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Abstract The Singular Spectrum Analysis (SSA) is a powerful non-parametric time
series analysis that has demonstrated its capability in forecasting different time series in

various disciplines. SSA falls in the framework of data-driven modelling of dynamical
system which does not rely on any underlying assumption except the inherent dynamics

which are captured over time. The capabilities of SSA are mainly afforded by its direct
connection to the singular value decomposition (SVD). It is generally accepted that SVD-

based methods are very affective for the noise reduction in deterministic time series and
consequently for forecasting, as well as for extracting trends and structures. Despite its

strength, several shortcomings of SSA in the analysis of COVID-19 time series have been
reported in the literature. The aim of this paper is to determine the scope of this limitation
and we confine our investigation in the analysis and forecasting of COVID-19 Pandemic in

Malaysia. We scrutinize the results from the SSA analysis of the number of daily confirmed
cases to gain further insight into the intrinsic trends of the pandemic. Groupings of the

singular spectra that contributes to different features of the pandemic time series are
identified using analysis of the singular value spectrum, periodogram analysis and analysis

of the weighted correlation matrix. It was revealed that under stationary conditions, the
principal eigentriple is sufficient to produce reliable forecast. However, in non-stationary

conditions, for example during a movement control order, it is useful to also study the
minor eigentriples which could contain transient dynamics that may persist.

Keywords Singular spectrum analysis; data-driven modelling; COVID-19; Malaysia;
machine learning.

Mathematics Subject Classification 37M10, 94A16.

1 Introduction

The ability to predict the future of the COVID-19 pandemic is important to help gain better
understanding of the current situation. Many policymakers have relied on mathematical models
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to guide timely, well-informed responses. Although there are a lot of debate on how much
faith one should put on the validity of epidemic forecasting and mathematical models [1–
3], it is inevitable that mathematical models shall continue to be one of the main tools to
provide insights and possible solutions. Conventional epidemiological models such as the family
of susceptible-infected-recovered (SIR) compartmental models [4–6] are among the popular
mathematical models used for prediction, mainly due to their sound theoretical basis and a
history of useful applications. Epidemiological models are driven by prior assumptions which
are translated into a set of assumed parameterized mathematical equations. However, it has
been reported that COVID-19 can behave in unexpected ways; for example, asymptomatic
cases that can be infectious agents for several weeks [7, 8], the emergence of new variants such
as Alpha (B.1.17) (UK), Beta (B.1.351) (South Africa) and Delta (B.1.617.2) (India) with the
potential of faster transmission and the possibility of being immune to existing vaccines. These
challenges lead to the possibility of unknown dynamics and can limit the ability of conventional
models in capturing certain intrinsic trends of the spread.

The Singular Spectrum Analysis (SSA) is a linear approach to analysis and prediction of
time series. The data-adaptive nature of the basis functions used in SSA makes it suitable for
analysis of some nonlinear dynamics. It was introduced into nonlinear dynamics by Broomhead
and King [9] and later by Vautard [10]. The key advantage of SSA is its data-driven nature which
does not rely on any prior assumptions except the inherent dynamics which are observed over
time. Until recent years, SSA has enabled significant contributions in the study of dynamical
system with denoising problems from various fields, for instance fluid dynamics [11], software
system [12], climate change [13], mineral processing [14], neuroimmune system [15], image
processing [16], and epidemiological studies [17, 18]. In epidemiological studies, SSA has been
shown to be useful in analysing rotavirus seasonality by [19]. The recurrent SSA (R-SSA) was
used in the predictive modelling of COVID-19 cases in Malaysia [20, 21] and it was noticed
in [21] that RF-SSA is unable to detect sudden drop in COVID-19 cases due to change in
intervention strategies. The potential of SSA in the forecasting of COVID-19 pandemic times
series is also investigated in [22, 23]. Although both studies noted the potential of SSA as a
powerful tool for forecasting, it was pointed out in [22] that SSA can produce negative point
forecasts which may render the results meaningless.

The shortcomings of SSA in the analysis of COVID-19 time series as reported in [21, 22] is
consistent with various evidence found in the literatures (see for example [24, 25]) about the
limitations of SSA in separating non-stationary components of a time series. The objective
of our paper is to investigate further the scope of the limitation when analysing trends and
forecasting of COVID-19 Pandemic in Malaysia. The rest of the paper is organized as follows:
In Section 2, basic concepts and methodology of SSA is described. In Section 3 we explore
several techniques to determine the statistical dimension of the Malaysian COVID-19 time
series. Experiments in the forecasting of future trends of the the time series are presented in
Section 4.

2 Materials and Methods

Discrete-time evolution of a dynamical system is specified by discrete maps

xn+1 = F(xn, θ). (1)
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Here, n denotes the discrete time step and the system is assumed to be sampled every ∆t
in time such that the nth state vector xn = x(t0 + n∆t). Suppose we have a set of scalar
observations s(t0 + n∆t) = sn of equally sampled data from one of the state variable of the
system. Taken’s delay embedding theorem [26] states that the geometric structure of the state
space dynamics can be reconstructed from vectors of the form:

yn = [sn, sn+1, . . . , sn+L−1]
T ∈ W,

where L is the embedding dimension. It is assumed that the Euclidean L-dimensional space W
is related to the original space of the state vector xn by smooth, differentiable transformations
such that yn defines the coordinates of the phase space that will approximate the dynamics of
the system from which the time series was sampled. Given the time series s1, s2, . . . , sm with
K = m − L + 1, the phase space reconstruction is represented by the matrix of ’snapshots’
of the time series {y1,y2, . . . ,yK} so that the functional form for F(xn, θ) in the embedding
space W is given by
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= Xw, (2)

for some vector w ∈ RL. Matrix X is the so-called trajectory matrix and it contains the
complete record of patterns that have occurred within a window of size L. Notice that the
trajectory matrix is a Hankel matrix of size K × L.

2.1 Optimal Basis and Singular Value Decomposition

The phase space reconstruction in (2) assumes the columns of X as the basis for the embedding
space W which may not be the most optimal. Particularly, if L is greater than the statistical
dimension of X, we expect some of the columns of X to be linearly dependent or close to be
linearly dependent. For maximum separation of distinctive patterns that have been captured
in the trajectory matrix, we seek an orthonormal basis {v1,v2, . . . ,vL} of the embedding space
W and this problem can be formulated as a subspace optimization problem of the form

max
W∈RL

Tr(WTXT XW), (3)

where the optimizer is a matrix V whose columns v1,v2, . . . ,vL are the eigenvectors of XT X

and Tr(·) is the trace function. The scalar value Tr(VTXT XV) gives the sum of the eigenvalues
of XTX which is equivalent to the total variance in the time series. Hence by choosing the
orthonormal eigenvectors of XTX as the basis for W , the most informative patterns of the time
series will be captured in the reconstruction.

The patterns that are contained in the trajectory matrix can be investigated by analysing
the patterns that arise from the singular value decomposition (SVD) of X. The SVD is defined
by X = UΣVT , where the columns of U ∈ RK×L are the left singular vectors of X (with
K = m − L + 1), the columns of V ∈ RL×L are the right singular vectors of X (which are
also the orthonormal eigenvectors of XTX) and Σ ∈ RL×L is a diagonal matrix whose diagonal
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entries are the ordered singular values σ1 ≥ σ2 ≥ · · · ≥ σL of X. Whenever σi 6= 0, the left
singular vectors ui’s are related to the right singular vectors vi’s by the equation

ui =
1

σi

Xvi,

for i = 1, 2, . . . , L. By writing the SVD as a sum of rank-one matrices, we may express X as

X = X1 + X2 + · · · + XL, (4)

where for each i = 1, 2, . . . , L, Xi = σiuiv
T
i is the so-called eigentriple associated with the

ith singular value. Given an integer r ≤ L, the partial sum X(r) =
∑r

i=1 Xi = U(r)Σ(r)V(r)T

provides the best rank-r approximation to the trajectory matrix X such that ‖X − X(r)‖2
F is

minimized among all rank r matrices.

2.2 Singular Spectrum Analysis

The Singular Spectrum Analysis (SSA) is the formal procedural method for analysing a time
series via spectral decomposition or SVD. Complete description of the method, can be found
in [27, 28]. The technique consists of two stages known as decomposition and reconstruction
which are summarized below:

Stage 1. Decomposition

With a choice of embedding dimension L, the trajectory matrix X is constructed. Next, the
SVD of X is computed. Each eigentriple Xi is expected to represent a distinctive pattern in
the time series.

Stage 2. Reconstruction

The reconstruction stage involves an analysis of the spectrum of singular values in order to
identify and differentiate between defining patterns of the time series and noise. The objective
is to produce a reconstruction of a less noisy time series which can be used to forecast future
data points. An important parameter to be determined at this stage is the statistical dimension
r, i.e., the maximum number of eigenvalues/singular values that contribute to the principal
subspace (noiseless part) of the time series. Separating the principal subspace from the noise
subspace requires some idea about the desired components.There are basically three main
components that need to be identified and grouped accordingly [29]; trend, harmonic component
and noise. Several strategies can be adopted to determine r, for example, we have the option of
analysing the periodogram and the singular spectrum of X. Once r is chosen, the effectiveness
of this separability can be assessed using the weighted correlation (w-correlation) statistic.
The w-correlation measures the dependence between any two time series and if the separability
is sound the two time series will report zero w-correlation. On the other hand, a large w-
correlation indicates that the components should be considered as one group. Once the value
of r is decided the trajectory matrix can now be treated as the sum X(r) +X(L−r) where X(r) is
the principal subspace that contains noise reduced components and X(L−r) is a subspace which
predominantly contains noise.The process of reconstructing X(r) into a time series is called
diagonal averaging. Basically this is the process of transforming X(r) into a Hankel matrix.
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3 Statistical Dimension of the Malaysian COVID-19 Pandemic Time

Series

In this section, we demonstrate the process of determining the statistical dimension r of the
COVID-19 pandemic time series for Malaysia. The data set used in the experiments are taken
from https://www.worldometers.info/coronavirus/ for the dates 15 February, 2020 to 27
June 27, 2021 and we use the time series for the number of daily cases. To set the stage for the
analysis in Section 4, we perform the investigation on two portions of time series:

1. Time series T1 (number of daily cases from 15 February, 2020 to 10 January, 2021): This
portion covers the beginning of the pandemic until three days before the second Movement
Control Order (MCO2);

2. Time series T2 (number of daily cases from 15 February, 2020 to 19 February, 2021): This
portion covers the beginning of the pandemic until the fifth week of the second Movement
Control Order (MCO2).

To determine the statistical dimensions for T1 and T2, we analysed i) the spectrum of singu-
lar values, ii) the periodogram of the right singular vectors, and iii) the weighted correlation
matrices.

3.1 The singular spectrum

Figure 1 depicts the singular value spectrum for T1 and T2 for three different values of the
embedding dimension, namely L = 10, L = 20 and L = 30. For both time series we observe
the largest difference in magnitudes of the singular values occurs for the first singular value.
For T1, the second singular value appears to separate slightly from the smaller singular values
when L = 30. A similar observation is found in the spectrum for T2. Major trends in a time
series are often found in the few leading eigenvalues therefore from the singular value spectrums
of T1 and T2, we find choosing L = 30 and r = 2 will lead to the dominant dynamics in the
time series.

Figure 1: (a) Singular value spectrum of T1. (b) Singular value spectrum of T2
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3.2 Periodogram Analaysis

In the periodogram analysis, we compare the frequency content of T1 and T2 and the frequency
contents of their right singular eigenvectors. Eigenvectors whose frequencies coincide with the
frequencies of the original series indicate the importance of that eigenvector because it most
likely contains the same content as in the original time series. Therefore in the reconstruction
process, it is necessary to include that eigenvector.

Figure 2 shows the periodogram of T1 and T2, together with the first three principal right
singular vectors. We can see from the periodogram of time series T1 in Figure 2(a) that T1
contains mostly low frequency contents and these frequencies, almost all of them, appear in the
periodogram of its first right singular vector, v1. We also see the same low frequencies in the
periodogram of v2. In the periodogram of v3, the higher frequencies begin to creep in and we
are seeing less of the low frequency contents which are present in the periodogram of T1. So
Figure 2(a) gives us a good indication of, on one hand, the strong correlation between T1 and
the first two right singular vectors, and on the other hand, the clear separation of v3 from the
first two eigenvectors.

In Figure 2(b), the first right singular vector of T2, v1, is shown to contain most of the low
frequencies appearing in the periodogram of T2. The periodogram of v2 shows quite a different
profile compared to the periodogram of v1, yet still contain the low frequencies appearing in
the periodogram of T2. The eigenvector v2 is seen to contain frequencies which are dominant
in v3. Figure 2(b) indicates that v1 and v2 may represent two different dynamics in the time
series. The separation between v3 and the first two eigenvectors is also not as well defined as in
Figure 2(a). This observation gives us a hint that T2 may contain non-stationary components
that possibly spread out over several different eigentriples.

Figure 2: (a) Periodogram of T1 and its first three right singular vectors. (b) Periodogram of
T2 and its first three right singular vectors of T2
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3.3 Weighted Correlation Matrices

Let Yi be the time series reconstruction from the ith eigentriple. The measure of separability
between Yi and Yj is given by the value of the weighted correlation (or w-correlation) defined
by [28]

ρ
(w)
ij =

(Yi,Yj)w

‖Yi‖w‖Yj‖w

,

where ‖Yi‖w =
√

(Yi,Yj)w, (Yi,Yj)w =
∑m

k=1 wky
(i)
k y

(j)
k , wk = min{k, L, m − k} (assuming

L ≤ T/2).
In Figures 3 and 4, heatmaps of the w-correlation matrix for time series T1 and T2 are

presented. The yellow region indicate high w-correlation between respective eigentriples and
blue region indicate low w-correlation. Low w-correlation implies high separability between the
eigentriples. Both Figure 3(a) and Figure 4(a), demonstrate a high separability between the
first eigentriple and the rest of the eigentriples, however, the separability between the second
eigentriple and the third, fourth and so on is quite poor. As L is increased to 20 and 30,
the second eigentriple begins to separate from the minor eigentriples although the separation
still appears rather weak. This goes to show that there are certain components in the second
eigentriple that is spread out in the minor eigentriples and can be quite tricky to isolate.

Figure 3: Weighted correlation matrix of T1. (a) L = 10, (b) L = 20, (c) L = 30

Figure 4: Weighted correlation matrix of T2. (a) L = 10, (b) L = 20, (c) L = 30
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4 Forecasting Future Trends of COVID-19 in Malaysia

Time series T1 and T2 are chosen specifically to analyse the trends of COVID-19 pandemic
in Malaysia before and after the second nationwide Movement Control Order (MCO2) which
was imposed on 13 January 2021. Time series T1 consists of the number of daily cases during
which most of travel restrictions in the country have been lifted, whereas the time series T2
covers the five weeks duration of MCO2. Our investigations in this section are performed using
L = 30 and r = 1, 2.

4.1 Forecasting Trends of COVID-19 in Malaysia Before and After MCO2 and

Its Limitations

Figure 5(a) shows the reconstructed time series and forecasts of T1 using statistical dimensions
r = 1 and r = 2 respectively.The data used for the reconstruction are marked in blue circles and
data marked in green circles are used for testing the accuracy of forecasts. It can be seen that
for both r = 1 and r = 2, the same increasing trend is captured in the forecasts. The forecast
with r = 2 provides a slightly better accuracy compared to that of r = 1. This result agrees
well with our periodogram analysis in Section 3 that suggests strong correlation between time
series T1 and its two principal eigenvectors. In Figure 5(b) we show the reconstructed time
series and forecasts of T2, again using statistical dimensions r = 1 and r = 2 respectively. The
forecasts with r = 1 shows a very different trend compared to the forecast with r = 2. While
the forecasts with r = 1 shows an increasing trend, the forecasts with r = 2 shows numbers
dipping in a downward trend. Most interestingly, the numbers go into the negative region after
a short while.

Figure 5: (a) Forecast one day before MCO2., (b) Forecast three days before MCO2

In order to explain these contrasting observations, we plot the time series reconsructed from
the first and second eigentriple of T1 and T2 in Figures 6 and 7 respectively. Notice that in both
Figures 6 and 7, the leading eigentriples capture the major trend in their respective time series.
The second eigentriple of T1 captures the more recent increase in the number of daily cases
which results in an improvement in the forecasting result in Figure 5(a). The second eigentriple
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Figure 6: Forecast three days before MCO2

Figure 7: Forecast after 5th week of MCO2

of T2 however, captures the more recent decrease in the number of daily cases which is most
likely the cause for the contrasting forecasting result in Figure 5(b) for r = 1 and r = 2. The
change in dynamics due to the intervention strategies introduced during MCO2 is evident in
the second eigentriple. However the statistical dimension of the most recent trend cannot be
resolved completely which is why the forecasts become negative. We suspect that the recent
decreasing trend is a transient dynamic which may or may not persist. To determine whether
it will persist, more data is needed.

To obtain a more complete picture on how the trend evolves with additional data, we
produce Figure 8. The value m refers to the number of days since 15 February 2020, which
is also the number of data used to construct the model for prediction. It can be seen clearly
in Figure 8 that, as the value of m increases (i.e. with additional data), the forecast for both
r = 1 and r = 2 begins to flatten. An interesting observation is that as m increase the trend
observed for r = 2 matches the trend of the forecasts for r = 1. The problem of negative
forecasts observed earlier for r = 2 also slowly diminishes as more data is added.

4.2 Effects of Non-stationarity

Evidence shown in Section 4.1 reveals the limitation of SSA when there exists transient compo-
nent in the time series. Transient component suggests the presence of non-stationary dynamics
in the time series. For non-stationary time series, the following three possible scenarios can
affect separability [25]:

1. a signal component may be spread out over several subspaces;

2. mixing or overlap between different signal components;

3. an appearance or vanishing of a component.
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Figure 8: The number of days, m = 370 gives the forecast in 5th week of MCO2

A dynamical system that operates under transient (i.e. non-stationary) conditions (for example,
a pandemic under the influence of a movement control order) gives rise to non-stationary time
series with time-changing statistics (i.e. having varying mean and variances). We apply a
quick test for non-stationarity using methods proposed in [30]. Three statistical properties are
checked for stationarity, namely the mean, variance and autocovariance. If these properties
are approximately equal or similar, then the initial signal is estimated as stationary. The
comparisons are conducted via Wilcoxon rank-sum test for equality of means, BrownForsythe
test for equality of variances and similarity check based on Euclidean distances is used to
compare autocovariances. The results are shown in Figure 9. For both time series T1 and T2,
all three statistical properties are found to be non-stationary. Based on the assumptions of the
method, the results also imply the non-stationarity of the two time series.

According to [31], an infinite time series {s1, s2, s3, . . .} is called stationary if, for any integer
n there exists a limit

Tn = lim
m→inf

Tm,n, (5)

with (Tn)ij = R(i − j), i, j ≥ 0 (the function R : Z → R is called the covariance function),
Tm,n = 1

m
XXT and X is the trajectory matrix. As such, the eigenvalues and eigenvectors of Tn

are tied up with the singular values and the singular vectors of X. Under non-stationary condi-
tions, each row of the trajectory matrix (which itself is a time series) experience simultaneous
drifting [32] and this is registered as correlations of the rows leading to temporal dependence
in the variances and autocovariances. From the perspective of the signal subspace, temporal
dependence of singular values and singular vectors are observed, which results in transient
eigentriples.

The transient dynamics in time series T2 that is captured by SSA is illustrated in Figure
10. The decreasing trend is in fact, part of an oscillatory wave that evolves into a damped
oscillation as the time series begins to plateau. When limited data is available, the transient
component only captures part of the power spectrum of the signal (time series) while the rest
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Figure 9: (a) Test for stationarity of time series T1, (b) Test for stationarity of time series T2.
The value ’0’ indicates non-stationary

Figure 10: Long-term dynamics exhibited by the transient component of T2

of the spectrum is spread out in the other components. Furthermore, the transient component
may assume negative values due to Gibbs effects [33]. As a result, the reconstructed time series
can have negative values, rendering the forecasts meaningless. With the availability of more
data, the Gibbs effect begins to reduce and so do the negative point forecasts. As we have
already seen in Figure 8, more reliable forecast is achieved when similar forecast is obtained for
both statistical dimensions r = 1 and r = 2.
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5 Conclusion

Our investigation on the potential of SSA to provide meaningful insights into COVID-19 pan-
demic in Malaysia has revealed the following:

1. Most of the major trend of the pandemic can be explained in the principle eigentriple.
However when the time series is heavily influenced by non-stationary events (for example
during MCO), certain limitations were found such as negative point forecasts;

2. The second eigentriple was found to consist some of the most recent trend, however sepa-
rability is hindered due to the high correlation with other components and the component
associated with the recent trend is most likely to have spread out over several components.

3. Temporal dependent of singular values and singular vectors of the trajectory matrix of a
non-stationary time series can lead to negative values in the restructured time series and
this is mostly due to Gibbs effect. Sufficient data is needed to reduce the Gibbs effect
and achieve more reliable forecast that will provide useful insights into future trend;

We have demonstrated the applicability of SSA in the analysis of COVID-19, particularly for
the Malaysian scenario. Generalization of our results will require validation using COVID-19
time series from other countries. Just like any other data-driven methods, the quality of results
from SSA can only be as reliable as the data itself. The capability of SSA to identify unknown
dynamics is quite evident, but good quality data is crucial to realize its true potential.
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