
MATEMATIKA, MJIM, Volume 38, Number 1, 21–32

c© Penerbit UTM Press. All rights reserved

Constructing Bootstrap Confidence Intervals of Process Capability Indices for

a Three Parameter Weibull Distribution

1Shafaqat Ali, 1Michael B. C. Khoo∗, 2Mohammad Kashif, 2Zunair Javed and 3Sajal Saha
1School of Mathematical Sciences, Universiti Sains Malaysia

11800 Minden, Penang, Malaysia
2Department of Mathematics and Statistics, University of Agriculture

Faisalabad, Pakistan
3Department of Mathematics, International University of Business Agriculture and Technology

Dhaka 1230, Bangladesh
∗Corresponding author: mkbc@usm.my

Article history

Received: 11 September 2021
Received in revised form: 7 April 2022
Accepted: 15 April 2022
Published on line: 30 April 2022

Abstract Statistical Quality Control (SQC) technique is used in investigating the quality

improvement features in a manufacturing process. One of the important tools in SQC is the

process capability indices (PCIs), for measuring and comparing the characteristics of a production

process to engineering specifications. This article evaluates the performance of the PCIs for a three

parameter Weibull distribution which is commonly employed in almost all fields of studies, such

as reliability, stability and breakage data. In this article, three different techniques of constructing

bootstrap confidence intervals (BCIs) of PCIs are investigated using simulations for the three

parameter Weibull distribution. The three different techniques considered are percentile bootstrap,

bias-corrected percentile bootstrap and normal bootstrap techniques. By using simulation, the

authors investigate the average widths of the BCI of each of the three different techniques. It is

found that the average widths of the bias-corrected percentile bootstrap technique are shorter than

that of the other two techniques.
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1 Introduction

PCIs play a major role in the process capability assessment of a production process. PCIs are useful

in manufacturing as they provide useful information about the capability of a process in meeting

the specification limits. PCIs of different processes can be easily compared as they are just single

numbers. Anis and Tahir [1] noted that PCIs also have limitations, as they require the assumptions of

statistical properties to work well in deciding about the capability of a process. The main objective in

process capability assessment is to use the PCI measure to achieve the goal of producing high quality

products at low costs.
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Numerous PCIs are available in the literature. For example, Juran and Gryna [2] introduced the

first index, Cp to study whether a process is capable of meeting the two-sided specification limits.

Kane [3] presented several PCIs that can be used with bilateral and unilateral tolerances, with or

without target values. Chen and Hsu [4] adopted the PCIs with distribution free tolerance intervals

to estimate the standard deviation, while Clements [5] presented empirical non-normal percentiles

to evaluate both the indices, Cp and Cpk and identified four key objectives of PCIs, which include,

among others, the ability to compare different processes and classify the nearness to target (i.e. the

Taguchi loss function concept). Clements [5] proposed the structure of Cp and Cpk based on the

lognormal distribution and discussed about the use of process capability to regulate the specification

limits. Hsu et al. [6] discussed the PCIs that are used to quantify process improvement, as well as

being effective measures for quality assurance. Senvar and Sennaroglu [7] compared three different

techniques, namely the Clements’ Approach, Box-Cox Transformation and Johnson Transformation,

for investigating the effect of tail behavior on the performance index of the process using Weibull-

distributed data. Dey et al. [8] studied the BCIs for generalized PCIs using simulations, based on the

Lindley, as well as power Lindley distributions. Dey and Saha [9] investigated the BCIs for Spmk under

five different life time distributions, i.e. log-logistic, generalized exponential, lognormal, Weibull and

gamma distributions.

The index Cpk with a modified adjustment under various sample sizes was discussed by Wu

[10], where the modified index is more reliable and it does not cause overestimation, hence, it is

a better process capability measure in real-life applications. Yang et al. [11] developed a new key

performance indicator that handles prototype production, where a Bayesian approach of estimation

for the index Cpk was used and a real-life application from a process producing lithium-ion batteries

was provided. By using simulation studies, robust point and interval estimations of the PCIs were

investigated by Wang et al. [12] for non-normal distributions. Meng et al. [13] proposed a hypothesis

testing technique for Cpk using the generalized p-value, for four common distributions. Three types

of improved BCIs were developed by Park et al. [14]. The percentile bootstrap using the R software

was developed by Rousselet et al. [15]. The three parameter Weibull distribution is widely used in

monitoring and reliability analyses. Wais [16] explained that the two parameter Weibull distribution

is inadequate in wind power analysis, instead, the three parameter Weibull distribution is needed.

Moreover, the inter-failure time analysis for robust estimation was conducted by Sürücü and Sazak

[17] by considering the three parameter Weibull distribution.

2 Parametric Schemes for Process Capability Indices

This section discusses the generalized form of the PCIs presented in Franklin and Wasserman [18].

The first PCI is

Cp(λ, ν) =
d − λ |µ − M|

3

√
σ2 + ν(µ − T )2

, (1)

where d = US L−LS L
2

, M = US L+LS L
2

, λ and ν are two non-negative parameters, while T , µ and σ are the

process target, mean and standard deviation values, respectively.

Cp(λ, ν) in Equation (1) reduces to the index

Cp =
d

3σ
=

US L − LS L

6σ
, (2)
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when both λ and ν are zeros. Here, US L is the upper specification limit, while LS L is the lower

specification limit. When λ = 1 and ν = 0, the index Cp(λ, ν) in Equation (1) becomes the index Cpk

defined as follows:

Cpk =
d − | µ − M|

3σ
=

min (US L − µ, µ − LS L)

3σ
. (3)

Sometimes the Taguchi loss based index, Cpm is employed to measure the performance of a process.

Chan et al. [19] established Cpm, based on the quadratic loss by substituting λ = 0 and ν = 1 into

Equation (1), which gives

Cpm =
US L − LS L

6

√
σ2 + (µ − T )2

. (4)

Pearn et al. [20] presented the capability index known as Cpmk . By choosing λ and ν both equal to

one, the Cp(λ, ν) index in Equation (1) reduces to the index Cpmk as follows:

Cpmk = min


US L − µ

3

√
σ2 + (µ − T )2

,
µ − LS L

3

√
σ2 + (µ − T )2


. (5)

The index Cpmk gives a sustainable quality assurance with respect to the process yield. Among the

PCIs mentioned in this section, the widely used ones are the indices, Cpm and Cpmk.

3 Weibull Distribution

The Weibull distribution has received much interest in real-life applications in reliability, such as to

model the breaking strength of materials. The Weibull distribution has the density function given as

(Dodson [21])

f (z) =
α′

β

(z − u

β

)α′−1

e

(
x−µ

β

)α′
, (6)

where z > α′, µ > 0 and β > 0. The parameters α′, β and µ are shape, scale and location, respectively.

The mean, variance and skewness of the Weibull distribution with three parameters are given as

follows:

E (Z) = µ + βΓ

(
1 +

1

α′

)
(7)

Var (Z) = β2

[
Γ

(
1 +

2

α′

)
− Γ2

(
1 +

1

α′

) ]
(8)

sk (Z) =
Γ
(
1 + 1

α′

)3
− Γ

(
1 + 1

α′

)
Γ
(
1 + 2

α′

)
+ Γ

(
1 + 3

α′

)

(
Γ
(
1 + 2

α′

)
− Γ

(
1 + 3

α′

)) 3
2

(9)

In Equations (7) - (9), Γ( . ) represents the gamma function.
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4 Methods of Bootstrap Confidence Interval

The bootstrap technique originated from Efron [22]. Efron [23] and Hall et al. [24] provide theoretical

details about the bootstrap technique. This technique can be used to construct confidence intervals for

parameters when the usual interval estimation approach is not feasible. BCIs are commonly applied in

constructing the confidence intervals for various PCIs. Suppose that ς1, ς2, ..., ςn constitute a random

sample with n observations taken from a distribution of interest, say φ, i.e. ς1, ς2, . . . , ςn ∼ φ. Let

θ̂ represent an estimator of an arbitrary PCI in Section 2, say Cpm. Then the bootstrap technique is

implemented as follows:

i. A bootstrap sample with n observations (with replacement) is taken from the original sample by

using 1
n

as the mass at each point, where this bootstrap sample is denoted as ς∗1, ς
∗
2, . . . , ς

∗
n.

ii. From the kth bootstrap sample, for 1 ≤ k ≤ n, the kth bootstrap estimator of θ (an arbitrary PCI)

can be denoted as θ̂∗ = θ̂
(
ς∗1, ς

∗
2, . . . . . . , ς

∗
n

)
.

iii. If the number of resamples in the bootstrap technique is B, then a total of B estimates of θ̂∗ can

be obtained. Arranging the whole collection from the smallest to the largest value constitutes

an empirical bootstrap distribution of θ̂ (Kashif et al. [22]). B = 1000 bootstrap resamples is

considered in this article. The confidence intervals of θ̂ can be constructed using any of the

following three bootstrap techniques.

4.1 Method 1: Standard Bootstrap (SB) Confidence Interval

The sample average and sample standard deviation are computed as follows using the 1000 bootstrap

estimates of θ̄∗:

θ̄∗ = (1000)−1

1000∑

i=1

θ̂∗, (10)

sθ̄∗ =

√√
1

999

1000∑

i=1

(
θ̂∗ (i) − θ̄∗

)2
. (11)

Consequently, the 100 (1 − α) % SB confidence interval is obtained as

CISB = θ̄
∗ ± z(1− α2 ) sθ̂∗ , (12)

where z(1− α
2 ) is the

(
1 − 1

α

)th
quantile of the standard normal variable.

4.2 Method 2: Percentile Bootstrap (PB) Confidence Interval

Since there is a total of B resamples of θ̂∗, these resamples will produce B estimates of θ̂∗. An

arrangement of these estimates from the smallest value to the largest value will form an empirical

distribution of θ̂∗. From the ordered empirical distribution of θ̂∗, choose the 100
(
α

2

)
and 100

(
1 − α

2

)

percentiles as the end points of the interval, which results in the 100 (1 − α) % PB confidence interval

for θ̂∗ given as

CIPB =

(
θ̂∗

1000(α2 )
, θ̂∗

1000(1− α2 )

)
. (13)
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For example, the 95% confidence interval with 1000 bootstrap estimates is

CIPB =
(
θ̂∗(25), θ̂

∗
(975)

)
, (14)

where θ̂∗
(25)

and θ̂∗
(975)

represent the 25th and 975th ordered collection of the bootstrap estimates of θ̂∗.

4.3 Bias-Corrected Percentile Bootstrap (BCPB) Confidence Interval

This technique was established to address the potential bias that could occur as the bootstrap

distribution is based on a sample from the complete bootstrap distribution, which may be shifted

higher or lower than would be expected. The following steps explain the implementation of this

technique:

1. By means of the (ordered) distribution of θ̂∗, calculate

l0 = Pr
(
θ̂
∗ ≤ θ̂

)
. (15)

2. By letting ρ−1 as the inverse distribution function of the standard normal variable, calculate

q0 = ρ
−1(l0). (16)

3. The lower percentile and upper percentile of the ordered distribution of θ̂∗ are

PL = ρ
(
2q0 + z( α2 )

)
(17)

and

PU = ρ
(
2q0 + z(1− α2 )

)
, (18)

respectively, where ρ, z( α2 ) and z(1− α
2 ) are the distribution function,

(
α

2

)th
quantile and

(
1 − α

2

)th

quantile, respectively, of the standard normal distribution. Consequently, the 100 (1 − α) % BCPB

confidence interval is constructed as

CIBCPB =
(
θ̂
∗
1000(PL), θ̂

∗
1000(PU)

)
. (19)

The average width (AW) is considered to compare the three different types of BCIs. The AW of the

BCI is computed using a total of M trials. Next, the estimated AW is computed as

AW =

∑M
i=1 (Upi

− Lwi
)

M
, (20)

where LWi
and UWi

are the estimated lower confidence limit and upper confidence limit of the 100(1−

α)% confidence interval for any of the three types of BCIs discussed in Sections 4.1, 4.2 and 4.3,

based on the ith replicate.
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5 Results and Discussion

An evaluation of the performances of PCIs, based on the Cpm and Cpmk indices, is conducted by means

of simulation. From the skewness value, sk (Z), the behavior of the Weibull distribution is categorized

as highly positive skewed, moderately skewed and negatively skewed, based on the various values of

the shape (α′), scale (β) and location (µ) parameters considered. The value of sk (Z) is calculated

using Equation (9).

In this simulation study, the data are generated using sample sizes, n ∈ {25, 50, 75, 100, 300, 500}

from the Weibull distribution, for each of the three skewness levels mentioned in Table 1. Note that

the parameter values of α′, β and µ as shown in Table 1 are specified in order to obtain the three levels

of skewness. Additionally, LSL = 0 and USL = 6 are used.

Table 1: Skewness of the Weibull distribution

Shape Scale Location Skewness, Behavior of

parameter, α′ parameter, β parameter, µ sk (Z) distribution

0.5 1.2 1.6 6.52 Highly positive skewed

1.0 1.2 1.6 1.00 Moderately skewed

1.5 1.2 1.6 −2.12 Negatively skewed

The estimated 95% BCIs of Cpm and Cpmk for the three parameter Weibull distribution, presented

in Tables 2 and 3 for the three types of BCIs (SB, PB and BCPB), are obtained based on the R

language. 1000 bootstrap resamples are considered. In studying the performances of the three types

of BCIs, the AWs of these confidence intervals are computed as the difference between the average

upper confidence limit and average lower confidence limit. The analysis of results is based on a

comparison between the AWs of the estimated 95% BCIs of Cpm and that of Cpmk , shown in Table

4. In the case of interval estimation, the widths of all three types of BCIs are affected by both the

shape parameter and sample size. The three BCIs (SB, PB and BCPB) and their respective AWs are

estimated using the R language based on 1000 bootstrap resamples. For evaluating the performances

of the three BCIs, the AW of each of the confidence interval is computed by subtracting the lower

confidence limit from the upper confidence limit.

In Table 4, the results show that, with the exception of n = 25 for the highly positive and

moderately skewed processes, the AWs of the three types of BCIs generally become smaller when

the sample size becomes larger, for the indices Cpm and Cpmk. For example, for the negatively skewed

Weibull distribution in Table 4, the AWs of the 95% SB confidence intervals of Cpm are {0.6502,

0.5159, 0.3528, 0.3492, 0.1892, 0.1501} for n ∈ {25, 50, 75, 100, 300, 500}, where it is obvious that

the AWs decrease as n increases. The results in Table 4 show that generally the AWs of the 95%

confidence intervals given by the BCPB technique are smaller than that of the other two techniques.

Hence, it can be concluded that the performance of the BCPB technique is better than that of the other

two techniques. Additionally, the AWs of the BCIs for the PB technique are generally smaller than

that of the SB technique. Thus, in terms of performance, the BCPB technique performs best, while

the PB technique comes in second and the SB technique comes in last.
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Table 2: Estimated 95% BCI of Cpm for the Weibull distribution

Weibull Sample,

distribution size, n SB PB BCPB

25 (0.7141, 0.9868) (0.7487, 1.0202) (0.7370, 0.9997)

50 (0.2179, 0.6433) (0.3350, 0.7370) (0.2903, 0.6615)

Highly positive 75 (0.1252, 0.4302) (0.2182, 0.5347) (0.1959, 0.4501)

skewed 100 (0.1292, 0.3799) (0.1963, 0.4454) (0.1745, 0.3881)

300 (0.1525, 0.3341) (0.1880, 0.3607) (0.1638, 0.3332)

500 (0.1635, 0.2625) (0.1788, 0.2783) (0.1731, 0.2667)

25 (0.7589, 1.2506) (0.8414, 1.3295) (0.8123, 1.2725)

50 (0.5730, 1.1054) (0.6630, 1.1709) (0.5859, 1.1024)

Moderately 75 (0.6805, 1.1895) (0.7514, 1.2087) (0.6584, 1.1627)

skewed 100 (0.8020, 1.0826) (0.8257, 1.1051) (0.8009, 1.0767)

300 (0.7673, 0.9799) (0.7825, 0.9943) (0.7648, 0.9770)

500 (0.7864, 0.9378) (0.7946, 0.9465) (0.7854, 0.9385)

25 (0.7671, 1.4173) (0.8844, 1.5214) (0.8216, 1.4285)

50 (1.0203, 1.5362) (1.0801, 1.5950) (1.0270, 1.5339)

Negatively 75 (1.1775, 1.5303) (1.2145, 1.5633) (1.2033, 1.5472)

skewed 100 (1.0576, 1.4068) (1.0909, 1.4311) (1.0565, 1.3967)

300 (1.1723, 1.3615) (1.1796, 1.3696) (1.1614, 1.3546)

500 (1.1584, 1.3085) (1.1616, 1.3107) (1.1536, 1.3037)

6 Real Life Example

In this section, a real life example is presented to demonstrate the application of the proposed

methodology for all PCIs. For this purpose, the data in Chang and Lu [25], which represent the

thickness of an oil seal process are adopted. There are 65 observations in the data which are reported

in Table 5.

The summary statistics for the thickness of oil seal process data are reported in Table 6.

Chang and Lu [25] mentioned that the thickness of oil seal process dataset is not normal. Kao

[26] concluded that adopting the three parameter Weibull distribution is appropriate for this dataset.

By fitting the three parameter Weibull distribution, the maximum likelihood estimators for the shape,

scale and location parameters are α̂′= 5.504809, β̂ = 2.650830 and µ̂ = 1.348899, respectively. The

objective of this example is to use this dataset to study the performance of the third generation PCIs

(Cpm and Cpmk) and to construct their BCIs. For this purpose, the USL = 2.5 and LSL = 1.5 are used

to estimate the PCIs and construct their BCIs. The point and interval estimates of the third generation
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Table 3: Estimated 95% BCI of Cpmk for the Weibull distribution

Weibull 3
Sample

SB PB BCPB
size, n

25 (-0.2415, 0.3788) (-0.0085, 0.5664) (-0.0480, 0.5081)

50 (-0.1123, 0.2982) (0.0264, 0.4234) (0.0091, 0.3493)

Highly positive 75 (0.0145, 0.3030) (0.0752, 0.3668) (0.0592, 0.3268)

skewed 100 (-0.1693, 0.3490) (0.0467, 0.4984) (0.0017, 0.4072)

300 (-0.0209, 0.1262) (0.0153, 0.1591) (0.0015, 0.1362)

500 (0.0405, 0.1651) (0.0623, 0.1865) (0.0549, 0.1707)

25 (0.4411, 0.8915) (0.4998, 0.9614) (0.4741, 0.9307)

50 (0.4949, 0.9570) (0.4949, 0.9625) (0.4463, 0.9345)

Moderately 75 (0.5787, 0.8713) (0.6117, 0.9207) (0.5771, 0.8838)

skewed 100 (0.7023, 0.9256) (0.7278, 0.9512) (0.7052, 0.9276)

300 (0.6708, 0.8390) (0.6871, 0.8519) (0.6637, 0.8406)

500 (0.7163, 0.8596) (0.7266, 0.8733) (0.7185, 0.8576)

25 (0.8450, 1.2960) (0.9040, 1.3730) (0.9000, 1.3500)

50 (0.8610, 1.2670) (0.8990, 1.3090) (0.8740, 1.2760)

Negatively 75 (0.9330, 1.2460) (0.9640, 1.2780) (0.9610, 1.2670)

skewed 100 (0.9080, 1.1930) (0.9460, 1.2350) (0.9290, 1.2100)

300 (1.0390, 1.2070) (1.0520, 1.2180) (1.0430, 1.2060)

500 (1.0670, 1.1950) (1.0760, 1.2100) (1.0730, 1.2040)

Table 4: AWs of the 95% BCIs of Cpm and Cpmk for the Weibull distribution

Cpm Cpmk

Effect of skewness N α′
AW AW

SB PB BCPB SB PB BCPB

25 0.5 0.2727 0.2715 0.2627 0.6203 0.5749 0.5561

50 0.5 0.4254 0.4020 0.3712 0.4105 0.3970 0.3402

Highly positive 75 0.5 0.3050 0.3165 0.2542 0.2885 0.2916 0.2676

skewed 100 0.5 0.2507 0.2491 0.2136 0.5183 0.4517 0.4055

300 0.5 0.1816 0.1727 0.1694 0.1471 0.1438 0.1347

500 0.5 0.0990 0.0995 0.0936 0.1246 0.1242 0.1158

25 1.0 0.4917 0.4881 0.4602 0.4504 0.4616 0.4566

50 1.0 0.5324 0.5079 0.5165 0.4621 0.4676 0.4882

75 1.0 0.5090 0.4573 0.5043 0.2926 0.3090 0.3067
Moderately skewed

100 1.0 0.2806 0.2794 0.2758 0.2233 0.2234 0.2224

300 1.0 0.2126 0.2118 0.2122 0.1682 0.1648 0.1769

500 1.0 0.1514 0.1519 0.1531 0.1433 0.1467 0.1391

25 1.5 0.6502 0.6370 0.6069 0.4510 0.4690 0.4500

50 1.5 0.5159 0.5149 0.5069 0.40600 0.4100 0.4020

75 1.5 0.3528 0.3488 0.3439 0.3130 0.3140 0.3060
Negatively skewed

100 1.5 0.3492 0.3402 0.3402 0.2850 0.2890 0.2810

300 1.5 0.1892 0.1900 0.1932 0.1680 0.1660 0.1630

500 1.5 0.1501 0.1491 0.1501 0.1280 0.1340 0.1310
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Table 5: Thickness of an oil seal process data

2.4 2.3 2.0 2.2 2.2 2.2 2.2 2.4 2.1 2.0 2.2 2.0 2.0

1.8 2.3 2.0 2.4 2.4 1.9 1.8 2.1 1.8 2.0 2.3 1.8 1.9

2.1 1.7 1.6 2.2 1.9 1.6 1.9 2.4 1.9 2.1 2.0 2.1 2.1

2.0 1.9 2.5 1.8 1.8 1.8 2.0 2.0 1.9 2.0 2.1 1.8 2.1

1.7 2.0 1.6 1.6 2.1 1.9 1.8 1.9 2.2 2.0 2.2 2.1 2.3

Table 6: Summary statistics of the data

Statistic Value Statistic Value

N 65 Shape 3.43807

Min. 1.6 Scale 0.7489

Max. 2.5 Location 1.3488

Mean 2.0215 Mean (Weibull) 2.0222

S.d 0.2190 Variance (Weibull) 0.04686

Q(1) 1.9 Median (Weibull) 2.0221

Q(2) 2 USL 2.500

Q(3) 2.2 LSL 1.500

Skewness 0.0567 Target value 2.00

Kurtosis 2.5307 USL (p) 3.00

LSL (P) 1.00

PCIs together with the first and second generation PCIs (Cp and Cpk) are reported in Table 7. The

values in parentheses are the lower and upper confidence limits of each BCI, whereas the value below

each BCI is the width of the BCI.

A comparison of the three BCIs (SB, PB and BCPB) for four different PCIs (Cp , Cpk, Cpm and

Cpmk) shows that the BCPB confidence interval gives the shortest width. Therefore, the BCPB

confidence interval is recommended in this situation.

7 Conclusion

In continuous quality improvement for measuring the performance of a production process, the PCIs

are commonly used. The implementation of the PCIs requires a process to follow a normal distribution

but in many real life problems, the normality assumption cannot be fulfilled. The objective of this

study is to evaluate the performance of third generation PCIs, i.e. Cpm and Cpmk and to construct

their BCIs when the process follows a three parameter Weibull distribution. The performance of

the Cpm and Cpmk indices are evaluated at different skewness levels, i.e., highly positive skewed,

moderately skewed and negatively skewed, using different sample sizes for the three parameter

Weibull distribution. At each skewness level, three BCIs, namely, SB, PB and BCPB are constructed

using 1000 bootstrap resamples. The BCI which shows a smaller width is recommended. The results
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show that the BCPB confidence interval performs better than the other two confidence intervals,

in terms of having a smaller width, both for the simulated data and real life data. In future, the

performance of third generation PCIs and construction of BCIs, based on other three parameter

distributions, such as the three parameter exponential and three parameter lognormal distributions

can be explored.

Table 7: Summary statistics of the data

PCIs Point Estimates
BCIs

SB PB BCPB

Cp 0.7698 (0.6726, 0.8908) (0.6857, 0.9024) (0.6380, 0.8548)

0.2182 0.2167 0.2168

Cpk 0.7357
(0.6157, 0.8585) (0.6252, 0.8664) (0.6275, 0.8564)

0.2428 0.2412 0.2289

Cpm 0.7658
(0.6634, 0.8782) (0.6767, 0.8905) (0.6474, 0.8574)

0.2148 0.2138 0.2100

Cpmk 0.7319 (0.5979, 0.8575) (0.6016, 0.8618) (0.6056, 0.8548)

0.2596 0.2602 0.2492
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