equating the sum to the first one term of the two series (here, we take the right-
hand side of the above equations as the zero series), we get eight equations in 8 unknowns
L1, M1, R1, S1, C1, D1, E1, F1 which can be easily solved for these unknowns. Now, equating
the sum to the first two terms of the two series, we get eight equations sixteen unknowns,
namely L1, M1, R1, S1,C1, D1, E1,F1 and L2, M2, R2, S2,C2, D2, E2,F2. Since the values
of L1, M1, R1, S1, C1, D1, E1,F1 are known, we substitute these values in these equations.
Then, we again get eight equations in 8 unknowns that can be solved for the unknowns
Ln, Mn, Rn, Sn,Cn, Dn, En,Fn for n = 2. Now, we equate the sum to the first three terms
of the two series to get the values of Ln, Mn, Rn, Sn,Cn, Dn, En,Fn for n = 3. This process
is repeated until the difference in the values of the expressions on both the sides of equations
(46)–(57) is up to a desired degree of accuracy. Thus, knowing the values of the infinite
sets of arbitrary constants, we derive analytical expressions for the non-dimensional stream
and the pressure functions in all three regions. In our study, we computed the values of
Ln, Mn, Rn, Sn,Cn, Dn, En,Fn for n = 1, 2, 3, and the difference is in the order 10−14 to 10−17.
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6 Plot of Streamlines and Pressure Function

Case(I): The two spheres are of equal radius

Figures 2 and 3 respectively present the pressure contours and streamlines in the case of equal
spheres with ξ1 = 1 and ξ2 = −1 Figures 4 and 5 depict the same when ξ1 = 1.2 and ξ2 = −1.2.
Figures 2 and 4 show that the non-dimensional pressure in the region between the larger spheres
is greater than that of smaller spheres. Further, we see from equation (13), and the plots 2(a)–
(d) that the pressure function does not depend on the non-dimensional parameter λi, i = 1, 2,
and hence the pressure contours for the subsequent cases have been presented only for one
particular case when λ1 = 0.1, λ2 = 0.1.

Figures 3 and 5 depict the streamline for different values of λi ,when the two spheres are of
equal radius.When the two spheres are of different λi, we see that the streamlines within them
are dense in the sphere with highλi. When the two spheres of with the same λi, streamlines
are dense when it assumes higher value. This pattern is prevalent irrespective of the radii of
the spheres.

Figure 2: Plot of Pressure Curves in the xy-plane for ξ1 = 1.0, ξ2 = −0.1, (a) λ1 =
0.1, λ2 = 0.1 (b) λ1 = 10, λ2 = 10 (c) λ1 = 0.1, λ2 = 10 (d) λ1 = 10, λ2 = 0.1
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Figure 3: Plot of Streamlines in the xy-plane for ξ1 = 1.0, ξ2 = −0.1, (a) λ1 = 0.1, λ2 = 0.1
(b) λ1 = 10, λ2 = 10 (c) λ1 = 0.1, λ2 = 10 (d) λ1 = 10, λ2 = 0.1

Figure 4: Plot of Pressures Curves in the xy-plane for ξ1 = 1.2, ξ2 = −1.2 and λ1 =
0.1, λ2 = 0.1
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Figure 5: Plot of Streamlines in the xy- plane for ξ1 = 1.2, ξ2 = −1.2, (a) λ1 = 0.1, λ2 = 0.1
(b) λ1 = 10, λ2 = 10 (c) λ1 = 0.1, λ2 = 10 (d) λ1 = 10, λ2 = 0.1
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Case(II): The spheres are of an unequal radius

Figures 6 and 7 respectively depict the pressure contours and the streamlines when the sphere
to the right of the origin is larger than the one towards the other side.

Figure 6: Plot of Pressure Curves in the xy-plane for ξ1 = 1.0, ξ2 = −1.2 and λ1 = 0.1, λ2 = 0.1

Figure 7: Plot of Streamlines in the xy-plane for ξ1 = 1.0, ξ2 = −1.2, (a) λ1 = 0.1, λ2 = 0.1
(b) λ1 = 10, λ2 = 10 (c) λ1 = 0.1, λ2 = 10 (d) λ1 = 10, λ2 = 0.1
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Further, figures 8 and 9 respectively depict the pressure contours and the streamlines when
the sphere to the left of the origin is larger than the one towards the other side.

Figure 8: Plot of Pressure Curves in the xy-plane for ξ1 = 1.2, ξ2 = −1.0 and λ1 = 0.1, λ2 = 0.1

Figure 9: Plot of Streamlines in the xy-plane for ξ1 = 1.2, ξ2 = −1.0, (a) λ1 = 0.1, λ2 = 0.1
(b) λ1 = 10, λ2 = 10 (c) λ1 = 0.1, λ2 = 10 (d) λ1 = 10, λ2 = 0.1
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We see from Figures 6 and 8 that the pressure between the two spheres is more when a
smaller sphere faces the flow stream.

7 Conclusions

In this work, we presented the analytical solution to Stokes flow of a viscous fluid past a
pair of separated porous spheres. Flow within the porous spheres is assumed to follow the
Brinkman model. Analytical expressions for the stream and pressure functions are derived,
and we presented and discussed the pressure contours and streamlines when the two spheres
are of equal radius and unequal radii. An observation made in this work is that there is no
variation in the pressure distribution with the change in the non-dimensional parameter related
to the porous medium’s permeability and the fluid’s viscosity.We wish to explore this result
further in our future work.
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