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Abstract In this study, an alternative method to compare the performance of several
GARCH models in fitting the KLCI daily rate of return series before and after the
Asian financial crisis in 1997 using Principal Component Analysis (PCA) is sought.
Comparison is then made with the results obtained from a known method based on
the ranks of the Log Likelihood (Log L), Schwarzs Bayesian Criterion (SBC) and the
Akaike Information Criterion (AIC) values. It is found that the best and the worst
fit models identified by both methods are exactly the same for the two periods but
some degree of disagreement, however, existed between the intermediate models. We
also find that the proposed method has a clear edge over its rival because PCA uses
actual values of the three criteria and hence the inability to exactly specify the relative
position of each of the competing models as faced by the ranking method may be
avoided. Another plus point is this method also enables models to be classified into
several distinct groups ordered in such a way that each group is made up of models
with nearly the same level of fitting ability. The two extreme classes of models are
identified to represent the best and the worst groups respectively.
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Abstrak Dalam kajian ini satu kaedah alternatif untuk membandingkan pencapaian
beberapa model GARCH bagi penyuaian siri kadar pulangan harian KLCI sebelum
dan selepas krisis kewangan Asia pada tahun 1997 menggunakan Analisis Komponen
Prinsipal dicari. Perbandingan kemudiannya dibuat dengan keputusan yang diper-
oleh daripada kaedah yang diketahui berasaskan kepada pangkat nilai Log Likelihood
(Log L), Schwarzs Bayesian Criterion (SBC) dan Akaike Information Criterion (AIC).
Didapati bahawa model penyuaian terbaik dan terburuk yang dikenalpasti menggu-
nakan kedua-dua kaedah adalah tepat sama bagi dua tempoh masa itu tetapi beberapa
percanggahan, bagaimana pun, wujud di antara model pertengahan. Kami juga da-
pati kaedah yang dicadangkan mempunyai kelebihan yang ketara ke atas lawannya
kerana PCA menggunakan nilai sebenar bagi ketiga-tiga kriteria dan oleh itu keti-
dakupayaan untuk menyatakan dengan tepat kedudukan secara relatif setiap model
yang bersaing seperti yang dihadapi oleh kaedah pangkat dapat dielakkan. Kelebi-
han lain ialah kaedah ini juga dapat mengklasifikasikan model ke dalam beberapa
kumpulan berbeza, disusun sedemikian rupa supaya setiap kumpulan terdiri daripada
model dengan paras kebolehan penyuaian yang hampir sama. Dua kelas model ekstrim
masing-masing dikenalpasti mewakili kumpulan terbaik dan terburuk.

Katakunci Model GARCH, Pulangan, Penyuaian, Pangkat, Komponen prinsipal



32 Kassim Haron & Maiyastri

1 Introduction

Financial time series data such as stock return, inflation rates, foreign exchange rates have
non-normal characteristics: leptokurtic and skew. In addition, they exhibit changes in vari-
ance over time. In such circumstances, the assumption of constant variance (homoscedas-
ticity) is inappropriate. The variability in the financial data could very well be due to the
volatility of the financial markets. The markets are known to be sensitive to factors such as
rumours, political upheavals and changes in the government monetary and fiscal policies.
Engle [4] introduced the Autoregressive Conditional Heteroscedasticity (ARCH) process
to cope with the changing variance. Bollerslev [1] proposed a General ARCH (GARCH)
model which has a more flexible lag structure because the error variance can be modelled
by an Autoregressive Moving Average (ARMA) type of process. Such a model can be ef-
fective in removing the excess kurtosis. Nelson [8] proposed a class of exponential GARCH
(EGARCH) model which can capture the asymmetry and skewness of the stock market
return series. Several researchers such as Franses and Van Dijk [6], Choo [3] and Gokcan
[7] had shown that models with a small lag like GARCH (1,1) is sufficient to cope with
the changing variance. Nevertheless, due to the high volatility of the rate of returns of the
KLCI, higher order lag models such as the GARCH (1,2), GARCH (2,1) and GARCH (2,2)
will also be included in our study. In all, we shall compare the performance of eleven com-
peting time series models for fitting the rate of returns data. The models are the ARCH (1),
ARCH (2), GARCH (1,1), GARCH (1,2), GARCH (2,1), EGARCH (1,1), GARCH-NNG
(1,1), SGARCH (1,1), IGARCH (1,1) and GARCH-M (1,1) and GARCH (2,2).

Franses and Van Dijk [6] and Choo [3] chose the best models for fitting time series
data by comparing the ranks of the values of three goodness-of-fit statistics namely the
Log Likelihood (Log L), Schwarz’s Bayesian Criterion (SBC) and the Akaike Information
Criterion (AIC) respectively. We notice that such a method has one weakness. The use
of an ordinal scale type of measurement, that is the rank, instead of the actual values in
calculating the criteria would cause some loss of information. Therefore, in this paper an
alternative method capable of overcoming such a problem is sought and used to compare
the performance of potential models for fitting the return series for both periods. We
proposed the use of Principal Component Analysis (PCA) procedures to produce a new set
of variables called the principal components formed by a linear combination of the three
statistics. By looking at the component values together with the PCA plots, one would be
able to classify the relative performance of the competing models. Finally, the results from
the two methods are studied and compared.

2 Data Description

The data used in this study is the daily rate of returns of the KLCI (Kuala Lumpur Com-
posite Index) registered from week 1 of January 1989 to week 4 of December 2000. In the
fourth quarter of 1997, financial crisis which hit the Asian region had badly hurt the perfor-
mance of most of the stock markets including the KLSE (Kuala Lumpur Stock Exchange).
From the plot in Figure 1, we can see that starting from September 1997, the rate of returns
of the KLCI were noticeably volatile.

For this reason, we shall divide the data into two periods:
Period I : From January 1989 to September 1997
Period II : From October 1997 to December 2000.
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Figure 1: Daily rate of returns of the KLCI fro January 1989 to Decemver 2000

Some descriptive statistics for the daily return of the KLCI are presented in Table1.

Table 1: Summary statistics of the rate of daily returns of the KLCI

As seen from Table 1, the distribution of the rate of daily returns in Period I is negatively
skewed and leptokurtic. However, for Period II, that is after the financial crisis, the standard
deviation of the data is about twice as large as that in Period I. This result, according to
Gokcan [7] indicates the rate of returns in Period II is more volatile than in Period I. As a
result, the data have a positive skew and leptokurtic distribution.

3 The Models

The daily rate of returns ri of the KLCI are calculated using the following formula:

ri = log
( It

It−1

)
, t = 1, 2, . . . , T

where It denotes the reading on the composite index at the close of tth trading day. As
noted earlier, the rate of daily returns of the KLCI displays a changing variance over time.
There are many ways to describe the changes in variance and one of them is by considering
the Autoregressive Conditional Heteroscedasticity (ARCH) model.
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The ARCH regression model for the series rt can be written as φm(B)rt = µ + εt, for
the model with intercept and φm(B)rt = εt, for the non-intercept model, with

φm(B) = 1 − φ1B − φ2B
2 − · · · − φmBm

where B is the backward shift operator defined by BkXt = Xt−k. The parameter µ reflects
a constant term (intercept) which in practice is typically estimated to be close or equal to
zero. The order m is usually 0 or small, indicating that there are usually no opportunities
to forecast rt from its own past. In other words, there is never an autoregressive process in
rt.

The conditional distribution of the series of disturbances which follows the ARCH process
can be written as

ε|Φτ ∼ N(0, ht) (1)

where Φτ denotes all available information at time τ < t. The conditional variance ht is

ht = ω +
q∑

i=1

αiε
2
t−1 (2)

εt =
√

ht et, et ∼ N(0, 1).

Bollerslev [1] introduced a Generalized ARCH(p, q) or GARCH(p, q) model where the con-
ditional variance ht is given by

ht = ω +
q∑

i=1

αiε
2
t−1 +

p∑

j=1

βjht−j , p ≥ q, q > 0 and ω > 0, αi > 0, βj ≥ 0 (3)

If the parameters are constrained such that

q∑

i=1

αi +
p∑

j=1

βj < 1

we have a weakly stationary GARCH(p, q) or SGARCH(p, q) process since the mean, vari-
ance and autocovariance are finite and constant over time. If

q∑

i=1

αi +
p∑

j=1

βj = 1

we then have the Integrated GARCH(p, q) or IGARCH(p, q) model.
Nelson [11] proposed a class of exponential GARCH or EGARCH models. In this model

ht is defined by

ln(ht) = ω +
q∑

i=1

αig(et−i) +
p∑

j=1

βj ln(ht−i)

where
g(et) = θet + γ|et| − γE|et|.

The coefficient of the second term in g(et) is set to be 1(γ = 1) in this formulation. Unlike the
linear GARCH model there are no restrictions on the parameters to ensure non-negativity of
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the conditional variances. The EGARCH model allows good news (positive return shocks)
and bad news (negative return shocks) to have a different impact on volatility whereas the
linear GARCH model does not. If θ = 0, a positive return shock has the same effect on
volatility with the negative return shock of the same amount. If θ < 0, a positive return
shock actually reduces volatility and if θ > 0, a positive return shock increases volatility.
The conditional variance (ht) follows equation (3) and we write the model as EGARCH(p, q).

In the GARCH-in-Mean or GARCH-M model, the GARCH effects appear in the mean
of the process, given by εt =

√
ht et where et ∼ N(0, 1) and rt = µ + δ

√
ht + εt for the

model with intercept and rt = δ
√

ht + εt for the non-intercept model. Engle and Mustafa
[5] reported there is a significant test statistics for ARCH model specially for stock returns.
For the model GARCH(p, q) specification, Bollerslev [2] suggested to adopt low orders for
the lag lengths p and q. Typical examples are the GARCH(1,1), GARCH(1,2) and GARCH
(2,1).

4 Research Method

The parameters of the models considered in this study are estimated using the maximum
likelihood method. The likelihood function for the ARCH and GARCH models can be
written as follows:

L = −T

2
log(2π) − 1

2
log

T∑

t=1

log(ht) −
1
2

T∑

t=1

ε2
t

ht

where

T = total number of daily rate of returns
εt = rt

and ht is the conditional variance. However, when estimating GARCH-M(p, q) model, we
take εt = rt − δ

√
ht.

The procedures for performing the ranking and the proposed PCA methods are as
follows.

(a) The Ranking Method

In this method, the values of the three goodness-of-fit statistics, namely the Log Likelihood
(Log L), Schwarzs Bayesian Criterion (SBC) and the Akaikes Information Criterion (AIC)
are first calculated for each rival models. The values of AIC and SBC are computed as
follows;

AIC = −2 ln(L) + 2k

SBC = −2 ln(L) + ln(T )k

where k is the number of free parameters and T is the number of residuals that can be
computed for the time series. The ranks of the models based on the calculated values are
then determined for each statistic. Finally, the ranks of the models are averaged across the
statistics and the models with the smallest and the largest averages are taken to be the best
and the worst fit models respectively.
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(b) The PCA method

The principal component nYq = (y1,y2, . . . ,yq) is obtained by multiplying the data matrix
nXp with pAq , (Johnson and Wichern [10]), where pAq is a matrix resulted from Singular
Value Decomposition (SVD) of matrix nXp, that is

nXp = nUqLqA′
p

where

qLq = diagonal matrix q × q non zero characteristics root X′X

pAq = (a1, a2, . . . , aq) in which aj , j = 1, . . . , q are vector characteristics of X′X.

The PCA enables a new set of variables called the principal components or components
formed by a linear combination of the old variables to be produced. In this case, the
components formed are a linear combination of the Log L, SBC and AIC statistics. The
components of PCA are ordered by their importance in such a way that the first component
contains more information than the second, the second component is better than the third
and so on. The classification of models is obtained from the PCA plots.

5 Results and Discussion

(a) Period I

Table 2 shows the parameter estimates and the values of t-ratio. All parameter estimates,
with the exception of β1 for GARCH (2,2) and θ for EGARCH (1,1) are significant at 5%
level.

Results of the goodness-of-fit test are presented in Table 3.
Since the proportion of variation for the first component in the PCA is found to be

99.8%, only the first component would be used to determine model performances. Figure 2
shows the resulting PCA plot together with the component values.

The results presented in Table 3 and Figure 2 clearly suggest that GARCH(1,2) is
the best fit whilst ARCH(1) is the worst fit models for both methods. However, the
performances of the intermediate models displayed some degree of disagreement between
the two methods. Figure 2 also shows that the models GARCH(1,2), GARCH(2,1) and
GARCH(2,2) have almost the same level of performances and may therefore form a group
consisting of models which are better than the others. They are followed by GARCH-M(1,1),
GARCH(1,1), GARCH-NNG(1,1) and SGARCH(1,1) which formed the second group. The
worst models which belong to the ARCH family, namely the ARCH(2) and ARCH(1),
formed groups which are clearly separated from the others. In other words, the GARCHs
with lag 2 formed the best group followed by the GARCHs with lag 1, with the exception
of EGARCH(1,1) and IGARCH(1,1). Also note that, if we were to use the ranking method
for choosing the models, we would not be able to identify which models exhibit about the
same level of performances and which are clearly different.

(b) Period II

Table 4 shows the parameter estimates and the values of t-ratio. All parameter estimates,
with the exception of β1 for GARCH(2,2), β2 for GARCH (2,1) and δ for GARCH-M(1,1)
are significant at 5% level. Results of the goodness-of-fit test are presented in Table 4.
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Table 2: Estimation results of the daily rate of returns for Period I

Table 3: Performance by ranking the average rank of the goodness-of-fit
statistics values for Period I
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Figure 2: PCA plot for period I

Table 4: Estimation result of the daily rate of returns for Period II
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Since the proportion of variation for the first component in the PCA is found to be
99.6%, only the first component would be used to determine model performances. Figure 3
shows the resulting PCA plot together with the component values.

The results presented in Table 5 and Figure 3 clearly suggest that SGARCH(1,1) is the
best fit whilst ARCH(1) is the worst fit model for both methods. However, the performances
of the intermediate models also displayed some degree of disagreement between the two
methods Figure 3 shows that the GARCH family models are separated from the ARCH in
such a way that the GARCHs are better than the ARCHs. Generally, the GARCH family
can be divided into three groups with the best consists of SGARCH(1,1) and IGARCH(1,1)
followed by the second group which is made up of the GARCH(1,1), GARCH-NNG(1,1)
and EGARCH(1,1). The rest of the models form the third group.

Results from the two periods revealed that the ranking method has one weakness. By
using measurements in ordinal scale in calculating the values of the three criteria, one tends
to lose some information regarding the relative position of the models concerned. This is
obvious in Table 3 where two models, GARCH(2,1) and GARCH(2,2), have a tied rank of
2.5 whereas the PCA method firmly singled out the former as the second while the latter
as the third best models.

6 Conclusions

This study managed to come out with an alternative method for selecting the best model
from a set of competing GARCH models for fitting the stock market return series. The
PCA method identified exactly the same best and worst fit models as the ranking method
for the two periods. However, as a whole, the models occupying the intermediate positions
differ in the two methods. The proposed method is seen to be superior and should be
preferred because PCA uses actual values of the three goodness-of-fit statistics and hence
the inability to exactly specify the relative position of each of the competing models as faced
by the ranking method may be avoided. Another advantage is this method also enables
models to be classified into several distinct groups ordered in such a way that each group
is made up of models with about the same level of fitting ability. The two extreme classes
of models are identified to represent the best and the worst groups respectively.
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Figure 3: PCA plot for period II

Table 5: Performance by ranking the average rank of the goodness-of-fit
statistics values for Period II



Principal Component Analysis in Modelling Stock Market Returns 41

[6] P. H. Franses & R. Van Dijk, Forecasting stock market volatility using (non-linear)
Garch models, Journal of Forecasting, 15, (1996), 229–35.

[7] S. Gokcan, Forecasting volatility of emerging stock markets: Linear versus Non-Linear
GARCH models, Journal of Forecasting, 19, (2000), 499–504.

[8] J. D. Hamilton, Time Series Analysis, Princeton, New Jersey, 1994.

[9] A. C. Harvey, Time Series Model, Harvester, New York, 1993

[10] R. A. Johnson & D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice
Hall, New Jersey, 1988.

[11] D. B. Nelson, Conditional heteroscedasticity in asset returns: A new approach, Econo-
metrica 52, (2) (1991) 347–70.


