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Abstract Fermatean fuzzy set, an extension of Intuitionistic fuzzy set and Pythagorean
fuzzy set, plays a remarkable role in dealing with ambiguity owing to its vast space

compared to Intuitionistic fuzzy set and Pythagorean fuzzy set. Aggregation operators
have been helpful in multi-attribute group decision making (MAGDM) problems, because
of their importance and efficacy in coping with uncertainty. The purpose of this paper is

to prove important theorems in the domain of the Fermatean fuzzy weighted geometric
operator (FFWG) and discuss its essential properties. Most importantly, how to utilize

the Fermatean fuzzy weighted geometric operator in the MAGDM problem. An algorithm
of the proposed method has been established. The proposed operator is applied to decision

making problems to show the validity, practicality and effectiveness of the new approach.
The main advantage of using the FFWG method is that this method gives more accurate

results as compared to the existing methods.
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1 Introduction

In many complex real-life problems, uncertainty makes things worse for the decision-makers
since it is challenging to cope with problems in which uncertainty is involved. Due to the
strange nature of ambiguity, the decision-makers tend to make mistakes that lead to devastating
results. So the concept of Fuzzy set (FS) theory was brought into light in 1965 by L. A.
Zadeh [1] to deal with fuzziness. Atanassov proposed the concept of Intuitionistic fuzzy set
(IFS), which is the generalization of FS [2]. The IFS has got the attention of the researchers
since its publication. So many papers have been published related to IFS [3–8]. They [9]
presented the definition of intuitionistic fuzzy generators. Xu [10] introduced the intuitionistic
fuzzy weighted averaging operator, intuitionistic fuzzy ordered weighted averaging operator,
and intuitionistic fuzzy hybrid aggregation operator. They [11] develop some new geometric
aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator,
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the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator, and the intuitionistic
fuzzy hybrid geometric (IFHG) operator. Wei [12] proposed two new aggregation operators:
induced intuitionistic fuzzy ordered weighted geometric (I-IFOWG) operator and induced
interval-valued intuitionistic fuzzy ordered weighted geometric (I-IIFOWG) operator. The
definition of Pythagorean fuzzy set (PFS) was proposed by Yager [13, 14]. In the year 2015,
they [15] developed a Pythagorean fuzzy superiority and inferiority ranking method to solve
uncertainty multiple attribute group decision making problem. Recently in 2020, they [16]
proposed an agricultural product supplier selection algorithm based on the Pythagorean fuzzy
power Bonferroni mean operator under Pythagorean fuzzy environment. They [17] introduced
the notion of the Fermatean fuzzy set (FFS) to face situations that could not be handled
well by IFS and PFS. It is the extension of FS, IFS, and PFS; it is a more powerful tool
compared to IFS and PFS since it covers more space than them. In 2020, they [18] proposed
Fermatean fuzzy Yager weighted average (FFYWA), Fermatean fuzzy Yager ordered weighted
average (FFYOWA), Fermatean fuzzy Yager hybrid weighted average (FFYHWA), Fermatean
fuzzy Yager weighted geometric (FFYWG), Fermatean fuzzy Yager ordered weighted geometric
(FFYOWG), and Fermatean fuzzy Yager hybrid weighted geometric (FFYHWG) operator.

Because FFSs are more powerful than IFSs and PFSs to model the uncertainty in the
practical MCDM or MCGDM problems, in this paper we will propose a new group decision
method to handle effectively MCGDM problems with Fermatean fuzzy information. Motivated
by the mentioned operators and their applications in diverse areas of life including engineering,
medical, and business, in our study, we have explored the essential properties of FFWG operator
along with solved examples, and have applied the FFWG operator to the MAGDM problem.
This paper has five sections. Section 2 is devoted to some basic definitions. Section 3 is devoted
to some operational laws and relations. In section 4, we present the algorithm of the FFWG
method, and construct the MAGDM problem. In section 5, we conclude our paper.

2 Preliminaries

Definition 2.1. [2] Let a set X be a universe of discourse, The IFS A is an object having the
form:

A = {〈x, σA(x), %A(x)〉 : x ∈ X},
where σA(x), and %A(x) are two functions from X to [0,1], satisfying the conditions that
0 ≤ σA(x) + %A(x) ≤ 1 for all x ∈ X.

Definition 2.2. [13] Let a set X be a universe of discourse, The PFS P is an object
having the form:
P = {〈x, σP (x), %P (x)〉 : x ∈ X}, where σP (x), and %P (x) are two mappings from X to [0,1],
satisfying the conditions that 0 ≤ σ2

P (x) + %2
P (x) ≤ 1.

Definition 2.3. [17] Let a set X be a universe set, The FFS β is an object having the
form:

β = {〈x, σβ(x), %β(x)〉 : x ∈ X},
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where σβ(x) represents membership function, and %β(x) represents non-membership function,
both are mappings from X to [0,1], satisfying the conditions that 0 ≤ σ3

β(x) + %3
β(x) ≤ 1 for all

x ∈ X, and πβ = 3
√

1 − (σβ(x))3 − (%β(x))3 is called the degree of indeterminacy of x to β. For
simplicity, we consider the Fermatean fuzzy numbers (FFNs) be the components of the FFS.

For understanding the FFS better, we give an instance to illuminate the understandability of
the FFS: the point when someone needs will plan as much craving for the level for an alternative
xi on a criterion Cj , he might provide for the degree on which that alternative xi fulfills those
criteria Cj likewise 0.9, what’s more correspondingly the elective xi dissatisfies the criterion
Cj similarly as 0.6. We can definitely get 0.9 + 0.6 > 1, and, therefore, it does not follow the
condition of intuitionistic fuzzy sets. Also, we can get (0.9)2 + (0.6)2 = 0.81 + 0.36 = 1.17 > 1,
which does not obey the constraint condition of Pythagorean fuzzy set. However, we can get
(0.9)3 + (0.6)3 = 0.729 + 0.216 = 0.945 ≤ 1, which is good enough to apply the FFS to control
it.

From Figure 1, it is clear that FFS covers more space, and it is the best tool in dealing with
ambiquity compared to “Intuitionistic fuzzy set” and “Pythagorean fuzzy set”.

Figure 1: Comparison of IFS, PFS, and FFS

Definition 2.4. [17] Let β = (σβ, %β), β1 = (σβ1
, %β1

) and β2 = (σβ2
, %β2

) be three FFNs,
then their operations are defined as follows:

(1) βc = (%β , σβ),
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(2) β1 � β2 =
(

3
√

(σβ1
)3 + (σβ2

)3 − (σβ1
)3(σβ2

)3, %β1
%β2

)

,

(3) β1 � β2 =
(

σβ1
σβ2

, 3
√

(%β1
)3 + (%β2

)3 − (%β1
)3(%β2

)3
)

,

(4) αβ =
(

3
√

1 − (1 − (σβ)3)α, (%β)α
)

,

(5)βα =
(

(σβ)
α, 3
√

1 − (1 − (%β)3)α

)

.

In the following, we will discuss some special cases.

(1) If β = (σβ , %β) = (1, 1) i,e. σβ = 1, %β = 1,
then βγ = (1, 1).

βγ =
(

σ
γ
β , 3

√

1 −
(

1 − %3
β

)γ
)

=
(

1, 3
√

1 − (1 − 1)γ
)

=
(

1, 3
√

1 − (0)
)

=
(

1, 3
√

1
)

= (1, 1)

(2) If β = (σβ , %β) = (0, 0) i,e. σβ = 0, %β = 0,
then βγ = (0, 0).

βγ =
(

σγ
β , 3

√

1 −
(

1 − %3
β

)γ
)

=
(

0, 3
√

1 − (1 − 0)γ
)

=
(

0, 3
√

1 − (1)γ
)

=
(

0, 3
√

1 − 1
)

= (0, 0)

(3) If β = (σβ , %β) = (0, 1) i,e. σβ = 0, %β = 1,
then βγ = (0, 1).

βγ =
(

σ
γ
β , 3

√

1 −
(

1 − %3
β

)γ
)

=
(

0, 3
√

1 − (1 − 1)γ
)

=
(

0, 3
√

1 − (0)
)

= (0, 1)

(4) If γ → 0 and 0 ≤ σβ, %β ≤ 1, then
βγ = (σβ , %β) → (1, 0) i.e. βγ → (1, 0)(γ → 0)

βγ =
(

σγ
β , 3

√

1 −
(

1 − %3
β

)γ
)

=
(

1, 3
√

1 − (1 − 1)γ
)

=

(

1, 3

√

1 − (1 − 1)0

)
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=
(

1, 3
√

1 − 1
)

= (1, 0)

(5) If γ → +∞ and 0 ≤ σβ , %β ≤ 1, then
βγ = (σβ , %β) → (0, 1) i.e. βγ → (0, 1)(γ → +∞)

βγ =
(

σ
γ
β , 3

√

1 −
(

1 − %3
β

)γ
)

=
(

0, 3
√

1 − (1 − 1)γ
)

=
(

0, 3
√

1 − (0)γ
)

=
(

0, 3
√

1
)

= (0, 1)

(6) If γ = 1, then βγ = (σβ , %β). i.e,
βγ → β(γ = 1)

βγ =
(

σ
γ
β , 3

√

1 −
(

1 − %3
β

)γ
)

=

(

σ1
β,

3

√

1 −
(

1 − %3
β

)1

)

=
(

σβ,
3

√

1 −
(

1 − %3
β

)

)

=
(

σβ, 3

√

1 − 1 + %3
β

)

=
(

σβ, 3

√

%3
β

)

= (σβ, %β)
Definition 2.5. [17] Let β1 = (σβ1

, %β1
) and β2 = (σβ2

, %β2
) be two FFNs (Fermatean fuzzy

numbers), a nature quasi-ordering on the FFNs is defined as follows :

β1 ≥ β2 if and only if σβ1
≥ σβ2

and %β1
≤ %β2

.

Definition 2.6. [17] Let β = (σβ, %β) be a FFN, then the score function of β can be defined
as follows :

SC(β) = (σβ)
3 − (%β)3,

where SC ∈ [−1, 1].

Definition 2.7. [17] Let β1 = (σβ1
, %β1

) and β2 = (σβ2
, %β2

) be two FFNs, SC(β1) and
SC(β2) be the score function of β1 and β2 respectively, then

(1) If SC(β1) < SC(β2), then β1 < β2;
(2) If SC(β1) > SC(β2), then β1 > β2;
(3) If SC(β1) = SC(β2), then β1 ∼ β2.

Definition 2.8. [17] Let β = (σβ , %β) be an FFN, then the accuracy function of β can
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be defined as follows :

acc(β) = (σβ)3 + (%β)3.

Definition 2.9. [17] Let β1 = (σβ1
, %β1

) and β2 = (σβ2
, %β2

) be two FFNs, SC(βj) and
acc(βj)(j = 1, 2) are the score values and accuracy values of β1 and β2 respectively, then

(1) If SC(β1) < SC(β2), then β1 < β2;
(2) If SC(β1) > SC(β2), then β1 > β2;
(3) If SC(β1) = SC(β2), then

(i) If acc(β1) < acc(β2), then β1 < β2;
(ii) If acc(β1) > acc(β2), then β1 > β2;
(iii) If acc(β1) = acc(β2), then β1 = β2.

3 Operational Laws and Relations

This section is devoted to some operational laws and relations.

Theorem 3.1 let β1 = (σβ1
, %β1

) and β2 = (σβ2
, %β2

) be two FFNs, σ3
β1

∈ (0, 1), %3
β1

∈
(0, 1), σ3

β2
∈ (0, 1), %3

β2
∈ (0, 1), σ3

β1
+ %3

β1
≤ 1, σ3

β2
+ %3

β2
≤ 1. Let α1 = β1 � β2 and

α2 = βγ(γ > 0). Then α1 and α2 are also FFNs.

Proof Let β1 = (σβ1
, %β1

) and β2 = (σβ2
, %β2

) be two FFNs which means that σ3
β1

+ %3
β1

≤ 1
and σ3

β2
+ %3

β2
≤ 1 . Therefore,1 − %3

β1
≥ σ3

β1
≥ 0, 1 − %3

β2
≥ σ3

β2
≥ 0.

(σβ1
σβ2

)3 +
(

3

√

%3
β1

+ %3
β2

− %3
β1

%3
β2

)3

≤ (1 − %3
β1

)(1 − %3
β2

) +
(

3

√

%3
β1

+ %3
β2

− %3
β1

%3
β2

)3

= (1 − %3
β1

)(1 − %3
β2

) + %3
β1

+ %3
β2

− %3
β1

%3
β2

= 1 − %3
β1

− %3
β2

+ %3
β1

%3
β2

+ %3
β1

+ %3
β2

− %3
β1

%3
β2

=1

Thus α1 is a FFN. Now let σγ
β ≥ 0 and %γ

β ≥ 0, 1 − %3
β ≥ σ3

β ≥ 0 and hence
(1 − %3

β)γ ≥ (σ3
β)

γ ≥ 0.
Since
(

σ
γ
β

)3
+
(

3

√

1 −
(

1 − %3
β

)γ
)3

≤
(

1 − %3
β

)γ
+
(

3

√

1 −
(

1 − %3
β

)γ
)3

=
(

1 − %3
β

)γ
+ 1 −

(

1 − %3
β

)γ

=1

Thus α2 is also a FFN. 2

Definition 3.2 [19] Let βj = (σβj
, %βj

)(j = 1, . . . , n) be FFNs then the Fermatean fuzzy
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weighted geometric aggregation operator is a mapping FFWG : Ωn → Ω and can be defined as :

FFWGw (β1, β2, . . . , βn) = βw1

1 � βw2

2 � . . . � βwn

n (1)

where w = (w1, w2, . . . , wn)
T

is the weighted vector of βj(j = 1, 2, 3, . . . , n) with condition

wj ∈ [0, 1] and
n
∑

j=1

wj = 1.

If w =
(

1
n
, 1

n
, . . . , 1

n

)T
, then the FFWG operator is converted to FFG operator which is

defined as :

FFG (β1, β2, . . . , βn) = (β1 � β2 � . . . � βn)
1

n (2)

Example 3.3 Let
β1 = (0.3, 0.5), β2 = (0.4, 0.7)
β3 = (0.7, 0.5), β2 = (0.6, 0.8)
and w = (0.5, 0.2, 0.2, 0.1)T .

Thus

FFWGw (β1, β2, β3, β4)

=

(

4
∏

j=1

σ
wj

βj
, 3

√

1 −
4
∏

j=1

(

1 − %3
βj

)wj

)

=
(

(0.3)0.5•(0.4)0.2•(0.7)0.2•(0.6)0.1, 3
√

1− (1− 0.53)0.5(1 − 0.73)0.2(1 − 0.53)0.2(1 − 0.83)0.1
)

= (0.4035, 0.6042).

Theorem 3.4 Let βj =
(

σβj
, %βj

)

(j = 1, 2, . . . , n) are FFNs, then their aggregated
value obtained by applying FFWG operator is also a FFN, and

FFWGw(β1, β2, . . . , βn) = �
n
j=1(βj)

wj

=





n
∏

j=1

σ
wj

βj
, 3

√

√

√

√1 −
n
∏

j=1

(

1 − %3
βj

)wj



 (3)

the weighted vector of βj(j = 1, 2, . . . , n) is w = (w1, w2, . . . , wn)T with some conditions

wj ∈ [0, 1] and
n
∑

j=1

wj = 1.

Proof By mathematical induction we can prove that equation (3) holds for all n. First
we show that equation (3) holds for n = 2, since

βw1

1 =
(

σw1

β1
, 3

√

1 −
(

1 − %3
β1

)w1

)

So
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βw2

2 =
(

σw2

β2
, 3

√

1 −
(

1 − %3
β2

)w2

)

βw1

1 � βw2

2

=
(

σw1

β1
, 3

√

1 −
(

1 − %3
β1

)w1

)

�

(

σw2

β2
, 3

√

1 −
(

1 − %3
β2

)w2

)

=

(

σw1

β1
σw2

β2
,

3

√

(

3

√

1−
(

1− %3
β1

)w1

)3

+
(

3

√

1 −
(

1 − %3
β2

)w2

)3

−
(

3

√

1−
(

1−%3
β1

)w1

)3(
3

√

1 −
(

1 − %3
β2

)w2

)3
)

=

(

σw1

β1
σw2

β2
,

3

√

1 −
(

1 − %3
β1

)w1 + 1 −
(

1 − %3
β2

)w2 −
(

1 −
(

1 − %3
β1

)w1
) (

1 −
(

1 − %3
β2

)w2
)

)

=

(

σw1

β1
σw2

β2
, 3

√

1 −
(

1 − %3
β1

)w1
(

1 − %3
β2

)w2

)

=

(

2
∏

j=1

σ
wj

βj
, 3

√

1 −
2
∏

j=1

(

1 − %3
βj

)wj

)

Thus equation (3) holds for n = 2. Let us suppose that equation (3) is true for n = k. Then
we have

FFWGw(β1, β2, . . . , βk) =

(

k
∏

j=1

σ
wj

βj
, 3

√

1 −
k
∏

j=1

(

1 − %3
βj

)wj

)

Now we show that equation (11) is true for n = k + 1
FFWGw(β1, β2, . . . , βk+1)
= βw1

1 � βw2

2 � . . . � β
wk+1

k+1

=

(

k
∏

j=1

σ
wj

βj
, 3

√

1 −
k
∏

j=1

(

1 − %3
βj

)wj

)

�

(

(

σβk+1

)wk+1 , 3

√

1 −
(

1 − %3
βk+1

)wk+1

)

=

0

@

k
Y

j=1

σ
wj
βj

“

σβk+1

”wk+1
,

3

v

u

u

u

u

t

0

B

@

3

v

u

u

u

t1−

k
Y

j=1

„

1 − %3
βj

«wj

1

C

A

3

+

 

3

s

1−

„

1− %3
βk+1

«wk+1

!3

−

0

B

@

3

v

u

u

u

t1−

k
Y

j=1

„

1 − %3
βj

«wj

1

C

A

3
 

3

s

1−

„

1− %3
βk+1

«wk+1

!3

1

C

C

A
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=

(

k
∏

j=1

σ
wj

βj

(

σβk+1

)wk+1 ,

3

√

√

√

√1−
k
∏

j=1

(

1− %3
βj

)wj

+ 1−
(

1 − %3
βk+1

)wk+1

−
(

1 −
k
∏

j=1

(

1 − %3
βj

)wj

)

(

1 −
(

1 − %3
βk+1

)wk+1
)





=

(

k+1
∏

j=1

σ
wj

βj
, 3

√

1 −
k+1
∏

j=1

(

1 − %3
βj

)wj

)

Hence equation (3) holds for n = k + 1. Thus equation (3) holds for all n. 2

Example 3.5 Let β1 = (0.3, 0.7), β2 = (0.4, 0.6), β3 = (0.5, 0.6), β4 = (0.6, 0.3), be four FFNs,
and their weighted vector is w = (0.4, 0.3, 0.2, 0.1)T , then if we apply the FFWG operator we
get the Fermatean fuzzy number.

Thus

FFWGw (β1, β2, β3, β4)

=

(

4
∏

j=1

σ
wj

βj
, 3

√

1 −
4
∏

j=1

(

1 − %3
βj

)wj

)

=
(

(0.3)0.4•(0.4)0.3•(0.5)0.2•(0.6)0.1, 3
√

1− (1− 0.73)0.4(1− 0.63)0.3(1− 0.63)0.2(1− 0.33)0.1
)

=(0.3882, 0.6329)

Theorem 3.6 Let βj = (σβj
, %βj

)(j = 1, 2, 3, . . . , n) be the FFNs and the weighted vector of

βj(j = 1, 2, 3, . . . , n) is w = (w1, w2, . . . , wn)
T with some conditions wj ∈ [0, 1] and

n
∑

j=1

wj = 1.

If βj(j = 1, 2, 3, . . . , n) are mathematically equal. Then

FFWGw(β1, β2, . . . , βn) = β

Proof As we know that

FFWGw (β1, β2, . . . , βn) = βw1

1 � βw2

2 � . . . � βwn
n

Let βj(j = 1, 2, 3, . . . , n) = β, then

FFWGw (β1, β2, . . . , βn) = βw1

1 � βw2

2 � . . . � βwn
n

= (β)

n
P

j=1

wj
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= β. 2

Example 3.7 Let β1 = (0.4, 0.5), β2 = (0.4, 0.5), β3 = (0.4, 0.5), β4 = (0.4, 0.5), be four
FFNs, and their weighted vector is w = (0.4, 0.3, 0.2, 0.1)T , then if we apply the FFWG
operator we get the Fermatean fuzzy number.

Thus

FFWGw (β1, β2, β3, β4)

=

(

4
∏

j=1

σ
wj

βj
, 3

√

1 −
4
∏

j=1

(

1 − %3
βj

)wj

)

=
(

(0.4)0.4 • (0.4)0.3 • (0.4)0.2 • (0.4)0.1, 3
√

1 − (1 − 0.53)0.4(1 − 0.53)0.3(1 − 0.53)0.2(1 − 0.53)0.1
)

=(0.4, 0.5)

Theorem 3.8 Let βj = (σβj
, %βj

)(j = 1, 2, 3, . . . , n) be the FFNs and the weighted vector of

βj(j = 1, 2, 3, . . . , n) is w = (w1, w2, . . . , wn)
T with some conditions wj ∈ [0, 1] and

n
∑

j=1

wj = 1.

If βj(j = 1, 2, 3, . . . , n) are mathematically equal. If

β− =

(

min
j

(

σβj

)

, max
j

(

%βj

)

)

,

β+ =

(

max
j

(

σβj

)

, min
j

(

%βj

)

)

,

then
β− ≤ FFWGw(β1, β2, . . . , βn) ≤ β+ (4)

for all w.

Proof As we know that
min

j

(

σβj

)

≤ σβj
≤ max

j

(

σβj

)

(5)

min
j

(

%βj

)

≤ %βj
≤ max

j

(

%βj

)

. (6)

From equation (5), we have

⇔ min
j

(

σβj

)

≤ σβj
≤ max

j

(

σβj

)

⇔ min
j

(

σβj

)wj ≤ σ
wj

βj
≤ max

j

(

σβj

)wj

⇔
n
∏

j=1

min
j

(

σβj

)wj ≤
n
∏

j=1

σ
wj

βj
≤

n
∏

j=1

max
j

(

σβj

)wj
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⇔ min
j

(

σβj

)

≤
n
∏

j=1

σ
wj

βj
≤ max

j

(

σβj

)

.

Now from equation (6), we have

⇔ 3

√

1 − max
j

(

%βj

)3 ≤ 3

√

1 − %3
βj

≤ 3

√

1 − min
j

(

%βj

)3

⇔ 3

√

n
∏

j=1

(

1 − max
j

(

%βj

)3
)wj

≤ 3

√

n
∏

j=1

(

1 − %3
βj

)wj

≤ 3

√

n
∏

j=1

(

1 − min
j

(

%βj

)3
)wj

⇔ 3

√

1 − max
j

(

%βj

)3 ≤ 3

√

n
∏

j=1

(

1 − %3
βj

)wj

≤ 3

√

n
∏

j=1

(

1 − min
j

(

%βj

)3
)wj

⇔ min
j

(

%βj

)

≤ 3

√

√

√

√1 −
n
∏

j=1

(

1 − %3
βj

)wj

≤ max
j

(

%βj

)

. (7)

Let FFWGw(β1, β2, . . . , βn) = β = (σβ, %β) , then

R (β) = σ3
β − %3

β ≤ max
j

(σβ)
3 − min

j
(%β)

3

= R (β+)

Thus R (β) ≤ R (β+) . Again

R (β) = σ3
β − %3

β ≥ min
j

(σβ)
3 −max

j
(%β)

3

= R (β−).

Thus R (β) ≥ R (β−) . If R (β) < R (β+) , R (β) > R (β−) , then

β− < FFWGw(β1, β2, . . . , βn) < β+ (8)

If R (β) = R (β+) , then

⇔ σ3
β − %3

β = max
j

(σβ)
3 − min

j
(%β)

3

⇔ σ3
β = max

j
(σβ)

3
, %3

β = min
j

(%β)3

⇔ σβ = max
j

(σβ) , %β = min
j

(%β)

Since

A(β) = σ3
β + %3

β = max
j

(σβ)
3 + min

j
(%β)3 = A(β+),

thus
FFWGw(β1, β2, . . . , βn) = β+. (9)
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If R (β) = R (β−) , then

⇔ σ3
β − %3

β = min
j

(σβ)
3 − max

j
(%β)3

⇔ σ3
β = min

j
(σβ)3

, %3
β = max

j
(%β)3

⇔ σβ = min
j

(σβ) , %β = max
j

(%β) .

Since

A(β) = σ3
β + %3

β = min
j

(σβ)
3 + max

j
(%β)3 = A(β−),

thus

FFWGw(β1, β2, . . . , βn) = β− (10)

Thus from equation (8) to (10), we have

β− ≤ FFWGw(β1, β2, . . . , βn) ≤ β+, for all w. 2

Theorem 3.9 Let βj =
(

σβj
, %βj

)

(j = 1, 2, 3, . . . , n), and β∗

j =
(

σβ∗

j
, %β∗

j

)

(j = 1, 2, 3, . . . , n)

be the two collection of FFNs with the weighted vector w = (w1, w2, . . . , wn)
T satisfying the

conditions wj ∈ [0, 1] and
n
∑

j=1

wj = 1. If σβj
≤ σβ∗

j
and %βj

≥ %β∗

j
then

FFWGw(β1, β2, . . . , βn) ≤ FFWGw(β∗

1 , β
∗

2 , . . . , β
∗

n) (11)

Proof Since, σβj
≤ σβ∗

j
and %βj

≥ %β∗

j
then

⇔ σ
wj

βj
≤ σ

wj

β∗

j

⇔
n
∏

j=1

σ
wj

βj
≤

n
∏

j=1

σ
wj

β∗

j

Now using the non-membership function we have

⇔ 1 − %3
βj

≤ 1 − %3
β∗

j

⇔ 3

√

n
∏

j=1

(

1 − %3
βj

)wj

≤ 3

√

n
∏

j=1

(

1 − %3
β∗

j

)wj

⇔ 3

√

1 −
n
∏

j=1

(

1 − %3
β∗

j

)wj

≤ 3

√

1 −
n
∏

j=1

(

1 − %3
βj

)wj

Let

β = FFWGw(β1, β2, . . . , βn)
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and

β∗ = FFWGw(β∗

1 , β
∗

2 , . . . , β
∗

n)

Then from equation (11) we have, R (β) ≤ R (β∗) .

If R (β) < R (β∗), then

FFWGw(β1, β2, . . . , βn) < FFWGw(β∗

1 , β
∗

2 , . . . , β
∗

n) (12)

If R (β) = R (β∗), then

⇔ σ3
β − %3

β = σ3
β∗ − %3

β∗

⇔ σ3
β = σ3

β∗, %3
β = %3

β∗

⇔ σβ = σβ∗, %β = %β∗

Since A (β) = σ3
β + %3

β = σ3
β∗ + %3

β∗ = A (β+) , thus

FFWGw(β1, β2, . . . , βn) = FFWGw(β∗

1 , β
∗

2 , . . . , β
∗

n) (13)

Thus from equation (12) and (13), we have

FFWGw(β1, β2, . . . , βn) ≤ FFWGw(β∗

1 , β
∗

2 , . . . , β
∗

n). 2

Example 3.10 Let β1 = (0.3, 0.5), β2 = (0.4, 0.6), β3 = (0.2, 0.7),
β4 = (0.1, 0.8), β∗

1 = (0.6, 0.4), β∗

2 = (0.7, 0.2), β∗

3 = (0.5, 0.4),
β∗

4 = (0.4, 0.4), and w = (0.4, 0.3, 0.2, 0.1)T ,

Now using the FFWG operator we get the following result.
FFWGw (β1, β2, β3, β4)

=

(

4
∏

j=1

σ
wj

βj
, 3

√

1 −
4
∏

j=1

(

1 − %3
βj

)wj

)

=
(

(0.3)0.4•(0.4)0.3•(0.2)0.2•(0.1)0.1, 3
√

1− (1− 0.53)0.4(1− 0.63)0.3(1− 0.73)0.2(1− 0.83)0.1
)

=( 0.2702, 0.6265)

FFWGw (β∗

1 , β
∗

2 , β
∗

3, β
∗

4)
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=

(

4
∏

j=1

σ
wj

β∗

j
, 3

√

1 −
4
∏

j=1

(

1 − %3
β∗

j

)wj

)

=
(

(0.6)0.4•(0.7)0.3•(0.5)0.2•(0.4)0.1, 3
√

1− (1− 0.43)0.4(1− 0.23)0.3(1− 0.43)0.2(1− 0.43)0.1
)

=( 0.5818, 0.3623)

Hence

FFWGw(β1, β2, β3, β4) ≤ FFWGw(β∗

1 , β
∗

2, β
∗

3 , β
∗

4).

4 An Application of the FFWG Operator to MAGDM Problem

In this section, we discuss an application of the FFWG operator to MADM. Now we are
utilizing FFNs to develop the MADM.

Algorithm Let V = {V1, V2, . . . , Vn} be a finite set of n alternatives, and suppose
C = {C1, C1, . . . , Cm} is a finite set of m attributes, and E = {e1, e2, . . . , ek} be the set of k

experts.

Let w = (w1, w2, . . . , wm)T be the weighted vector of the attributes Cj (j = 1, 2, . . . , m) ,

also wj ∈ [0, 1] and
m
∑

j=1

wj = 1, α = (α1, α2, . . . , αk)
T

be the weighted vector of the

Es (s = 1, 2, . . . , k) , also αs ∈ [0, 1] and
k
∑

s=1

αs = 1.

This method has the following steps.

Step 1: Construct the Fermatean fuzzy decision matrices Ks =
[

d
(s)
ij

]

n×m
(s = 1, 2, . . . , k) for

decision. If the criteria have two types, one is benefit criteria and the other is cost criteria,

then the decision-maker transforms the Fermatean fuzzy decision matrix, Ks =
[

d
(s)
ij

]

n×m
,

into the normalized Fermatean fuzzy decision matrix,

T s =
[

t
(s)
ij

]

n×m
, where

t
(s)
ij =

{

dij , for benefit criteria Cj (j = 1, 2, . . . , m),

dc
ij , for cost criteria Cj (j = 1, 2, . . . , m)

where dc
ij represents the complement of dij . The normalization is not required when all

the criteria have the same type.

Step 2: Utilize the FFWG operator to combine the entire individual FFDMS. This step
is utilized to get the ideal opinion of all experts.
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T s =
[

t
(s)
ij

]

n×m
(s = 1, 2, . . . , k) into the collective FFDM T = [tij]n×m

, with

condition tij = (σij, ξij) (i = 1, 2, . . . , n) (j = 1, 2, . . . , m)

Step 3: Aggregate all the preference values tij = (σij, ξij) (i = 1, 2, . . . , n) (j = 1, 2, . . . , m)
by utilizing the FFWG operator to achieve the overall preference value ti (i = 1, 2, . . . , n)
analogous to the alternatives Vi (i = 1, 2, . . . , n) .

Step 4: The scores of ti (i = 1, 2, . . . , n) are determined in this step. In case there is a
difference between two or more score functions then the accuracy degrees must be calculated.

Step 5: To find the best alternative, arrange the score values in descending order, and
pick the first alternative in descending order as the best alternative.

Example 4.1 Consider a multiattribute decision problem for mounting a global positioning
system (GPS). Suppose four alternatives Vi(i = 1, 2, 3, 4) are considered according to four
criteria: (C1) accuracy, (C2) reliability, (C3) service, and (C4) functionality. C1, C2, and C3

are the benefit criteria while C4 is the cost criteria. Three experts Es(s = 1, 2, 3) are called for
assessments. Let α = (0.6, 0.3, 0.1) be the weight vector of the experts Es(s = 1, 2, 3)T , and
w = (0.4, 0.4, 0.1, 0.1)T be the weight vector of criteria Ci(i = 1, 2, 3, 4).

The assessment values provided by the experts are in the following tables.

Table 1: Fermatean fuzzy decision matrix E1

C1 C2 C3 C4

V1 (0.7,0.4) (0.7,0.6) (0.6,0.5) (0.5,0.6)
V2 (0.6,0.4) (0.7,0.5) (0.5,0.6) (0.6,0.4)
V3 (0.4,0.5) (0.1,0.4) (0.6,0.5) (0.7,0.4)
V4 (0.6,0.7) (0.6,0.4) (0.7,0.4) (0.7,0.5)

Table 2: Fermatean fuzzy decision matrix E2

C1 C2 C3 C4

V1 (0.1,0.9) (0.6,0.5) (0.3,0.4) (0.5,0.6)
V2 (0.1,0.7) (0.7,0.5) (0.4,0.7) (0.6,0.4)
V3 (0.4,0.7) (0.6,0.4) (0.9,0.3) (0.7,0.6)
V4 (0.4,0.6) (0.5,0.7) (0.3,0.8) (0.7,0.6)

From the Figure 2 and Table 9, we observe that the ranking order of all alternatives
utilizing different operators is different. The fluctuations reflected in the graphs illustrate
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Table 3: Fermatean fuzzy decision matrix E3

C1 C2 C3 C4

V1 (0.3,0.8) (0.5,0.8) (0.3,0.5) (0.5,0.6)
V2 (0.6,0.4) (0.7,0.5) (0.4,0.8) (0.2,0.9)
V3 (0.6,0.7) (0.5,0.7) (0.8,0.4) (0.6,0.4)
V4 (0.3,0.6) (0.6,0.4) (0.7,0.5) (0.2,0.7)

Table 4: Normalize FFDM E1

C1 C2 C3 C4

V1 (0.7,0.4) (0.7,0.6) (0.6,0.5) (0.6,0.5)
V2 (0.6,0.4) (0.7,0.5) (0.5,0.6) (0.4,0.6)
V3 (0.4,0.5) (0.1,0.4) (0.6,0.5) (0.4,0.7)
V4 (0.6,0.7) (0.6,0.4) (0.7,0.4) (0.5,0.7)

Table 5: Normalize FFDM E2

C1 C2 C3 C4

V1 (0.1,0.9) (0.6,0.5) (0.3,0.4) (0.6,0.5)
V2 (0.1,0.7) (0.7,0.5) (0.4,0.7) (0.4,0.6)
V3 (0.4,0.7) (0.6,0.4) (0.9,0.3) (0.6,0.7)
V4 (0.4,0.6) (0.5,0.7) (0.3,0.8) (0.6,0.7)

Table 6: Normalize FFDM E3

C1 C2 C3 C4

V1 (0.3,0.8) (0.5,0.8) (0.3,0.5) (0.6,0.5)
V2 (0.6,0.4) (0.7,0.5) (0.4,0.8) (0.9,0.2)
V3 (0.6,0.7) (0.5,0.7) (0.8,0.4) (0.4,0.6)
V4 (0.3,0.6) (0.6,0.4) (0.7,0.5) (0.7,0.2)

Table 7: The ideal opinion of all experts

C1 C2 C3 C4

V1 ( 0.3587,0.7339) (0.6463, 0.6102 ) ( 0.4547,0.4749) (0.6 ,0.5)
V2 ( 0.3505 , 0.5409 ) (0.7,0.5) ( 0.4573,0.6626 ) (0.4338 , 0.5822 )
V3 ( 0.4166 , 0.6035 ) ( 0.2011 , 0.4588) (0.6974 ,0.4491) (0.4517 ,0.6919 )
V4 (0.4957, 0.6656 ) ( 0.5681 , 0.5409) ( 0.5429 ,0.6174 ) ( 0.5462, 0.6807 )
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Table 8: The collective preference values, scores and ranking of alternatives

Alternatives Collective preference Scores Ranking
V1 ( 0.4725, 0.6462 ) -0.1643 4
V2 ( 0.4647 , 0.5657 ) -0.0807 1
V3 ( 0.3742 , 0.5563 ) -0.1198 3
V4 ( 0.5310 , 0.6270 ) -0.0968 2

Figure 2: Ranking order comparison using using PFWG and FFWG operators

Table 9: Comparative analysis

Method Score values Order of alternatives
V1 V2 V3 V4

PFWG [20] -0.2334 0.0425 -0.2669 -0.1191 V2 > V4 > V1 > V3

FFWG -0.1643 -0.0807 -0.1198 -0.0968 V2 > V4 > V3 > V1

the stability between the alternatives V1 to V4. The Pythagorean fuzzy weighted geometric
operator (PFWG) shows less stability as compared to the Fermatean fuzzy weighted geometric
operator . Since the FFWG operator is more reliable and stable in decision-making problems.

4.1 Decision Process

Step 1 is utilized to get the FFDMs, and then we normalize them. Step 2 is used to get the
ideal opinions of all experts. In steps 3 and 4, we achieve collective preference values utilizing
the FFWG operator, and score values, respectively. In step 5, we rank the alternatives. From
Table 8, it is clear that V2 > V4 > V3 > V1. So the best option is V2.
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5 Conclusion

Aggregation operators are useful to associate a unique representative value for each alternative,
when there are various attributes that apply to any given case. FFSs, a remarkable extension
of PFSs, permit modeling of situations with higher more generality than PFSs, because they
still apply in cases where the membership m and non-membership n values sum up to more
than 1 but they satisfy m3 + n3 ≤ 1. Fermatean fuzzy sets can handle uncertain information
more easily in the process of decision-making. So we have established the essential properties
of FFWG operator in the domain of FFSs to overcome the deficiencies resulted in decision-
making problems in IFSs and PFSs. We have also constructed a MCDM problem, and the
FFWG operator has been applied to it. The outcomes of the problem showed that the FFWG
operator is more reliable and accurate in decision-making problems as compared to the PFWG
operator. In the future, we will extend Pythagorean fuzzy soft Yager hybrid weighted operators
to Fermatean fuzzy soft Yager hybrid weighted operators. Also we will extend the proposed
method to address the MAGDM problems in which the decision information takes the form
of interval-valued FFNs. Other applications of this approach will be considered, especially in
business decision-making and statistics.
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