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Abstract This study examines the effects of chemical reaction, stenosis shape
parameter and non-Newtonian behaviour on solute dispersion in blood flow via an
asymmetric stenosed artery using the generalised dispersion model (GDM). The Herschel–

Bulkley (H-B) fluid model, which consists of a yield stress and power-law index, is used
to represent the non-Newtonian characteristics of blood in a narrow artery at a low shear

rate. The impact of stenosis shape parameter, chemical reaction, power-law index and
plug flow radius on the dispersion coefficient and effective axial diffusion of solute is shown.

The findings showe that the aforementioned parameters significantly impact the overall
process of the chemically reactive solute in a bulk flow. The dispersion coefficient and

effective axial diffusion decrease with an increase in the chemical reaction rate, stenosis
shape parameter and power-law index. As time passes, the dispersion process slows and

becomes almost constant implying a steady state of diffusion. In short, this study provides
further insights into the physiological processes involving in the dispersion of drugs and
nutrients in the circulatory system.

Keywords Blood flow; Chemical reaction; Dispersion; Asymmetric stenosis; Herschel-

Bulkley fluid.
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1 Introduction

The investigation of solute dispersion in fluid flow is a vital concern due to the wide
range of applications in various fields, such as chemical engineering, biomedical engineering,
physiological fluid dynamics, environmental sciences, medical sciences and pharmacology.
Taylor [1] was the first scientist to provide a theoretical and experimental background of the
solute dispersion theory by omitting the axial diffusion term in the study. The dispersion theory
was enhanced by Aris [2], where the author included the effect of axial molecular diffusion -
known as Taylor-Aris dispersion theory. The latter theory was valid only for a prolonged
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duration. In order to obtain an exact solution of the unsteady convective diffusion equation that
is applicable at all times, Gill and Sankarasubramanian [3] proposed an alternative approach
known as the generalised dispersion model (GDM). Several researchers, including Rana and
Murthy [4]; Jaafar et al. [5] and Sankar et al. [6] have investigated the solute dispersion
process using the approach proposed by Gill and Sankarasubramanian [3].

The present problem is based on the solute dispersion that undergoes a homogeneous
reaction in the bulk flow which has significant applications in air pollution, gas absorption
in an agitated tank, ester hydrolysis, catalysis, biochemical techniques, ceramic production,
fibrous insulation, and crop-damaging through freezing [7]. The diffusion process becomes more
complicated when the fluid is chemically reactive [8]. The chemical reaction can be classified
either as a homogeneous or a heterogeneous reaction. The influence of chemical reactions in
flowing fluid was assessed by Roy et al. [9], where the authors analysed the dependency of
bulk flow reaction parameter on the flow velocities and dispersion coefficients of solute. In
another study by Rana and Murthy [10], the effects of heterogeneous irreversible wall reactions
on the dispersion of a chemical species in the pulsatile flow of blood were evaluated. Similarly,
Roy et al. [11-12] conducted two successive studies that examined solute dispersion process in
Newtonian and non-Newtonian fluids that was affected by the bulk flow reaction. Recently,
Das et al. [13] investigated the effects of homogeneous and heterogeneous reactions on solute
dispersion while considering the transverse and longitudinal directions.

Damaged and blocked arteries is a life-threatening disorders affecting a large percentage
of human population worldwide [14] leading to cardiovascular anomalies and heart-related
diseases, such as cardiac ischaemia, brain ischaemia, and cardiac arrest [15]. The progressive
accumulation of low-density lipoproteins, cholesterol, cellular waste products, and other
substances along the arterial wall causes a reduction of the arterial diameter and disturbs
the normal blood flow [16]. The arterial wall gets thickened and hardened due to these
accumulations. Consequently, a plaque is developed which ends up narrowing the artery, a
condition known as atherosclerosis or stenosis. This study was designed to mitigate these
heart-related disorders by improving the current body of knowledge regarding the underlying
mechanisms and root causes. These findings might support the development of suitable
bioengineering methods for their elimination. Overall, there is a substantial difference in
blood flow between stenosed and normal arteries [17]. Abbas et al. [18] stated that the flow
characteristics of blood are significantly affected due to the presence of stenosis. According
to Shah [19] and Mishra and Siddiqui [20], it is challenging to resolve the solute dispersion
issue when the blood flowing through an artery has stenosis in certain regions. Sriyab [21]
and Sankar et al. [22] stated that the analysis of blood flow in stenotic arteries is vital in
understanding circulatory disorders. According to Hossain and Haque [23] and Freidoonimehr
et al. [24], the shape and degree of stenosis of a stenotic coronary artery have significant
impacts on arterial blockage. Prashantha and Anish [25] emphasized the importance of
understanding haemodynamics in the post-stenotic of asymmetric stenosis. The authors
highlighted that about 70 to 80% of cardiovascular diseases occur in complex geometries. Given
this, the majority of recently published studies concentrated on issues related to blood flow in
arteries with complex geometries in the absence of chemically reactive solute [26-28]. It is of
utmost importance to concurrently study the solute dispersion in the presence of chemically
active solute at the bulk of the flow having stenosis in the arterial wall in order to analyse the
rheological behaviour of blood flow in a diseased state.
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Recently, several researchers’ interests have been drawn towards the topic of solute
dispersion either in a steady or unsteady flow of non-Newtonian fluids in a tube/channel.
This is due to its widespread applications in biochemical processing, cardiovascular flows, and
polymers. Notably, using the method of GDM, the solute dispersion issues for non-Newtonian
fluids were resolved by several researchers. This method consolidates a set of solutions that
describe the entire dispersion process at all times. Using the GDM, Tiwari et al. [29] analysed
the unsteady solute dispersion in two-fluid flowing through narrow tubes. Rana and Liao [30]
investigated the axial dispersion of a solute in a pulsatile flow of Herschel-Bulkley (H-B) fluid
through a straight circular tube with wall absorption using GDM. Likewise, Ratchagar and
Vijayakumar [31] employed the GDM to evaluate the dispersion of a solute in blood flow with
the inclusion of chemical reaction and magnetic field using a non-Newtonian fluid model. They
discovered that the dispersion coefficient which describes the entire diffusion process decreases
due to chemical reaction and shows a reciprocal behaviour in the absence of chemical reaction.
Rana and Murthy [32] conducted a comparative study of solute dispersion among single and
two-phase fluid models using GDM. Other researchers applied GDM to study the dispersion of
a solute in non-Newtonian fluid flow [33-35].

Blood has been described to behave like a H-B fluid by several authors [36-37]. The yield
stress, apparent viscosity, and the power-law index are the main three rheological parameters
that characterise or influence the H-B fluid. This fluid model is advantageous because with
suitable choice of the parameters could reduce the constitutive equation of H-B fluid to the
power-law, Newtonian, and Bingham fluid models [38]. H-B fluids include shear thickening and
shear thinning properties that are used in describing rheological properties of drilling fluids,
greases, starch pastes, colloidal suspensions, paints, toothpaste, lubricant in roller-bearing and
biological fluids like blood [39-40]. Furthermore, biomedicine, petroleum industries, polymer
industries, and blood oxygenators developers are some of the several applications of H-B
fluid [41]. Despite the velocity profiles of blood flow are not compatible with the Casson
fluid in arterioles having diameters less than 65 H-B fluid is capable of explaining the same
condition. Presently, most researchers are adopting the H-B fluid model for issues relating to
non-Newtonian fluid [42-44].

Hence, based on previous works in the literature, there is a lack of studies on the problem
of solute dispersion in blood flow with the inclusion of a chemically reactive species in an
asymmetry stenosed artery using GDM. The study of solute dispersion in a non-Newtonian
fluid is vital to produce realistic results that represent physical problems better. Furthermore,
the knowledge of the rheological parameters is necessary to understand the effects of non-
Newtonian rheology on solute dispersion. By solving this problem, the transport coefficients of
solute in narrow arteries at a low shear rate can be predicted. Specifically, the contributions of
the paper are twofold, firstly to evaluate the effects of reactive species in an asymmetry stenosed
artery using GDM that was only addressed individually in previous studies, and secondly to
analyse the rheological behaviour of non-Newtonian fluid in a stenosed artery.

2 Mathematical Formulation

Suppose a reactive chemical solute is moving through a miscible fluid-containing tube and
undergoing a first-order reaction in the bulk flow. The blood flow is assumed to be steady,
laminar, axially symmetrical, incompressible and fully developed unidirectionally.
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2.1 Governing Equations

The cylindrical polar coordinates (r, ψ, z) where r and z denote the radial and axial coordinates,
respectively and ψ is the azimuthal angle is considered. This work excludes fluid velocity in
the r direction since its magnitude is negligibly small and only accounts for the fluid velocity
in the z direction. Therefore, ur = uψ = 0 [45]. The simplified forms of momentum equations
in the axial and radial directions, respectively:

∂p̄

∂z̄
= −

1

r̄

∂

∂r̄
(r̄τ̄ ), (1)

∂p̄

∂r̄
= 0, (2)

where ∂p/∂z is the pressure gradient in the axial direction and τ is the shear stress. The
unsteady convective–diffusion equation [46] with first-order chemical reaction that govern the
mass transport is written as follows:

∂C̄

∂t̄
= −ū

∂C̄

∂z̄
+Dm

(

1

r̄

∂

∂r̄

(

r̄
∂C̄

∂r̄

)

+
∂2C̄

∂z̄2

)

− β̄C̄, (3)

where C denotes the solute concentration per unit volume, t is the time variable, Dm denotes
the coefficient of mass diffusion and β denotes the parameter of the chemical reaction.

2.2 Initial and Boundary Conditions

The non-linear system of a differential equation for the unknown shear stress τ defined by
equation (1) is based on the following boundary condition:

τ̄ is finite at r̄ = 0. (4)

The fluid is regarded as vicious since it adheres to the arterial wall, hence the no-slip
boundary condition is given by

ū = 0 at r̄ = R̄ (z̄) . (5)

Following [3], the initial and boundary conditions are as follows:

C̄ (r̄,∞, t̄) = 0, (6)

∂C̄

∂r̄
(0, z̄, t̄) = 0 =

∂C̄

∂r̄

(

R̄(z̄), z̄, t̄
)

. (7)

2.3 Geometry of Stenosis

According to Sankar and Lee [47], the geometry of the asymmetric stenosis in the dimensional
form is denoted as follows:

R̄(z̄) =

{

1 − Ā
[

l̄0
m−1(z̄ − d̄) − (z̄ − d̄)m

]

, d̄ ≤ z̄ ≤ d̄ + l̄0,
1, otherwise,

(8)

where A=
(

δ/R0l0
)

m
(m/m−1)

, R0 is the arterial radius, δ is the height of stenosis, l0 is the length

of the stenosis, z is the longitudinal (axial) distance, r is the transverse (radial) distance, d is
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the stenosis location, L is the artery length, m is the stenosis shape parameter and R(z) is the
stenotic artery radius. Figure 1 illustrates the geometry of an asymmetric stenosed artery under
consideration. The arterial segment is assumed to be long enough that the entrance, endpoint
and distinctive wall effects can be disregarded. The stenosed artery is assume to be rigid since
the stenosis is lodged in the lumen. According to Mishra and Siddiqui [20], symmetric stenosis
has a stenosis shape parameter value of 2, whereas asymmetric stenosis has a stenosis parameter
value of 3–6.

Figure 1: The geometry of the asymmetric stenosed artery

2.4 Non-dimensionalisation

The following are the non-dimensional variables:

C = C̄
C̄0
, u = ū

u0
, um = ūm

u0
, r = r̄

R0
, rp = r̄p

R0
, t = Dmt̄

R2
0

, z = Dmz̃
R2

0
u0
, τ = τ̄

(ηHu0/R0)
1
n

,

τy =
τ̄y

(ηHu0/R0)
1
n
, δ = δ̄

R0
, l0 = l̄0

R0
, R(z) = R̄(z̄)

R0
, β =

√

R2
0β̄

Dm
,

(9)

where C is the solute concentration, u is the velocity, um is the average velocity, u0 is the fluid
characteristics velocity (centreline velocity), r is the radial distance, rp is the radius of the plug
core field, z is the longitudinal distance, t is the time, τy is the yield stress and β is the rate of
chemical reaction. The transport equation and the geometry of the asymmetric stenosis in the
non-dimensional form are

∂C

∂t
+ u

∂C

∂z
=

(

1

r

∂

∂r

(

r
∂C

∂r

)

+
1

Pe2

∂2C

∂z2

)

− β2C, (10)

where Pe = R (z) u0/Dm.

R(z) =

{

1 − A [l0
m−1(z − d) − (z − d)m] , d ≤ z ≤ d + l0,

1, otherwise,
(11)
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where A=(δ/R0l0)m
(m/m−1). Singh et al. [48] defined the H-B fluid constitutive equation as

follows:
du

dr
=

{

− (τ − τy)
n
, if τ ≥ τy and rp ≤ r ≤ R (z) ,

0 , if τ < τy and 0 ≤ r < rp,
(12)

where n is the power-law index. Equation (12) implies that normal shear flow occurs in the
field when τ ≥ τy, while the plug flow field occurs when τ < τy. Dash et al. [34] asserted that
whenever the yield stress exceeds the shear stress, the fluid in the region does not flow but is
instead carried along at a constant velocity by the fluid particles in the adjoining shear flow
region.

2.5 Method of Solution

The non-dimensional velocity of blood flow in the non-plug flow field is defined as u+(r) and
written as follows to distinguish it from the velocity in the plug flow field:

u+ (r) = 1 − rn+1

Rn + 1(z)
− (n+ 1) rp

R(z)

(

1 − rn

Rn (z)

)

+ n(n+1)
2

r2p
R2(z)

(

1 − rn−1

Rn −1(z)

)

,

if τ ≥ τy and rp ≤ r ≤ R (z) ,
(13)

where rp is the yield stress over a pressure gradient that can be described as the plug core
radius. By evaluating equation (13) at r = rp, the non-dimensional plug flow field velocity can
be written as:

u− (rp) = 1 − (n+ 1)
rp

R (z)
+
n (n+ 1)

2

r2
p

R2 (z)
−
n (n− 1)

2

rp
n+1

Rn+1 (z)
, if τ < τy and 0 ≤ r < rp .

(14)
The mean velocity in non-dimensional is interpreted as:

um = (n+1)
(n+3)

(

1 − n(n+3)
(n+2)

rp
R(z)

− n(n+3)
(n+2)

rp
R(z)

+ n(n−1)(n+3)
2(n+1)

rp2

R(z)2

−
(n4+2n3

−5n2
−6n+4)

2(n+1)(n+2)

rn+3
p

Rn+3(z)

)

.
(15)

The solute convection over a plane moving at an average velocity um is considered in such a
way that the axis moves with the average speed of the fluid. A new coordinate system (r, z1, t)
that includes an axial coordinate z1 is introduced, where z1 is expressed as follows

z1 = z − um t. (16)

Following the approach by Gill et al. [3] who employed GDM, the solution from equation
(10) is assumed to be a derivative series expansion involving ∂Cm/∂z

i
1 as follows:

C (r, z1, t) = Cm (z1, t) +
∞

∑

i=R(z)

fi (r, t)
∂iCm (z1, t)

∂zi1
, (17)

where

Cm (z1, t) = 2

∫ R(z)

0

C (r, z1, t) r dr (18)
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is the average solute concentration across the fragmentary area. The partial differential equation
of the average solute concentration with the chemical reaction is obtained by substituting
equation (17) into equation (10) as follows:

∂Cm

∂t
+ (u− um) ∂Cm

∂z11
− 1

Pe2
∂2Cm

∂z21
+

∑

∞

i=1

(

(

∂fi

∂t
− l2fi

)

∂iCm

∂zi
1

+ (u− um) fi
∂i+1Cm

∂zi+1
1

− 1
Pe2

fi
∂i+2Cm

∂zi+2

1

+ fi
∂i+1Cm

∂zi+1

1
∂t

+ β2fi
∂iCm

∂zi
1

)

+ β2Cm = 0,
(19)

where l2 = 1/r∂/∂r (r∂/∂r). Dash et al. [34] stated that the process of distributing Cm (z, t) is
diffusive from the beginning of time, hence using GDM with the inclusion of chemical reaction
as suitable functions of time t yields the following:

∂Cm
∂t

=
∞

∑

i=1

Ki (t)
∂iCm
∂zi1

(z1, t) − β2Cm (z1, t) , (20)

where K1 (t) is the longitudinal convection coefficient and K2 (t) is the longitudinal diffusion
coefficient. Since K2 (t) depicts the entire dispersion process with regards to simple diffusion
process in the axial direction z1, the parameter is also known as the dispersion coefficient.
Substituting equation (20) into equation (19) and grouping the coefficients ∂iCm/∂z

i
1 for i =

1, 2, . . . yields:

[

K1 (t) + (u− um) + ∂f1
∂t

− l2f1 + β2f1

]

∂Cm

∂z1
1

+
[

− 1
Pe2

+ (u− um) f1 + f1K1 (t) +K2 (t)

+ ∂f2
∂t

− l2f2 + β2f2]
∂2Cm

∂z2
1

+
∑

∞

i=1

[

− 1
Pe2

fi+ (u− um) fi+1 +Ki+2 (t) + ∂fi+2

∂t
− l2fi+2

+ β2fi+2 +
∑i+1

j=1 Kj (t) fi+2−j

]

∂i+2Cm

∂zi+2
1

= 0.

(21)
The infinite system of partial differential equations is derived by equating ∂iCm/∂z

i
1

coefficients to zero for i = 1, 2, . . . as follows:

∂f1

∂t
− l2f1 + u− um +K1 (t) + β2f1 = 0, (22)

∂f2

∂t
− l2f2 + [u− um +K1 (t)] f1 +K2 (t)−

1

Pe2
+ β2f2 = 0, (23)

∂fi+2

∂t
− l2fi+2 + [u− um +K1 (t)] fi+1 +

[

K2 (t) −
1

Pe2

]

fi + β2fi+2 +

i+2
∑

j=3

Kj (t) fi+2−j = 0,

(24)

with f0 = 1. The initial and boundary conditions for fi are

fi (r, 0) = 0, (25)

∂fi
∂r

(0, t) = 0 =
∂fi
∂r

(R (z) , t) . (26)

Using equations (17) and (18), the solvability condition is obtained as follows:

∫ R(z)

0

fi r dr = 0. (27)
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The longitudinal convection coefficient K1 (t) is calculated by multiplying equation (22) by
r and subsequently integrating the result from zero to one with respect to r. After using of
equation (27), the formula for K1 (t) is given as:

K1 (t) = −2

∫ R(z)

0

(u− um) r dr. (28)

The same approach is applied in equations (23) and (24), which yield the following transport
coefficients:

K2 (t) =
1

Pe2
− 2

∫ R(z)

0

f1 u r dr, (29)

Ki+2 (t) = −2

∫ R(z)

0

fi+1 u r dr, i = 1, 2, 3, ..... (30)

The solutions to the non-homogeneous parabolic differential equations for equations (22),
(23) and (24) are divided into two parts as follows:

f1 (r, t) = f1s (r) + f1t (r, t) , (31)

where f1s (r) and f1t (r, t) are the dispersion functions in the steady-state and transient state,
respectively. The dispersion function f1t (r, t) characterizes the time-dependent aspect of the
solute dispersion. Substituting equation (31) into (22) yields:

∂f1s

∂t
+
∂f1t

∂t
− l2f1s − l2f1t + (u− um) + β2f1s + β2f1t = 0. (32)

Since ∂f1s/∂t = 0, there is no change in dispersion with time under a steady state. By
rearranging the coefficients in equation (32), the following differential equations are obtained:

l2f1s − (u− um) − β2f1s = 0, (33)

∂f1t

∂t
= l2f1t − β2f1t. (34)

By substituting equation (31) into equations (25) and (26), then grouping f1s (r) and
f1t (r, t), the initial conditions of f1t (r, t) and the boundary conditions of f1s (r) and f1t (r, t)
are obtained as follows:

f1t (r, 0) = −f1s (r) , (35)

df1s

dr
(r = 0) = 0 =

df1s

dr
(r = R (z)) , (36)

∂f1t

∂r
(0, t) = 0 =

∂f1t

∂r
(R (z) , t) . (37)

The solvability condition for f1s (r) and f1t (r, t) is given as:

∫ R(z)

0

f1t r dr = −

∫ R(z)

0

f1s r dr. (38)
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The differential equation of dispersion function at steady state in a plug flow field is given
as:

1

r

d

dr

(

r
df1s

−

dr

)

− (u− − um) − β2f1s
−

= 0, if 0 ≤ r < rp. (39)

Based on equation (34), the outer flow field becomes:

1

r

d

dr

(

r
df1s+

dr

)

− (u+ − um) − β2f1s+ = 0, if rp ≤ r ≤ R (z) . (40)

Using Wolfram Mathematica, equation (39) is solved numerically subject to the boundary
condition (36), yielding the steady dispersion function in the plug flow field as follows:

f1s
−

(r) = − 1
β2

(

2
(n+3)

+ 2(n+1)
(n+2)

rp
R(z)

+ n
r2p

R2(z)
− n(n−1)

2
rn+1
p R−n−1 (z)

+
(n4+2n3

−5n2
−6n+4)

2(n+2)(n+3)
rn+3
p R−n−3 (z)

)

+ S1J0 (iβr) ,

if 0 ≤ r < rp,

(41)

where J0 is the Bessel function of the first kind of order zero and S1 is a constant. In the
outer flow field in the range of rp ≤ r ≤ R (z), the steady dispersion function can be obtained
numerically by solving equation (40) subject to the boundary condition (26). The expression S1

is obtained using equation (27). Equation (34) is solved using the variable separation method
and Bessel function, subject to the boundary conditions (35) and (37). The solution of f1t (r, t)
is as follows:

f1t (r, t) = e−β
2t

∞
∑

m=1

Am e−λ
2
mt J0 (λm r) , (42)

where

Am = −

∫ R(z)

0
J0 (λm r) f1s (r) r dr

∫ R(z)

0
J2

0 (λm r) r dr
= −

2

J2
0 (λm)

∫ R(z)

0

J0 (λm r) f1s (r) r dr. (43)

The eigenvalues λm are the roots of equation J1 (r) = 0. J0 and J1 denote the Bessel
functions of the first kind of order zero and one, respectively. The dispersion coefficient K2 (t)
is a measure of the effectiveness of solute dispersion in the blood flow. Dash et al. [34] and
Ramana et al. [35] stated that the total reduction in solute dispersion caused by the fluid yield
stress at a constant pressure gradient can be measured by subtracting equation (31) with 1/Pe2

and multiplying the result with 192, yielding the following:

192

(

K2 (t) −
1

Pe2

)

= −2

∫ R(z)

0

f1 u r dr. (44)

The influence of a distorted velocity profile of H-B fluid on unsteady solute dispersion with
a chemical reaction in a circular pipe is defined as follows:

(

K2 (t) − 1
Pe2

)

(

KN
2 (t) − 1

Pe2

) , (45)
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where KN
2 (t) is the longitudinal diffusion coefficient (dispersion coefficient) for the Newtonian

fluid. Once K2 (t) is determined, f2 (r, t) can be obtained from equation (23) using a similar
method used to obtain f1 (r, t) . Substituting f2 (r, t) into equation (24) when i = 1 yields
K2 (t) and similarly for i = 2, 3,. . . , one can find f3 (r, t), K4 (t), f4 (r, t), K5 (t) and so on from
equations (24) and (30). Since the coefficient K3 (t) is negligible and the solutions obtained for
f1 (r, t) and K3 (t) are lengthy and cumbersome, the computation of Ki+2 (t) and fi+1 (r, t) for
= 1, 2, . . . are disregarded. Equation (45) measures the total reduction in solute dispersion of
H-B fluid relative to Newtonian fluid due to the presence of chemically reactive solute at the
bulk of the flow.

3 Results and Discussion

This study aims to examine the behaviour of blood flow for unsteady dispersion in a narrow
circular pipe to simulate the involvement of asymmetry stenosis and reactive species in the bulk
flow. The study is also intended to depict non-Newtonian behaviour and the impacts of various
physical parameters on the the dispersion coefficient and effective axial diffusion of the solute.
The parameter values used in this study are in the following range: yield stress rp : 0–0.2 [49],
power-law index n : 0.75–2.0 [49], rate of chemical reaction β : 0.1–2.5 [50-51], stenosis height
δ : 0.01 [40], amplitude A : 0.1–0.5 [52] and stenosis shape parameter m : 2.0–3.8 [52].

3.1 Validation of Results

Figure 2 illustrates the validation results of the steady dispersion function f1s, unsteady
dispersion function f1t and dispersion function f1 for the presence and previous study in the
absence of stenosis with n = 0.95, β = 0.1, R (z) = 1 and rp = 0.1. The aforementioned
figures are found to be in good agreement with Sankar et al. [6] and Jaafar [53]. For validation
purposes, the geometry of the stenosed artery R(z ) is set to one.

3.2 Dispersion Coefficient

Figure 3 (a) depicts the variation of dispersion coefficient over time t for various chemical
reaction rate parameter β when t = 0.1, n = 0.95, rp = 0.1, δ = 0.01, R (z) = 0.827, l0 = 3, d =
2, z = 4 and m = 3. The dispersion coefficient decreases as the chemical reaction parameter
increases, indicating that the solute diffuses more slowly in the longitudinal direction as the
chemical reaction rate increases. There is a slight difference in the dispersion coefficient when
β = 0.1 and 1 before the dispersion coefficient reaches its steady-state. The results imply that
as the chemical reaction rate increases, the solute diffuses slightly into the blood protein and
acquires a steady longitudinal diffusion as time increases to t = 0.4. These findings also suggest
that because the degree of solute binding to blood proteins increases, the chemical reaction
tends to reduce solute dispersion. The solute longitudinal diffusion coefficient is similar until t
= 0.02, at which point it increases monotonically as the chemical reaction rate increases.

Figure 3 (b) shows the variation of the dispersion coefficient over time t for various stenosis
shape parameter m when β = 0.1, t = 0.1, n = 0.95, δ = 0.01, rp = 0.1, l0 = 3, d = 2
and z = 4. The stenosis takes on a symmetric shape when the stenosis shape parameter
m = 2. The dispersion coefficient eventually has a common time of t = 0.02. As the stenosis
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(a) (b)

(c)

Figure 2: The parameters are fixed at n = 0.95, β = 0.1, R (z) = 1, δ = 0 and rp = 0.1
(a) steady dispersion function f1s, (b) unsteady dispersion function f1t with t = 0.1 and (c)
dispersion function f1 with t = 0.1

shape parameter increases from m = 2.0, 2.5, 3.0, 3.5 to 3.8, the dispersion coefficient also
increases until t = 0.02, after which it decreases significantly until it almost becomes constant
at t = 0.3. This is because initially the solute dispersion by convection takes place more
rapidly than the molecular diffusion. Thus, the asymptotic value of the dispersion coefficient
is attained immediately after the injection of the solute. The stenosis shape parameter m
controls the shape of stenosis and affects the velocity profile. The radius of the stenosed artery
decreases from R (z) = 0.997, 0.993, 0.983, 0.962 to 0.940 with the increase of the stenosis
shape parameter. These results imply that the stenosis shape parameter affects the radius of
the stenosed artery as the solute diffuses in the blood.

Figure 4 (a) illustrates the variation of the dispersion coefficient over time t for various plug
core radius rp when β = 0.1, t = 0.1, n = 0.95, R (z) = 0.827, δ = 0.01, l0 = 3, d = 2, z = 4
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and m = 3. The dispersion coefficientK2 depends on the non-Newtonian rheological parameter,
which is the fluid yield stress, through its dependence on the plug flow parameter rp. The
dispersion coefficient is shown to decrease significantly as the plug core radius increases. The
dispersion coefficient rises rapidly from t = 0 to 0.1, then slowly from t = 0.1 to 0.26, and
becomes almost constant from t = 0.26 to 0.5. This figure exhibits two distinctive behaviours
as mentioned in equation (29). The non-linear behaviour of the plot for the unsteady state of
diffusion is shown by the non-uniform solute concentration in the blood flow, whereas the linear
behaviour of the plot for the steady state of diffusion is shown by the uniform or saturated solute
concentration. These findings imply that the solute diffuses vigorously in the blood (represented
by the H-B fluid) at the start of the dispersion process, then slowly until it becomes almost
constant as time passes. The yield stress is related to the non-Newtonian nature of the fluid,
with the increase in yield stress increasing blood viscosity. The yield stress is also associated
with the radius of the plug region through the expression τy = rp/2, indicating that the radius
of the plug region increases with the increase of yield stress.

Figure 4 (b) indicates the variation of dispersion coefficient over time t for various fluids
for β = 0.1, t = 0.1, R (z) = 0.827, δ = 0.01, l0 = 3, d = 2, z = 4andm = 3. The
dispersion coefficient decreases when the power-law index n and yield stress increase. The
dispersion coefficient is higher when n = 0.95 (H-B fluid) than when n = 1 (Bingham fluid).
The dispersion coefficient is lower when rp = 0.2 (H-B fluid) than when rp = 0 (power-law fluid).
The viscosity of the fluid increases as the power-law index and yield stress increase, hence blood
travels faster along the axial distance. The dispersion coefficient of the Newtonian fluid model
is found to be marginally higher than that of the H-B fluid and Bingham fluid models and
only slightly higher than the power-law fluid model. The solute dispersion coefficient for the
Newtonian fluid model obtained in this study conforms with the results obtained by Gill et al.
[3].

(a) (b)

Figure 3: Variation of dispersion coefficient over time t when t = 0.1, n = 0.95, δ = 0.01, l0 =
3, d = 2 and z = 4 for (a) various chemical reaction rate parameter β (b) various stenosis shape
parameter m
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(a) (b)

Figure 4: Variation of dispersion coefficient over time t when β = 0.1, t = 0.1, R (z) =
0.827, δ = 0.01, l0 = 3, d = 2, z = 4 and m = 3 for (a) various plug core radius rp (b) various
fluids

3.3 Effective Axial Diffusion

Figure 5 (a) depicts the variation of effective axial diffusion over time t for various chemical
reaction rate parameter β when t = 0.1, n = 0.95, rp = 0.1, δ = 0.01, R (z) = 0.827, l0 =
3, d = 2, z = 4 and m = 3. The effective axial diffusion increases as the chemical reaction
rate increases from the beginning until t = 0.23, after which it remains constant. This implies
that the solute diffuses vigorously in the blood proteins as the chemical reaction progresses.
As the amount of solute that undergoes a chemical reaction in the bulk flow increases from
β = 0.1, 1.0, 1.5, 2.0 to 2.5, more solutes react with the fluid, increasing the solute dispersion
until it reached a steady-state of diffusion.

Figure 5 (b) describes the variation of effective axial diffusion over time t for various stenosis
shape parameter m when β = 0.1, t = 0.1, n = 0.95, δ = 0.01, rp = 0.1, l0 = 3, d = 2
and z = 4. In terms of axial diffusion, the value m = 2 corresponds to axially symmetric
stenosis, whereas m = 2.5, 3.0, 3.5 and 3.8 exhibit the effects of asymmetric stenosis. The
effective axial diffusion is substantially larger in the arteries with symmetric stenosis than in
the arteries with asymmetric stenosis. The increase in the stenosis shape parameter m results
in decreasing viscosity which is in line with Biswas and Chakraborty [54] findings. Therefore,
the blood moves slower along the axial distance. Since the increase of viscosity tends to reduce
velocity, the effective diffusion is reduced. The radius of the stenosed artery R (z) decreases
from R (z) = 0.973, 0.972, 0.827, 0.618 to 0.340 with the increase of stenosis shape parameter
m. As there are only minor changes as time passes, it is concluded that the effective axial
diffusion is independent of time t.

Figure 6 (a) illustrates the variation of effective axial diffusion over time t for various plug
core radius rp when β = 0.1, t = 0.1, n = 0.95, R (z) = 0.827, δ = 0.01, l0 = 3, d = 2, z = 4
and m = 3. The effective axial diffusion is found to decrease slightly as the plug core radius
increases. This is due to the high concentration of blood that accumulated at the centre,
which reduces the solute transport. The effective axial diffusion is almost time-independent
and is determined solely by the values of rp. The effective axial diffusion increases slowly in
the beginning until t = 0.1, after which it almost becomes constant. The constant values imply
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that the effective axial diffusion reaches a steady-state, indicating that the drug is effective
when the rate of drug intake equals the rate of drug elimination. The steady-state values are
useful to determine the time needed to reach the steady-state dispersion and the reduction in
solute dispersion caused by yield stress.

(a) (b)

Figure 5: Variation of effective axial diffusion over time t when t = 0.1, n = 0.95, rp = 0.1, δ =
0.01, l0 = 3, d = 2 and z = 4 for (a) various chemical reaction rate parameter β (b) various
stenosis shape parameter m

(a) (b)

Figure 6: Variation of the effective axial diffusion over time t when β = 0.1, t, 0.1, R (z) =
0.827, δ = 0.01, l0 = 3, d = 2, z = 4 and m = 3 for (a) various plug core radius rp (b) various
fluids

Figure 6 (b) shows the effective axial diffusion over time t for various fluids when β =
0.1, t = 0.1, R (z) = 0.827, δ = 0.01, l0 = 3, d = 2, z = 4 and m = 3. The solute disperses
more rapidly in the Bingham fluid (n = 1) than in the H-B fluid (n = 0.95). As the power-law
index increases, the effective axial diffusion also increases. The power-law index is dependent
on the blood constituents, such as haematocrit, fibrinogen and cholesterol. The fluid exhibits
shear-thinning behaviour when n = 0.95, shear-thickening behaviour when n = 1.05 and linear
behaviour when n = 1 [55]. As mentioned by Hussain et al. [56], the power-law index displays
the apparent whole blood viscosity. When the power-law index decreases, so does the viscosity.
The solute disperses faster in the Bigham fluid than in the H-B fluid since the former has a
higher viscosity than the latter. Based on the results, the H-B fluid exhibits a more realistic
model for explaining the blood rheology in narrow arteries.
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4 Conclusion

In summary, the issue of unsteady solute dispersion in blood flow by incorporating a first-order
chemical reaction in the bulk flow via an asymmetry stenosed artery using GDM is solved by
varying the physical parameters. The blood is presumed to be a non-Newtonian fluid (H-B
fluid model) and flows in a rigid arterial wall. The yield stress plays an essential role in the
determination of blood viscosity and velocity profiles in the blood flow. The solute dispersion
coefficient and solute effective axial diffusion decrease with an increase in the yield stress of the
blood flow. The solute dispersion coefficient descends with the raise of the chemical reaction
parameter, stenosis shape parameter and power-law index. As these parameters increase, the
concentration of red blood cells at the centre of the vessels also increases due to the degree of the
solute binding to blood proteins. The solute effective axial diffusion increases with an increase
of the chemical reaction parameter and power-law index. Conversely, as the stenosis shape
parameter increased, the effective axial diffusion decreased. From the mathematical analysis, it
was found that there is a substantial difference between the flow quantities computed with and
without a chemical reaction and stenosis. Hence, this study contributes to the development of
mathematical modelling as the H-B fluid model realistically demonstrated the blood rheology of
the reactive dispersion in the blood flow through a narrow stenosed arteries. Considering blood
flow is naturally throbbing, further research on the effects of pulsatile flow on fluid dispersion
with the effect of chemical reactions would be beneficial.
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Nomenclature

Greek Symbols

β̄ Chemical Reaction Parameter
β Non-Dimensional Chemical Reaction Parameter
δ̄ Stenosis Height [m ]
δ Non-Dimensional Stenosis Height
τ̄ Shear Stress [N/m2]
τ Non-Dimensional Shear Stress
τ̄y Yield Stress [N/m2]
τy Non-Dimensional Yield Stress
ηH H-B Fluid Viscosity Coefficient with Dimension (ML−1T−2)

n
T [Ns/m2]

λm Roots of Equation J1 (r) = 0
ψ Azimuthal Angle
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Upper alphabetical letters

Ā Amplitude Parameter
A Non-Dimensional Amplitude Parameter
C̄0 Reference Concentration
C̄ Solute Concentration
C Non-Dimensional Solute Concentration
Cm Non-Dimensional Mean Concentration
Dm Coefficient of Mass Diffusion
J0 Bessel’s Functions of The First Kind of Order Zero
J1 Bessel’s Functions of The First Kind of Order One
K1 Longitudinal Convection Coefficient
K2 Longitudinal Dispersion Coefficient
KN

2 Newtonian Fluid Dispersion Coefficient
L̄ Artery Length [m ]
L Non-Dimensional Artery Length
Pe Modified Peclet Number
R̄ (z̄) Radius of Stenosed Artery [m ]
R (z) Non-Dimensional Radius of Stenosed Artery
R0 Arterial Radius

Lower alphabetical letters

d̄ Stenosis Location [m ]
d Non-Dimensional Stenosis Location
f1s Dispersion Function in Steady-State
f1s

−

Steady Dispersion Function in Plug Flow Field
f1s+ Steady Dispersion Function in Outer Flow Field
f1t Dispersion Function in Transient-State
f1 Dispersion Function
l̄0 Length of Stenosis [m ]
l0 Non-Dimensional Length of Stenosis
m Stenosis Shape Parameter
n Power-law Index
p̄ Pressure [Pa ]
p Non-Dimensional Pressure
r̄ Transverse (Radial) Distance [m ]
r Non-Dimensional Transverse (Radial) Distance
r̄p Plug Flow Radius [m ]
rp Non-Dimensional Plug Flow Radius
t̄ Time [s ]
t Non-Dimensional Time
ū Velocity of Fluid [m/s ]
u Non-Dimensional Velocity of Fluid
u0 Centreline Velocity [m/s ]
u− Non-Dimensional Velocity in Plug Flow Field
u+ Non-Dimensional Velocity in Non- Plug Flow Field
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um Non-Dimensional Mean Velocity
z̄ Longitudinal (Axial) Distance [m ]
z Non-Dimensional Longitudinal (Axial) Distance
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