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Abstract A variety of consistent estimators of the slope parameter for unreplicated
linear functional relationship model have been proposed over the years. This paper
gives some numerical comparisons among them. As a result we are able to make
specific recommendations regarding a choice among them.
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Abstrak Berbagai penganggar konsistent telah dicadangkan untuk parameter ke-
cerunan bagi hubungan fungsian linear tanpa replika. Artikel ini memberikan per-
bandingan berangka bagi penganggar-penganggar tersebut. Adalah diharapkan kita
dapat mencadangkan pemilihan yang sesuai baginya.

Katakunci Penganggar konsistent, parameter kecerunan, hubungan fungsian linear
tanpa replika.

1 Introduction

The errors-in-variables model (EIVM) differs from the ordinary or classical linear regression
model is that the true independent variables or the explanatory variables are not observed
directly, but are masked by measurements error. In many practical situations, actual data
are of this quality, especially in economics and other social sciences as well as in environ-
mental science as shown by Hussin [6]. It is well known that the presence of errors of
measurements in the independent or explanatory variables make the ordinary least squares
estimators inconsistent and biased in large as well as small samples.

Suppose the variables X and Y are related by Y = α + βX, where both the X and Y
are observed with errors. This model comes under the errors-in-variables model. If X is a
mathematical variables, this termed as a linear functional relationship model, and if X is a
random variables, then this is termed a linear structural relationship model between X and
Y. Kendall [7], [8] has formalised this distinction and Dolby [1] introduced an ultrastructural
relationship model, which is a combination of the functional and structural relationship.

This paper discussed some of the known consistent estimators of the slope parameter,
that is β̂ for the unreplicated functional model. Many authors have proposed a consistent
estimators for the above problem based on grouping and instrumental variable, for exam-
ple the two-group method of Wald [10], the three-group method, the weighted regression,
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Housener-Brennan’s method ( Housner [3]) and Durbin’s ranking method (Durbin [2]). The
maximum likelihood estimation requires us to know in advance the ratio of the error vari-
ances and the suggestion was given by Lindley [9]. If both variables X and Y represent
similar characteristics measured in the same unit, it can be assume that the ratio of the
error variances is unity, but in practice this assumption is not always true. In the following
section we present the model considered and established the notation. Section 3 outlines
various known consistent estimators for β. In section 4 we present some results based on
the simulation studies to evaluate the performance of each one of the estimators by looking
at the observed mean squared errors and observed mean squared differences.

2 Unreplicated Functional Relationship Model

Suppose X and Y are two mathematical variables connected by a linear relation of the
form Y = α+βX. For any i = 1, . . . , n, (xi, yi) are observations in particular but unknown
value (Xi, Yi) of (X, Y ), both are subjected to errors, so xi = Xi + δi and yi = Yi + εi

where Yi = α+βXi. Here we assumed that δi and εi, i = 1, . . . , n are mutually independent
and normally distributed random variables with zero means and finite variance σ2 and τ2

respectively and independent of (Xi, Yi). That is

δi ∼ N(0, σ2) and εi ∼ N(0, τ2).

There are (n + 4) parameters to be estimated, i.e. α, β, σ2, τ2, X1, . . . , Xn. The log
likelihood function is given by

L(α, β, X1, ..., Xn, σ2, τ2; x1, ...xn, y1, ..., yn)

= −n log(2π) −
1
2
n(log σ2 + log τ2) −

∑ (xi − Xi)2

2σ2
−

∑ (yi − α − βXi)2

2τ2

Detail parameters estimation and the application of this model can be found in Hussin [4],
[5].

3 Some Estimation of β for the Unreplicated Functional Model

Various solutions have been suggested for the estimator of β for the problem of unreplicated
functional model. This section gives outlines of some of them.

(i) The two-group method

Wald [10] proposed this method to find consistent estimator for β. He computed the
arithmetic means (x̄1, ȳ1) for the lower group of observations and (x̄2, ȳ2) for the
higher group after ranking the observations in ascending order on the basis of the
values of xi and then dividing them into two equal sub-groups. If the total number of
observations is odd then the central observation is omitted. Then he estimated

β̂ =
(ȳ2 − ȳ1)
(x̄2 − x̄1)

,

where ȳ and x̄ are the means of all the sample observations. This method yields a
consistent estimate of β even though it is not the most efficient since its variance is
not the smallest possible.
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(ii) The three-group method

This method has been proposed based on the same idea as the two-group method.
The observations are first arranged in ascending order on the basis of the xi values
and then divided into three equal groups (or approximately equal if the number of
observations is not exactly divisible by 3). The middle group is ignored from the
analysis. The arithmetic means then computed for the lowest group (x̄1, ȳ1) and
(x̄3, ȳ3) for the highest group. Hence the estimated slope parameter, β̂ is given by the
formula

β̂ =
(ȳ3 − ȳ1)
(x̄3 − x̄1)

.

This method in general gives a consistent estimate of β. Furthermore, the method is
more efficient, than the two-group method.

(iii) Weighted regression

The weighted regression may be outlined as follows.

(a) Obtain an estimate of β from the regression Y = f(X), that is

Ŷ = âo + b̂oX̂.

(b) Obtain an estimate of β from the regression X = f(Y ), that is

X̂ = â1 + b̂1Ŷ .

Take as the final estimate of β the geometric mean of the above two estimates, that
is

β̂ =
(∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

∑
(yi − ȳ)2∑

(xi − x̄)(yi − ȳ)

)1/2

=
( ∑

(yi − ȳ)2∑
(xi − x̄)2

)1/2

.

The weighted regression method is based on the implicit assumption that the ratio
of the variances of the errors is equal to the ratio of the variances of the observed
variables, that is

τ2

σ2
=

V ar(y)
V ar(x)

.

This assumption is necessary in order to make β̂ a consistent estimate.

(iv) Housner-Brennan’s method

Another consistent estimate of β was proposed by Housner and Brennan [3]. The
observations are first arranged in ascending order on the basis of the x’s values, i.e.
we have x1 ≤ x2 ≤ ... ≤ xn. The estimate of β is given by

β̂ =

n∑
i=1

i(yi − ȳ)

n∑
i=1

i(xi − x̄)
.

Housner and Brennan also show that, this estimate is more efficient compared to
estimate obtained by
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(i) minimising the sum of squares of the y deviation only

(ii) minimising the sum of squares of the orthogonal deviation and

(iii) the two-group method.

(v) Durbin’s ‘ranking’ method

Durbin [2] has suggested, the estimate of β is given by

β̂ =
∑

(xi − x̄)2(yi − ȳ)∑
(xi − x̄)3

,

where the x’s and y’s are ranked in ascending order, on the basis of the X values.
Durbin has proved that the variance of β̂ obtained from this method has a smaller
variance than the two-group and three-group methods.

(vi) The maximum likelihood approach and with λ assumed known

Let λ =
τ2

σ2
be the ratio of the error variances and assumed known, then

β̂ =
(syy − λsxx) +

[
(syy − λsxx)2 + 4λs2

xy

]1/2

2sxy

where
sxx =

∑
(xi − x̄)2,

syy and sxy defined similarly.

4 Simulation Results

In order to evaluate the performance of each of the estimator, we carried out a simulation
studies. Suppose for each data set k, k = 1, 2, ..., ns, (ns is number of simulations, that is
each simulation we consider a new data set), we calculated the mean squared error (MSE),
that is

1
ns

∑
(β̂ − β)

and the mean squared difference (MSD), that is

1
ns

∑
(β̂ − β̂ko)

2,

and their standard errors, where:

β̂, estimates by various method considered in Section 3,

β̂ko , estimates when λ is known (by maximum likelihood estimation), using λ equal to the
value used in simulating the data, and

β, the parameter that we choose in simulating the data.
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β̂ko and β are also known the baselines for comparisons.
500 simulation have been carried out from each of 3 different configuration of parameter

values, we call it Dataset 1, Dataset 2 and Dataset 3. For each of them the Xi have been
generated from N(15, 16.00) with 50 observations, but for the analyses the Xi were regarded
as fixed (but unknown) parameters. Suppose for each simulation we have:

(a) β̂k,reg , estimates where, β̂k,reg = 1
2 {slope reg. of y on x+ slope reg. of x on y},

(b) β̂k,λ=1, estimates by assuming λ = 1. This is the most common practice and the easiest
way to estimate parameters for the unreplicated functional model,

(c) β̂k,2, estimates by two-group method,

(d) β̂k,3, estimates by three-group method,

(e) β̂k,HB , estimates by Housner-Brennan method,

(f) β̂k,WR, estimates by weighted regression, and

(g) β̂k,D, estimates by Durbin ‘ranking’ method.

Simulation results for three different data set are given in Tables 1 to 3 and graphical
illustration in Figures 1 to 3.

Tables 1 to 3 and Figures 1 to 3 suggest that estimate by maximum likelihood estimation
assuming λ = 1 and estimate by weighted regression give smaller MSE and MSD compared
to other method considered for 3 different dataset. As an example in Table 1, the MSE
for method by assuming λ = 1 in MLE is 5.825 × 10−3 with standard error 3.536 × 10−4,
and that the MSE for method by weighted regression is 5.514 × 10−3 with standard error
3.349× 10−4. Examination of the difference in mean values relation to their standard error
(for example using a t-test) indicates clearly the superiority of these estimates.

5 Conclusions

The research was motivated by the practical question on how to look at the relationship
between the two variables of unreplicated data or to estimate the slope parameter, that
is β, when the explanatory variable, X measured with error. Various estimates have been
proposed and we are trying to compared them numerically. Based on our simulation studies
we found that the method by assuming λ = 1 in maximum likelihood estimation and the
method by weighted regression are favourable compared to other methods considered. We
also found that the three group method also works quite well in all 3 different dataset.
Although we have not dealt explicitly with estimators of α, our conclusions can be easily
extended to the usual estimators of α given by α = ȳ − βx̄, where it is clear that α is
consistent if β is consistent.
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Table 1: Results for Dataset 1 α = 0.0, β = 1.2, σ2 = 0.64 and τ2 = 1.44

Estimates MSE MSD

β̂k,reg 4.964× 10−2 5.389× 10−2

(2.391× 10−4) (1.021× 10−3)

β̂k,λ=1 5.825× 10−3 3.028× 10−4

(3.536× 10−4) (5.044× 10−6)

β̂k,2 9.939× 10−3 6.788× 10−3

(5.341× 10−4) (3.202× 10−4)

β̂k,3 6.695× 10−3 4.035× 10−3

(3.818× 10−4) (1.945× 10−4)

β̂k,HB 1.022× 10−2 5.642× 10−3

(5.462× 10−4) (1.547× 10−4)

β̂k,WR 5.514× 10−3 2.222× 10−4

(3.349× 10−4) (4.993× 10−6)

β̂k,D 9.251× 10−2 8.342× 10−2

(1.193× 10−2) (1.108× 10−2)
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Table 2: Results for Dataset 2 α = 0.5, β = 0.8, σ2 = 0.81 and τ2 = 0.64

Estimates MSE MSD

β̂k,reg 3.196× 10−2 3.382× 10−2

(2.158× 10−4) (8.469× 10−4)

β̂k,λ=1 1.621× 10−3 1.982× 10−5

(9.415× 10−5) (3.511× 10−7)

β̂k,2 2.172× 10−3 1.475× 10−3

(1.233× 10−4) (7.812× 10−5)

β̂k,3 1.395× 10−3 8.011× 10−4

(8.780× 10−5) (4.569× 10−5)

β̂k,HB 2.445× 10−3 1.374× 10−3

(1.387× 10−4) (4.152× 10−5)

β̂k,WR 1.533× 10−3 1.711× 10−5

(8.850× 10−5) (6.550× 10−7)

β̂k,D 3.164× 10−2 2.877× 10−2

(4.791× 10−3) (4.568× 10−3)
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Table 3: Results for Dataset 3 α = 0.0, β = 1.0, σ2 = 0.81 and τ2 = 1.00

Estimates MSE MSD

β̂k,reg 2.072× 10−3 4.762× 10−3

(3.623× 10−5) (2.559× 10−4)

β̂k,λ=1 2.502× 10−3 2.671× 10−5

(1.574× 10−4) (4.890× 10−6)

β̂k,2 3.220× 10−3 2.428× 10−3

(1.816× 10−4) (1.270× 10−4)

β̂k,3 2.343× 10−3 1.661× 10−3

(1.404× 10−4) (9.034× 10−5)

β̂k,HB 3.565× 10−3 2.135× 10−3

(1.981× 10−4) (6.484× 10−5)

β̂k,WR 2.277× 10−3 2.609× 10−5

(1.433× 10−4) (9.916× 10−7)

β̂k,D 4.249× 10−2 3.814× 10−2

(4.853× 10−3) (4.578× 10−3)
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a) Observed mean square errors, i.e. 1
500

∑
(β̂ − β)2

b) Observed mean square differences, i.e. 1
500

∑
(β̂ − β̂k0)2

Figure 1: Comparisons for Dataset 1, α = 0.0, β = 1.2, σ2 = 0.64 and τ2 = 1.44.
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a) Observed mean square errors, i.e. 1
500

∑
(β̂ − β)2

b) Observed mean square differences, i.e. 1
500

∑
(β̂ − β̂k0)2

Figure 2: Comparisons for Dataset 1, α = 0.5, β = 0.8, σ2 = 0.81 and τ2 = 0.64.
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a) Observed mean square errors, i.e. 1
500

∑
(β̂ − β)2

b) Observed mean square differences, i.e. 1
500

∑
(β̂ − β̂k0)2

Figure 3: Comparisons for Dataset 1, α = 0.0, β = 1.0, σ2 = 0.81 and τ2 = 1.00.


