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Abstract Wind energy is a type of renewable energy that has received much attention in the

electricity market. This study focuses on forecasting wind speed at Malacca state’s Station.

This paper proposes using a Group Method of Data Handling (GMDH) model with a hyperbolic

tangent transfer function in forecasting wind speed data in Malacca state. The performance of

this model is compared with three other models: Artificial neural network (ANN) hyperbolic

tangent, ANN log sigmoid and GMDH model. In addition, this study investigates the impact

of using different transfer functions in data-driven models for forecasting wind speed. Usually,

the application of the GMDH model only implements the second-order polynomial as a partial

description. However, in this study, we implement the hyperbolic tangent transfer function in the

GMDH model. The forecasting model’s accuracy is evaluated using mean absolute percentage

error (MAPE), root mean square error (RMSE) and mean absolute error (MAE). The results

show that the GMDH model with hyperbolic tangent is highly accurate with more negligible

computational power than other models. The GMDH-hyperbolic tangent model managed to

improve the forecasting performance of the conventional GMDH model by 11.21% in mean

absolute percentage error and outperforms other ANN models.
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1 Introduction

Researchers from all around the globe are now studying the possibilities of harnessing renewable

energy resources, for example, sunlight, wind, and geothermal heat. Renewable energies contributed

an average of 26.2 per cent of the planet’s energy demand in 2018, with that figure expected to rise

to 45 per cent by 2040 [1]. The goal is to get the most out of these resources, especially when it
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comes to creating electricity [2, 3]. Certain countries are putting in effort to achieve this goal. In

Malaysia, particularly in the Peninsular Malaysia, plans to increase the renewable energy capacity to

31% in 2025 and the country is expected to attain 40% in 2035. To achieve this goal, wind energy

should be utilized as it plays an essential role in the market of electricity. It is one of the potential

sources of renewable energy for economic growth. It does not release any harmful products that

cause environmental pollution, such as the greenhouse gasses or trigger adverse effects on human

health like air pollution [4]. Wind power is precisely correlated to the wind speed cube. Wind power

increases dramatically when wind speed changes even a little. As a result, wind speed forecasting

is critical in energy scheduling and dispatching and the wind energy market [5]. Aside from that,

the rising cost of petroleum-based fuels makes wind power one of the most cost-effective renewable

resource options. However, wind speed is unpredictable and sporadic [1]. Therefore, wind power

forecasting is vital for ensuring power system efficiency and minimizing power system expenses. In

addition, accurate forecasts will enable the government, policymakers, and other relevant authorities

to take appropriate actions. In relation to this, data driven model has been widely used for forecasting

and prediction in various field [6, 7, 8]. The ANN model is one type of data driven model. In this

regard, Artificial Neural Networks (ANN) were discovered to be quite effective among wind power

forecasting researchers [9]. Pillai et al. [10] stated that the ANN model could provide a solution

for a complex mathematical model in wind forecasting which is prone to errors. As a result, ANN

techniques have been used to estimate and forecast wind speed and power [11]. In addition, given the

extremely nonlinear and seasonal nature of the data, the ANN model showed to be more efficient than

other conventional autoregressive predictors [12]. Other than that, for various time spans ranging

from relatively short to medium data, the ANN model consistently outperforms linear time series-

based models [13].

Furthermore, ANN methods are also known to be robust in forecasting [14]. Most studies on

the ANN model consider integrating neural networks with another computing method to utilize the

interpretation ability of data [15]. Several short-term wind speed forecasting research explore diverse

models, such as two-layers ANN with varied time horizons and distinct wind variability [16]. In

2010, Li and Shi [17] assessed the ANN model’s effectiveness in forecasting wind speeds using

hourly mean wind speeds gathered at two observation locations in North Dakota. Fazelpour et al.

[18] utilized ANN to forecast the short-term wind speed in Tehran, Iran, using one-hour intervals data

supplied by the Iran Renewable Energy Organization. Navas et al. [19] explored ANN in finding the

possibility of predicting wind speed models in Coimbatore, Tamil Nadu, India.

Another data-driven model is introduced for wind forecasting in this study, which is the group

method of data handling (GMDH) model. The GMDH model is widely applied in other fields such as

hydrology, crude oil pyrolysis, electrical power insulators’ prediction, and rock mass deformation [20,

21, 22, 23]. However, the GMDH model has rarely been used for wind speed forecasting, especially

in Malaysia. The GMDH model was initially developed by Ivakhnenko [24] to identify the complex

nonlinear system. The main characteristics of the GMDH model are its self-organizing method and

combination of second-order polynomials. Using the second-order polynomials, the GMDH model

fuses every possible combination of the input variables and automatically selects the best combination

of the input variables based on a particular criterion [25]. The advantage of GMDH model is it still

can perform very well without knowing any information of the mechanism generating the original

data and very efficient compared to other artificial intelligence models [26]. Other than that. GMDH

model are known for solving complex problems in nonlinear system with large degrees of complexity

and producing effective result compare to other artificial intelligence model [27].
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By simulating the reactions of variable-density flow and solute transport, Lal and Datta [28] utilize

the GMDH model to forecast the concentration of salt in coastal area. The result shows that the

GMDH model is a more precise and effective coastal saltwater intrusion prediction model than support

vector machine regression and genetic programming-based models. Furthermore, in terms of short

forecasting, the GMDH model performs better than traditional forecasting approaches such as the

Auto-Regressive Integrated Moving Average [21]. Ebtehaj et al. [29] studied the forecasting of the

streamflow coefficient in a side weir using the GMDH model. In this study, two sets of data were

used to train and test the model. Cross-validation was used on the collected results which revealed

that the GMDH model is more precise than the ANN model and the current nonlinear regression

model for forecasting. In 2008, Kondo and Euno [30] suggested that the effectiveness of the GMDH

model can be improved by implementing a radial basis function (RBF). The resulting RBF-GMDH

model was applied in image recognition of the blood vessels in the liver. The study’s finding shows

that the proposed RBF-GMDH model is useful for pattern recognition for medical image recognition.

Besides the RBF transfer function, other transfer functions are established in neural network models,

such as the hyperbolic tangent transfer function. However, this function is rarely given attention to be

used in the GMDH model. Kalman et al. [31] assert that the hyperbolic tangent function is superior

to the RBF transfer function. The hyperbolic transfer function is also more efficient than the step and

linear transfer function for training due to the nonlinear behaviour [32]. Therefore, implementing the

hyperbolic tangent function is proposed to be utilized in the GMDH model for wind speed forecasting

problems in Malaysia. The objective of the study is to assess the forecasting performance of the

proposed GMDH hyperbolic tangent in comparison ANN Hyperbolic Tangent, ANN Sigmoid, and

Conventional GMDH using mean absolute percentage error (MAPE), root mean square error (RMSE)

and mean absolute error (MAE).

2 Methodology

2.1 Data Description

In this paper, our aim is to forecast the wind speed in Malacca state, Malaysia. Malacca is a state

located on the south-western coast of Peninsular Malaysia with a coordinate of 2.29 ◦N, 102.30
◦E [33]. Malacca state is included as a UNESCO World Heritage Site. Malaysia has two yearly

monsoons with a local tropical climate, the southwest and northeast [34, 35]. This study’s daily wind

speed data is dated from January 2016 until November 2020. The data on wind speed is obtained from

Malaysia Meteorological Department. Figure 1 shows the location of Malacca state in Peninsular

Malaysia.

Table 1 shows the descriptive statistics for wind speed in Malacca state. The notation m/s is

referred to meter per second which is the velocity of the wind. The wind speed is measured daily.

The mean and median of the wind speed are quite close, 8.72 m/s and 8.30 m/s, respectively. This

shows that the data is not highly skewed and no obvious outlier is present in the data. The kurtosis

is below 2, at 0.48 and the data tends to have a light tail. The data is moderately skewed to the right

with the value of 0.79. This means that the distribution is not symmetric. The standard deviation of

the wind speed is 2.28 which shows that the speed varies throughout the years. The minimum speed

of the wind is 4.20 m/s and the maximum speed is 19.10 m/s. Figure 2 shows the wind speed plot

for Malacca state wind speed data. This plot is supported by the information given in Table 1 which

shows that the value of the standard deviation is quite high at 2.28. This is due to the existence of

two different monsoon seasons in Malaysia, namely, the southwest monsoon from May to September,
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and the northeast monsoon from November to March [36]. The plot in Figure 2 shows that the data is

non-linear. Therefore, non-linear model is needed to model and forecast the data.

Figure 1: Location of the Study

Table 1: Descriptive Statistics for Wind Speed at Malacca State

Mean(m/s) Median (m/s) Standard Deviation Kurtosis Skewness Minimum Maximum

8.72 8.30 2.28 0.48 0.79 4.20 19.10

2.2 ANN Model

ANN model is one of the tools in computational intelligence that has been widely used in many

fields. The inspiration of the ANN model comes from the structure of the human brain, which has

interconnected natural networks (neurons) that receive signals (information) and take actions on the

basis of the best fit of the data [37]. ANN models are well-known models for forecasting due to

their capacity to handle the non-linearity of the time series data [1]. The architecture of the ANN

model used in this study is a three-layer feedforward ANN model known as multilayer perceptron

(MP) which consists of the input layer, hidden layer, and output layer. The feedforward ANN model

received the signals (information) from an input layer and routed the signals across the hidden layer

to the output layer.
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Figure 2: Wind Speed Plot

Figure 3: Three-layer Feedforward ANN Model

MP is defined as being interconnected, with each node linked to every node in the preceding layer.

It is widely used due to its practicality and simplicity of structure. The architecture of MP is shown

in Figure 3. The MP can be expressed as follows:
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where yt is the output layer, xi is the input layer, z◦
i

is the link between input and hidden layers, z◦
j

is the link between hidden and output layer, and ωt is bias. g(.) and f (.) is the activation function,

respectively. One of the challenges in ANN architecture is to determine the number of hidden layers.

The hidden layer generally interconnected the input and output layer. The number of hidden layers

varies depending on the problem. In this study, there are three approaches to determine the number

of hidden layers. The approaches are shown in Table 2.

Table 2 shows the guidelines to determine the number of hidden variables based on input variables

[23]. If the number of input variables is 2, the hidden layer of ANN model is 2 based on Tang and

Fishwick, 4 for based on Wong and 5 based on Hect-Nielsen. Other than the architecture of the ANN

model, the critical factor for a successful ANN is the training algorithm. The training algorithm is

essential to train the network. Therefore, in this study, a backpropagation algorithm with a variable

learning rate is used. The backpropagation algorithm is the most common and highly utilized learning

algorithm in many fields [38]. He et al. [39] stated that the advantages of the backpropagation

algorithm are it is fast, flexible and straightforward. In backpropagation, the weight will fine-tune



Muhammad Nasrudin et al. / MATEMATIKA 38:2 (2022) 125–139 130

Table 2: Guidelines to Determine the Number of Hidden Variables

Approach Number of Hidden Layers

Tang and Fishwick r

Wong 2r

Hecht-Nielsen 2r + 1

r is the total number of inputs in the ANN model

using variable learning rates. There are three types of activation or transfer functions for the ANN

model implemented in this study. The activation functions are sigmoid, hyperbolic tangent and linear

function.

There are two different combination of transfer function for ANN model used in this study for

forecasting wind speed at the Malacca state’s station. The first combination is sigmoid transfer

function and linear transfer function. The other combination is hyperbolic tangent transfer function

and linear transfer function. Hyperbolic tangents and sigmoid connect the input layer with the

hidden layer, while linear function connects the hidden layer with the output layer. The sigmoid

and hyperbolic tangent transfer function are defined as follows:

ς( f ) =
1

1 + e− f
, (2)

λ( f ) =
2

(1 + e−2n)
− 1. (3)

Equation (2) defines sigmoid transfer function meanwhile Equation (3) define the hyperbolic tangent

transfer function.

2.3 GMDH-Hyperbolic Tangent Model

GMDH model is one of the sub-models of the neural network model. Usually, the neural network

incorporates the input and output layers, where the input layer’s information is analyzed in the

hidden layer. The hidden layer features the activation function and algorithm of the network. Input,

hidden, and output layers are all featured in the GMDH model which makes it a complete neural

network model. Moreover, the GMDH model is a well-known self-organizing process where it

autonomously chooses the best predictive factors based on the objective [40]. Other than that,

Ivakhnenko [24] established the GMDH model as a multivariate analytical tool for modelling and

classifying complex systems. The GMDH algorithm utilizes the Volterra function series to describe

and build a relationship between input and output variables. However, most applications of the

GMDH model only use second-order polynomial or partial polynomial. The partial polynomial or

partial description form of Volterra series or Kolmogorov Gabor polynomial series is as follows:

ŷ = L(xi, x j) = w0 + w1xi + w2x j + w3x2
i + w4x2

j + w5xix j. (4)

Equation (4) is a partial description that linked an input variable and output variable for the GMDH

model. w0 is a parameter that is estimated from the least square method, ŷ is a forecasted value or

forecasted output from the GMDH model and x is an input variable for the GMDH model. In addition
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to the GMDH model for this study, a hyperbolic tangent function was added to the GMDH model.

The hyperbolic tangent function is defined as follows:

hk =

(

2

1 + e−2yk

)

− 1. (5)

In order to solve Equation (5) using the least square method, a set of a linear system can be

illustrated as follows:

Y = Xw. (6)

The illustration of Equation (5) is shown as follows:
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Here, Y denotes a vector of output variables, w represents the parameter of partial description and X is

an expression of input variables for Equation (4). In order to implement a hyperbolic tangent function

to the GDMH model, the output variables Y will utilize Equation (5). The new output variable based

on a hyperbolic tangent is shown in Equation (7). Transformation of the real needed as the hyperbolic

tangent function domain is 0 < x < 1.

si = −
1

2
ln

(

2

yi + 1
− 1

)

. (7)

If the conventional polynomial function is used, therefore si = yi. Equation (7) will be utilized

to implement the hyperbolic tangent function. After utilizing the hyperbolic tangent function, the

parameter of partial description can be estimated using the least square method. The least-square

method for parameter estimation is expressed as follows:

w =
(

XT X
)−1 (

XT Y
)

. (8)

Equation (6) provides the best parameter for Equation (4) for the given data. The GMDH

model will pair every possible combination of the input variable. The number of partial descriptions

constructed can be calculated using Equation (9).

L =
r(r + 1)

2
, (9)

where r is the total number of input variables and L is the number of partial descriptions produced.

After every partial description is built, each partial description will be evaluated. The best partial

description will be selected as the new input variables for the next layer of the GMDH model. The

optimal partial description was assessed using mean square error (MSE). The MSE is defined as

follows:

MS E =
1

n

n
∑

i=1

(si − ŷi)
2
. (10)

This process is iterated until the realization of the network is achieved. The realization of the

network is achieved when the MSE of the current GMDH layer is greater or equal to the MSE of the

previous layer. As a result, the partial description that produces the lowest MSE is selected as the

output. Equation (3) will be applied to the output to obtain the actual domain of the output.
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2.4 GMDH Model

The difference between conventional GMDH model and GMDH-Hyperbolic tangent model is the type

of transfer function used in the GMDH model. Conventional GMDH model uses polynomial function

as the transfer function whereas GMDH-Hyperbolic tangent model uses hyperbolic tangent function

as the transfer function. The polynomial transfer function for conventional GMDH model is defined

in Equation (4). The architecture of conventional GMDH model and GMDH-Hyperbolic tangent

model is the same which it starts with determination of input variable and split the data into training

and forecasting data set. Equation (4) or knowns as partial description is fitted into the training data

set. The weight of Equation (4) is using the least square method. The least square method is defined

in Equation 8. However, for polynomial, transfer function will be defined as follows:

si = yi. (11)

The number of partial descriptions constructed can be calculated using Equation (9). The best

partial description output will be selected to become an input variable for the next layer. The selection

for best partial description is the partial description must have the lowest MSE. The MSE is defined in

Equation (10). This process is repeated until the realization of the network is achieved. The realization

of the network is achieved when the MSE of the current GMDH layer is greater or equal to the MSE

of the previous layer.

2.5 Model Evaluation and Validation

The ratio of training and forecasting data set is 70% and 30%, respectively [41]. The training data

set starts from January 2016 until May 2019. The forecasting data set starts from June 2019 until

November 2020. The training data set is used to developed the model and the forecast data set is used

to evaluate the forecasting performance of the forecast model. The forecasting models are evaluated

using three statistical measures which are commonly used for forecasting problems. Each of these

measures the disparity in wind speed between the observed and forecast values. The definition of

mean absolute percentage error (MAPE), root mean square error (RMSE) and mean absolute error

(MAE) are as follows:

MAPE =
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× 100%, (12)

RMS E =

√

√

1

n

n
∑

i=1

(yi − ŷi)
2
, (13)

MAE =
1

n

n
∑

i=1

|yi − ŷi| , (14)

where, yi is the observed wind speed ŷi is the forecasted wind speed and n is the number of flow series

that has been modelled.

3 Result and Discussion

In this study, four forecasting models have been developed to forecast the wind speed in Malacca

state’s station. The study’s main objective is to investigate the GMDH- hyperbolic tangent model
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forecasting performance compared to other machine learning models that are commonly used for

wind forecasting, such as the ANN model. In order to evaluate the model, the wind speed data is split

into training and forecasting data set. Three statistical measures are used to assess the forecasting

model’s performance, which are MAPE, RMSE and MAE. Each forecasting model is fitted with five

different input variables (M1, M2, M3, M4 and M5). Normalization of the data is essential as the

function used in this study is defined from 0 to 1 and this applies to both ANN and GMDH models.

The five different input variables implemented in this study are represented by M1, M2, M3, M4 and

M5. The inputs are obtained from auto-correlation function (ACF) plot, auto-correlation function

(PACF) plot and stepwise regression. The inputs are defined in Table 3.

Table 3: Input Variables

Input Variables Input

M1 yt−19, yt−20

M2 yt−1, yt−2, yt−3, yt−4

M3 yt−6, yt−11, yt−18, yt−19, yt−20

M4 yt−6, yt−8, yt−11, yt−16, yt−17, yt−19, yt−20

M5 yt−1, yt−2, yt−3, yt−4, yt−5, yt−6, yt−10, yt−12, yt−15

As stated earlier, the percentage of the training data is 70%. The training data set is used to

construct the time series model for four forecasting models used in this study. In terms of ANN

model architecture, the epoch number is set to 1000 for every ANN model. Then, the number of the

hidden layer is selected based on Table 2. Each input variable for forecasting models is defined by

Table 3. The best architecture that produces the best forecasting performance for each input is shown

in Table 4.

The forecasting of wind speed is evaluated using three statistical measures: MAPE, RMSE and

MAE. Table 4 shows the forecasting performance of four forecasting models with various input

variables. There are two distinct ANN models with different transfer functions. Based on our

observations, the ANN model with hyperbolic tangent transfer function produced the best prediction

performance when M3 was used as the input variable, while the ANN log sigmoid transfer function

produced the best prediction performance when M2 was used as the input variables. The best ANN-

hyperbolic tangent produced MAPE, RMSE and MAE that are 12.0150 m/s, 1.5024 m/s and 1.2101

m/s, respectively. Then best ANN log sigmoid produced of MAPE, RMSE and MAE 12.7501

m/s, 1.6551 m/s and 1.2808 m/s, respectively. The best GMDH-Polynomial model produces the

best forecasting performance when M3 was used as the input variable. It produced MAPE, RMSE

and MAE that are 11.7817 m/s, 1.4809 m/s and 1.2180m/s, respectively. The m/s notation is the

international system unit for velocity of wind speed. Figure 4 shows the forecasting accuracy

evaluation based on MAPE, RMSE and MAE.

Figure 4 shows the graphical evaluation of MAPE, RMSE and MAE for four forecasting models

with five different input variables. In addition, the lowest MAPE, RMSE and MAE values are 10.4614

m/s, 1.2818 m/s and 1.0310 m/s. The values indicate a good forecasting performance by the GMDH-

HT model when using M4 as input variables. Based on Table 4 and Figure 4, the best GMDH-

Hyperbolic Tangent model produced the best forecasting performance when M4 was used as the

input variable. It produced MAPE, RMSE and MAE that are 11.7817 m/s, 1.4809 m/s and 1.2180m/s,
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Table 4: Evaluation of Forecasting Performance of Data-driven Models

MAPE RMSE MAE

ANN- Hyperbolic Tangent

M1 12.5099 1.2020 1.1850

M2 13.4868 1.7312 1.3428

M3 12.0150 1.5024 1.2101

M4 13.5528 1.5667 1.2388

M5 16.6260 1.9969 1.6101

ANN-Log sigmoid

M1 13.2170 1.5767 1.2404

M2 12.7501 1.6551 1.2808

M3 16.8817 2.0599 1.6378

M4 15.6081 1.9007 1.5240

M5 13.9595 1.7830 1.3825

GMDH-Polynomial

M1 13.2605 1.6073 1.3281

M2 14.6179 1.7713 1.4479

M3 11.7817 1.4809 1.2180

M4 13.0003 1.5979 1.3121

M5 12.8582 1.5855 1.2993

GMDH-Hyperbolic Tangent

M1 14.9478 1.5133 1.2672

M2 12.1405 1.3017 1.0776

M3 11.8870 1.2969 1.0627

M4 10.4614 1.2818 1.0310

M5 12.1817 1.4657 1.1783

respectively. MAPE error indices measure the forecast accuracy of the forecasting model. The lower

number of MAPE show a great forecasting accuracy of the forecasting model. MAPE with a value

of 0 signifies perfect forecasting. Based on Table 4, the proposed GMDH model with hyperbolic

tangent has the lowest MAPE value of 10.4614 m/s. This indicates that the GMDH-hyperbolic tangent

outperformed other forecasting models. The forecasting model with the highest MAPE value is the

ANN model with log sigmoid as a transfer function. Therefore, it indicates that the ANN-log sigmoid

model has the poorest forecasting performance. Other than that, incorporating hyperbolic tangent as a

transfer function for the GMDH model has improved the prediction performance of the conventional

GMDH model, which utilizes polynomial as a transfer function. In order to determine the best model

in terms of magnitude error, the forecast model should have the lowest RMSE and MAE value.

Based on Table 4, the empirical result clearly shows that the GMDH-Hyperbolic Tangent model

outperformed other forecasting models in forecasting performance. Furthermore, based on Figure

5, the forecasted data did not deviate much from the observation data. Implementing hyperbolic

tangent transfer function manages to enhance the GMDH model performance by 11.21% for MAPE,
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Figure 4: Graphical Evaluation of MAPE, RMSE and MAE

13.44% for RMSE, and 18.7% for MAE. The results showed that the proposed GMDH-Hyperbolic

Tangent model could produce high accuracy at forecasting wind speed. Other than that, the results

showed significant forecast when using longer lags rather than shorter lag for time series model

input variables. The empirical results on the four models showed that GMDH-Hyperbolic Tangent

outperformed other data-driven models.

4 Conclusion

In this study, four data-driven models were developed to forecast the wind speed at Malacca state’s

Station. The models are the ANN-Hyperbolic Tangent, ANN-Log Sigmoid, GMDH and GMDH

Hyperbolic Tangent model. This study also investigates the impact of using different transfer

functions in data-driven models. Usually, the application of the GMDH model only implements

the second-order polynomial as a partial description. However, the implementation of the hyperbolic

tangent transfer function in the GMDH model is proposed in this study. The proposed model is

compared with the conventional GMDH and ANN models with two different transfer functions:

hyperbolic tangent and sigmoid transfer. The proposed model shows highly accurate wind speed

forecasting with less computational compare to the ANN model. Based on the results, the proposed

model managed to improve the forecasting performance of the conventional GMDH model by 11.21%

for MAPE. Furthermore, the proposed model also outperformed the other two ANN models. For

future studies, other transfer functions such as radial basis function and sigmoid can be implemented

in the GMDH model to enhance the performance of the conventional GMDH model.
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Figure 5: Plot of the Forecasting Data Set for the Individual Forecasting Model
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[3] Ağbulut, Ü. A novel stochastic model for very short-term wind speed forecasting in the

determination of wind energy potential of a region: A case study from Turkey. Sustainable

Energy Technologies and Assessments. 2022. 51:101853.

[4] Navas, R. K. B., S. Prakash, and T. Sasipraba. Artificial Neural Network based computing model

for wind speed prediction: A case study of Coimbatore, Tamil Nadu, India. Physica A: Statistical

Mechanics and its Applications. 2020. 542: 123383.

[5] Zhuo, C., G. Junhong, L. Wei, Z. Fei, X. Chan, and P. Zhangrong. Changes in wind energy

potential over China using a regional climate model ensemble. Renewable and Sustainable

Energy Reviews. 2022. 159:112219.

[6] Badyalina B. and A. Shabri. Streamflow Forecasting at Ungauged Sites using Multiple Linear

Regression. MATEMATIKA. 2013. 29.

[7] Duplyakov, V. M., A. D. Morozov, D. O. Popkov, E. V. Shel, A. L. Vainshtein, E. V. Burnaev,...

& G. V. Paderin. Data-driven model for hydraulic fracturing design optimization. Part II: Inverse

problem. Journal of Petroleum Science and Engineering. 2022. 208: 109303.

[8] Ahmad T. and D. Zhang. A data-driven deep sequence-to-sequence long-short memory method

along with a gated recurrent neural network for wind power forecasting. Energy. 2022. 239:

122109.



Muhammad Nasrudin et al. / MATEMATIKA 38:2 (2022) 125–139 137

[9] Lydia M. and G. E. P. Kumar. Deep Learning Algorithms for Wind Forecasting: An Overview.

Artificial Intelligence for Renewable Energy Systems. 2022. 129-145.

[10] Pillai, S. R., A. Yadav, and V. K. Vashishtha. Prediction of Wind Power Curve Based on

Wind Speed and Direction Utilizing Artificial Neural Network. Recent Advances in Mechanical

Engineering: Springer. 2021. 515-522.
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[34] Jan, N. A. M., A. Shabri, J. Hounkpè, and B. Badyalina. Modelling non-stationary extreme

streamflow in Peninsular Malaysia. International Journal of Water, 2018. 12 (2):116-140.

[35] Badyalina, B., N. A. Mokhtar, N. A. M. Jan, N. H. Hassim, and H. Yusop. Flood Frequency

Analysis using L-Moment For Segamat River. MATEMATIKA, 2021. 37.

[36] Mokhtar, N. A., Y.Z. Zubairi, A.G. Hussin, B. Badyalina, A. F. Ghazali, F. F. Ya’acob, P.

Shamala, and L. C. Kerk. Modelling wind direction data of Langkawi Island during Southwest

monsoon in 2019 to 2020 using bivariate linear functional relationship model with von Mises

distribution. Journal of Physics: Conference Series. 2021.1988(1): 012097.

[37] Tian, S., N. I. Arshad, D. Toghraie, S. A. Eftekhari, and M. Hekmatifar.Using perceptron feed-

forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene

oxide-Al2O3/water-ethylene glycol hybrid nanofluid. Case Studies in Thermal Engineering.

2021. 26. 101055.

[38] Salehuddin, N. F., M. B. Omar, R. Ibrahim, and K. Bingi, A Neural Network-Based Model for

Predicting Saybolt Color of Petroleum Products. Sensors. 2022. 22(7): 2796.



Muhammad Nasrudin et al. / MATEMATIKA 38:2 (2022) 125–139 139

[39] He, L., W. Fang, G. Zhao, Z. Wu, L. Fu, R. Li, Y. Majeed and J. Dhupia. Fruit yield prediction

and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect

methods. Computers and Electronics in Agriculture, 2022. 195: 106812.

[40] Farlow, S. J. Self-organizing methods in modeling: GMDH type algorithms. CrC Press. 2020.
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