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Abstract This study employed the global optimization method called Modified Trusted
Region Method (MTRM) to resolve the portfolio selection risk problem. An objective

of unconstrained optimization problem was formulated with four sets of fund data. The
relationship between the level of acceptable risk and the weighting factor was analyzed

numerically. The return of portfolio increased along with the level of acceptable risk
since a high return was always accompanied by higher risk. By contrast, the risk of

portfolio decreased as the weighting factor increased. The MTRM could resolve the
portfolio optimization problem.
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1 Introduction

Although nonlinear optimization problems are broadly studied in the past 30 years, finding a
global optimum for a non-convex and nonlinear optimization problems remains the concern of
many researchers [1]. The minimization of the unconstrained optimization problem is defined
as

minxf(x) (1)

where x ∈ Rn is a real vector with components and f(x) is a smooth function [2]. However,
solving a general unconstrained nonlinear optimization problem could be very challenging even
if the problem is small because the feasible region of the problem is not always convex [2].

When the problem is multi-modal and the algorithm used does not emphasize exploration,
then the algorithm will be trapped in one of the local solutions and might cause the
solution obtained is not the global optimum. Based on the homotopy technique, many
global optimization algorithms have been developed to address this issue. They include the
tunneling method, conjugate gradient method, homotopy optimization method (HOM), and
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homotopy optimization with perturbation and ensembles (HOPE). Meanwhile, homotopy is
a fundamental concept in topology. Homotopy acts as a medium in optimization to transfer
solutions successively from one local minimum to another better one [3].

HOM produces a sequence of points approaching a local minimizer of a function. In
comparison, HOPE generates a series of ensembles points that are local minimizers of a function.
HOPE is a global optimization algorithm extended from HOM [3], yielding a continuous
transformation from an easy problem to the given one.

HOPE uses the local minimizers in the previous step as starting points. It perturbs
stochastically in various directions with different lengths to find the next minimizers [4]. All
minimizers found are stored in an ensemble. The points in the ensemble will be perturbed
again to find the next solution. These steps are repeated until its stopping criterion is achieved.
The performance of HOPE will increase along with the computation efforts. However, HOPE
becomes expensive when the number of ensembles increases.

Subsequently, an algorithm known as homotopy with two-step predictor-corrector method
(HSPM) was developed by Kerk to overcome the computational burden of HOPE [5]. Although
HSPM performed better than HOPE in time of complexity, it was designed to solve the one
variable optimization problem only. Hence, it is not comparable with HOPE. HSPM was
improved further with better time complexity when the inner loop of its algorithm was altered
slightly, giving rise to the algorithm called Improved Homotopy with 2-Step Predictor-corrector
Method (I-HSPM) [6]. When extended, it resolves multi-variable optimization problems, and
this gradient-based algorithm is now known as Modified Trusted Region Method (MTRM) [7].

In general, MTRM generates a series of the trusted region (TR) using the Poincare-Miranda
theorem (PMT) for identifying a TR that confers the convexity. This attribute allows MTRM
to determine the convex parts within the given domain of a function. In other words, MTRM
could separate a big non-convex problem into several small but convex ones [7].

This study used MTRM to resolve the risk problems of portfolio selection. In general,
portfolio selection describes how investors should allocate their wealth among several assets in
financial mathematics, risk management, and economics [8,9]. It also answers the trade-off risk
and returns while selecting assets under certain conditions [10].

2 Modified Trusted Region Method (MTRM)

MTRM is a global optimization algorithm that resolves multi-variable problems. It is a
gradient-based algorithm. It finds the area of the zeroes on the gradient of an objective function.
Such areas are called the trusted region (TR). In the algorithm of MTRM, a TR must have
negative derivative function values followed by positive ones. With this condition, MTRM can
filter out the maximizers and also the saddle points.

Unlike Hansens method [11], MTRM does not eliminate any area with no minimizer.
Instead, it identifies areas with an existing minimizer, and such area is the TR. MTRM is
a unique algorithm because it identifies convex regions within a non-convex region.

When initialized with the homotopy function, the first loop in the MTRM is called the
identification part of TR. This part contains the preparation steps for identifying and gathering
the TRs. If other TRs intercept the same region, only one will be kept while others will
be eliminated in the next step. In the subsequent local search, the endpoint values will be
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calculated and stored in an ensemble with all the minimizers found in the local search step.
Then, the global solution will be determined.

The algorithm of MTRM for cases with two variables is given below.

Algorithm 1: Algorithm MTRM

1. Construct a homotopy function, H(x,y,λ) by combination of target function and
auxiliary function.

2. Set a closed interval, [x1, x2], [y1, y2] for the homotopy function H(x,y,λ).
3. Choose step sizes for st, sx and sy, where st is a step size for λ, step size sx and sy

are used to divide [x1, x2], [y1, y2] into several subintervals respectively.
4. For λ = l, ..., 1
5. For j = 0, y1 + syj ≤ y2, j + +
6. For i = 0, x1 + sxi ≤ x2, i + +
7. Compute fx[xi, yi].
8. end.
9. end.
10. Determine subintervalm = [{xi, yj}, {xi+1, yj}] where {xi, yj} gives a negative

function value while {xi+1, yj} gives a positive function value and
m = 1, 2, ..., M .

11. For i = 0, x1 + sxi ≤ x2, i + +
12. For j = 0, y1 + syj ≤ y2, j + +
13. Compute fy[xi, yi].
14. end.
15. end.
16. Determine subintervaln = [{xi, yj}, {xi, yj+1}] where {xi, yj} gives a negative

function value while {xi, yj+1} gives a positive function value and n = 1, 2, ..., N .
17. end
18. Filtration: subintervalk = delete duplicate subintervals among subintervalm and

subintervaln where k = 1, 2, ..., K.
19. For k = 1, 2, ..., K
20. let {xi, yj} be the initial point.
21. run a local search method on the target function and store the solution found in

an ensemble.
22. end
23. Calculate the function value of endpoints and add into the ensemble.
24. Select the lowest function value for the function value f(x, y).
25. Stop.

MTRM has proven to hold the descent property and global convergence. It has also shown
its robustness capability of locating the global minimizers [7].

3 Portfolio Selection

The portfolio theory deals with the selection of portfolios that maximize the expected returns
consistent with an individually acceptable level of risk [12, 13]. Investors are risk-averse [14],
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i.e., when faced with two investments with different risks but the same expected return, they
prefer the one with the lowest risk. Usually, investors would keep a risky investment if, and
only if, the expected return is sufficiently high enough to offset the assuming risk.

The portfolio theory quantifies risk into the variance of an assets expected return [15]. The
variance of a random variable is a measure of the dispersion of the possible outcomes around
the expected value. The larger the variance or standard deviation, the greater the investment
risk. In this respect, the risk could be reduced by constructing a portfolio for diversification,
which is the central concept of portfolio theory. In diversification, money is put in different
asset classes and securities to spread out the investment [13].

In general, when someone wants to invest, a bank manager will offer some potential assets
to the customer, for example, two funds in different sectors, one in information technology (IT),
one in manufacturing. The question that arises here is, how much should one invest in each
fund? Is 50: 50 or 70: 30? The question could be answered using a model with the fund data
from the bank to compute the appropriate allocation for each fund using MTRM in minimizing
the overall risk of the portfolio while maximizing the return.

4 Problem Description and Methodology

The portfolio optimization is unique with various mathematical models for different types
of portfolios and even for portfolios intended for the same purpose. However, the model
used is not uniquely defined [16]. The portfolio optimization is usually modeled in a linear
programming structure with many constraints. But, it can also be represented by an
unconstrained minimization problem by reformulating the problem [17]. This paper used the
method introduced in another study [17] to formulate the portfolio model for computing the
best combination of expected return and risk. Other authors [18–21] also used the same method
to resolve portfolio problems.

The expected portfolio return given by the investment fraction y1, y2, ..., yn could be
represented by Equation (2) [17]

R =
n

∑

i=1

r̄iyi, (2)

where

r̄i =

∑m

j=1
rij

m
(3)

is the mean of return of each asset.
The variance and covariance could then be calculated from the past performance, i.e., the

return rate rij . The variance of asset i could be expressed by Equation (4),

σii =

∑m

j=1
(rij − r̄i)

2

m
(4)

and the covariance of assets i and k could be represented by Equation (5).

σik =

∑m

j=1
(rij − r̄i)(rkj − r̄k)

m
. (5)
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Then, the portfolio risk could be defined by Equation (6).

Vmin =
n

∑

i=1

σiiy
2
i + 2

n−1
∑

i=1

n
∑

j=i+1

σijyiyj. (6)

By using matrix-vector notation, portfolio optimization problems can be formulated as

minimize F = −rTy +
ρ

v2
a

(yTQy − va)
2 (7)

subject to
n

∑

i=1

yi = 1, (8)

where r is the mean of return and ρ is a weighting factor controlling the balance between
return and risk, va represents acceptable level of risk, and Q is a variance-covariance matrix
given below.

Q =











σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
. . .

. . .
...

σn1 σn2 · · · σnn











.

It contains variances and covariances which computed based on past performance history of
fund’s data.

5 Results and Discussion

Table 1 shows the return of PB Cash Management Fund (PBCMF), PB Islamic Bond Fund
(PBIBF), PB Islamic Equity Fund (PBIEF), and PB Asean Dividend Fund (PBADF) for
the past ten years. The data were downloaded from the official website of Public Mutual:
https://www.publicmutual.com.my/Our-Products/Fund-Overview. y1 and y2 are very low risk
funds while the indicator for y3 and y4 are very high risk [22].

Table 2 shows the mean return for each asset generated from the fund data where r̄1

represents the mean return for y1, r̄2 represents the mean return for y2, r̄3 represents the mean
return for y3 and r̄4 represents the mean return for y4. Meanwhile, the matrix of variance-
covariance was computed using Equations (4) and (5).

Q =









0.1546 −0.0417 −1.7301 0.0089
−0.0417 2.1245 −1.6930 −4.0224
−1.7301 −1.693 67.6209 18.8094
0.0089 −4.0224 18.8096 64.0090









.

Then, the objective function was formed with Equation (7), yielding the minimize F in
Equation (9).
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minimize F = − 3.088y1 − 4.920y2 − 5.481y3 − 5.878y4 +
ρ

va

(0.1546y2

1

+ 2.1245y2

2 + 67.6209y2

3 + 64.009y2

4 − 0.0834y1y2 − 3.4602y1y3

+ 0.0178y1y4 − 3.386y2y3 − 8.0448y2y4 + 37.619y3y4). (9)

Table 1: Returns of Fund Data

Year PBCMF(y1) PBIBF(y2) PBIEF(y3) PBADF(y4)

2011 2.75 9.35 -1.89 0.77
2012 2.91 6.14 15.96 21.15
2013 2.87 3.38 14.10 2.30
2014 3.06 3.52 1.08 11.87
2015 3.46 4.05 8.68 -0.23
2016 3.31 5.43 -4.59 9.90
2017 3.29 4.89 8.34 16.03
2018 3.60 5.96 -8.64 -4.92
2019 3.40 7.46 6.37 3.24
2020 2.22 5.14 15.40 -1.33

Table 2: Mean of Each Asset

r̄i mean
r̄1 3.088
r̄2 4.920
r̄3 5.481
r̄4 5.878

With MTRM, the weight for y1, y2, y3 and y4 was computed. These weights were appreciable,
i.e., with different values of ρ and va. The sum of the invested proportions equals to 1. The
numerical results are shown in Table 3.

Based on Table 3, the global solution is attained when ρ = 1 and va = 1. The global
minimum F = −4.7538 and the weight for y1, y2, y3 and y4 are 0.0837, 0.8123, 0.0281 and 0.0759
respectively. With Equation (2), the expected return could be computed using Equation (10).

R = r̄1y1 + r̄2y2 + r̄3y3 + r̄4y4 = 4.8551. (10)

Meanwhile the Vmin value was computed using Equation (6) with outputs given in Equation
(11) below.

Vmin = 0.1546y2

1 + 2.1245y2

2 + 67.6209y2

3 + 64.009y2

4 − 0.0834y1y2 − 3.4602y1y3+

0.0178y1y4 − 3.386y2y3 − 8.0448y2y4 + 37.6188y3y4 = 1.3183. (11)

The numerical results showed that when the level of acceptable risk was high, the portion
for the high-risk fund, like y3 and y4 would increase. For example, when ρ = 1, the weight
for y4 increased from 0.0252, 0.0426, 0.0555, and finally reaching 0.0759 as va varied from 0.2
to 1.0.
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Table 3: Numerical Results

ρ va y1 y2 y3 y4 R Vmin F

1 0.2 06154 0.3322 0.0272 0.0252 3.832 0.2368 -3.7980
0.4 0.4331 0.4968 0.0275 0.0426 4.1828 0.4894 -4.1329
0.6 0.2982 0.6186 0.0277 0.0555 4.4424 0.7557 -4.3751
0.8 0.1845 0.7213 0.0279 0.0633 4.6612 1.0326 -4.5766
1.0 0.0837 0.8123 0.0281 0.0759 4.8551 1.3183 -4.7538

10 0.2 0.6485 0.3023 0.0271 0.0221 3.7683 0.2042 -3.7639
0.4 0.4817 0.4529 0.0274 0.0380 4.0893 0.4100 -4.0831
0.6 0.3693 0.5593 0.0276 0.0438 4.3009 0.6039 -4.3074
0.8 0.2673 0.6465 0.0278 0.0584 4.5018 0.8262 -4.4911
1.0 0.1831 0.7225 0.0278 0.0666 4.6440 1.0365 -4.6506

100 0.2 0.6526 0.2986 0.0271 0.0217 3.7604 0.2005 -3.7600
0.4 0.4875 0.4476 0.0274 0.0375 4.0782 0.4012 -4.0774
0.6 0.3719 0.5520 0.0276 0.0485 4.3006 0.6019 -4.2997
0.8 0.2774 0.6373 0.0278 0.0575 4.4825 0.8029 -4.4812
1.0 0.1955 0.7113 0.0279 0.0653 4.6401 1.0038 -4.6386

1000 0.2 0.6531 0.2982 0.0265 0.0222 3.7597 0.2001 -3.7591
0.4 0.5033 0.4277 0.0180 0.0510 4.0569 0.4003 -4.0566
0.6 0.3751 0.5463 0.0259 0.0527 4.2978 0.6004 -4.2975
0.8 0.2981 0.5010 0.0269 0.0740 4.4599 0.8006 -4.4591
1.0 0.2040 0.6945 0.0270 0.0745 4.6328 1.0010 -4.6321

Figure 1 shows a positive relationship between the return R and va, and Figure 2 shows a
negative relationship between the risk Vmin and ρ. The return of the portfolio increased along
with va since a high return was always accompanied by a higher risk (Figure 1) [9]. By contrast,
the risk of portfolio decreased as ρ increased (Figure 2).

Figure 1: R versus va. Figure 2: Vmin versus ρ.
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6 Conclusion

This study used the MTRM to resolve the portfolio selection risk problem. A portfolio model
was formulated with real-life data. The interrelation between the level of acceptable risk (va)
and the weightage of each fund (ρ) was analyzed with five experiments implemented at each ρ

as va varied from 0.2 to 1.0. In general, a risk-averse investor would invest a larger portion of
funds on low-risk assets compared to the high-risk assets. Besides, the lower the risk, the lower
the potential return, and vice versa. In conclusion, the MTRM played its role well in resolving
the portfolio optimization problem.
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