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Abstract The univariate Exponentially Weighted Moving Average (EWMA) control
chart, which will be called the EWMA chart hereafter is a good alternative to the
Shewhart control chart when one is interested in detecting small shifts quickly. The
performance of the EWMA control chart is comparable to that of the cumulative sum
(CUSUM) control chart but the former is easier to set up and operate. In this paper,
an approach by means of transformation of using the EWMA chart in a multivariate
process monitoring will be discussed.
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1 Introduction

Since the EWMA chart was first introduced by Roberts [1], numerous extensions and vari-
ations of the basic EWMA chart have been proposed. Crowder [2 & 3] proposes a simple
method for studying the run length distributions of exponentially weighted moving average
charts. He also suggests the design of an optimal EWMA control chart based on a desired
in-control ARL [3]. Lucas and Saccucci [4] suggest the use of a fast initial response fea-
ture to make the EWMA control chart scheme more sensitive to start-up problems. Other
approaches of adding the fast initial response feature to the EWMA include the works of
Rhoads, Montgomery and Mastrangelo [5]; and Steiner [6]. MacGregor and Harris [7] discuss
the use of EWMA based statistics for monitoring the process standard deviation. Borror,
Champ and Rigdon [8] describe a procedure for using the EWMA chart for monitoring
Poisson counts.

The objective of this paper is to extend the use of an EWMA control chart in the
monitoring of a multivariate process. Although a multivariate EWMA (MEWMA) control
chart is a logical extension of the EWMA, the use of an EWMA chart to monitor multivariate
processes is yet another extension to the literature of EWMA control charts.

2 EWMA Control Chart

The EWMA is defined as

Zi = βXi + (1 − β)Zi−1, i = 1, 2, . . . (1)
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where 0 < β ≤ 1 is the smoothing constant and the starting value is the process target value,
i.e., Z0 = µ0. Here, it is assumed that Xi, i = 1, 2, . . . , are independent and identically (i.i.d.)
N

(
µ0, σ

2
)

observations, where µ0 and σ2 represent the process mean and variance of Xi

respectively. If µ0 is unknown, then the average of an in-control preliminary data set is used
as the starting value of the EWMA so that Z0 = X̄. The EWMA chart is constructed by
plotting Zi versus the sample number i. The center line and control limits for the EWMA
chart are as follow:

UCL = µ0 + Lσ

√
β

2 − β

[
1 − (1− β)2i

]
(2)

Center line = µ0 (3)

LCL = µ0 − Lσ

√
β

2 − β

[
1 − (1 − β)2i

]
(4)

After the EWMA chart has been running for several time periods, the limits will approach
steady state values, given for example by Montgomery [9], are

UCL = µ0 + Lσ

√
β

2 − β
(5)

Center line = µ0 (6)

LCL = µ0 − Lσ

√
β

2 − β
(7)

Small values of β are used for a quick detection of small shifts while large values of β are
preferable for detecting large shifts.

3 Multivariate EWMA (MEWMA) Control Chart

In the multivariate case, a natural extension is to define vectors of EWMA’s,

Zi = RXi + (I − R)Zi−1, i = 1, 2, . . . , (8)

where Z0 = 0 and R = diag(r1, r2, ..., rp), 0 < rj ≤ 1, j = 1, 2, . . . , p. It is assumed that the
multivariate observations, Xi, i = 1, 2, . . . , follow an i.i.d. Np (µ0, Σ) distribution, where µ0

is the on-target mean vector and Σ is the covariance matrix. The MEWMA chart gives an
out-of-control signal as soon as

T 2
i = Z ′

iΣ
−1
Zi

Zi > h (9)

where h(> 0) is chosen to achieve a specified in-control ARL and ΣZi is the covariance
matrix of Zi. Lowry, Woodall, Champ and Rigdon [10] show that if r1 = r2 = . . . = rp = r,
then the MEWMA vectors can be written as

Zi = rXi + (1 − r)Zi−1, i = 1, 2, . . . , (10)

where
ΣZi =

{
r
[
1 − (1 − r)2i

]/
(2 − r)

}
Σ (11)



An Extension for the Univariate Exponentially Weighted Moving Average Control Chart 45

In the MEWMA control chart design, the asymptotic (as i → ∞) covariance matrix, i.e.,

ΣZi = {r/(2 − r)}Σ (12)

is usually considered. Analogous to the univariate case, smaller values of r are more effective
in detecting small shifts in the mean vector.

4 Using an EWMA Chart in the Monitoring of Multivariate
Observation

Assume that Xf , f = 1, 2, . . . , follow an i.i.d. Np (µ0, Σ) distribution. Tracy, Young and
Mason [11] show that the statistic

T 2
f = (Xf − µ0)

′ Σ
−1

(Xf − µ0) (13)

follows a chi-square distribution with p degrees of freedom. However, if the true population
parameters, µ0 and Σ are both unknown and are estimated, where their estimates are X̄m

and Sm respectively, then the statistic T 2
f is defined as

T 2
f =

(
Xf − X̄m

)′
S−1

m

(
Xf − X̄m

)
(14)

where its exact distribution is

T 2
f ∼

p(m + 1)(m − 1)
m(m − p)

Fp,m−p. (15)

In the above discussion, m is the number of observations in a preliminary data set assumed
to represent a stable process where both estimates X̄m and Sm are made. Xf denotes the
p dimensional vector of future observations on the p quality characteristics.

Consider the T 2
f statistic in equation (13), where T 2

f ∼ χ2
p. It follows that Hp

(
T 2

f

)
has a

uniform distribution on the unit interval, where Hp(·) is the chi-square distribution function
with p degrees of freedom. If Φ−1(·) denotes the inverse of the standard normal distribution
function, then

Vf = Φ−1
[
Hp

(
T 2

f

)]
, f = 1, 2, . . . , (16)

are i.i.d. N(0, 1) random variables. Similarly, for equation (14) where the parameters µ0

and Σ are both unknown and are estimated,

Vf = Φ−1

[
Fp,m−p

{
m(m − p)

p(m + 1)(m − 1)
T 2

f

}]
, f = 1, 2, . . . , (17)

are also i.i.d. N(0, 1) variables, where Fp,m−p(·) represents the Snedecor F distribution
function with (p, m − p) degrees of freedom.

The monitoring of a multivariate process using an EWMA chart can now be done easily
since the Vf statistics in equations (16) and (17) are all i.i.d. standard normal variables.
The procedure is to monitor the Vf statistics for out-of-control signals since a shift in a
multivariate mean vector from the target value, µ0, will cause the Vf statistics to shift. In a
multivariate process monitoring, the performance of the control charts such as the Hotelling
or MEWMA charts is determined solely by the distance of the off-target mean vector from
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the on-target mean vector and not by the particular direction of the shift. Here, the distance
of the shift is measured by the square-root of the noncentrality parameter given below:

λ2 = (µ − µ0)
′ Σ−1 (µ − µ0) (18)

where µ0 and µ represent the on-target and off-target mean vectors respectively. Due
to the directional invariance property of the T 2

f statistics in equations (13) and (14), the
new EWMA chart has only an upper control limit since we are actually monitoring the
significance of the magnitude of the shift from µ0 to µ.

5 The Simulation Study and Results

A simulation study is performed to evaluate the performance of the proposed approach
with respect to the MEWMA and Hotelling’s control chart based on equations (10) and
(13) respectively. A comparison between the performances of these charts are made by
means of their ARL profiles computed using computer programs written in SAS version
6.12. Here, it is assumed that the in-control process consists of i.i.d. bivariate observations
from a N2 (µ0, Σ) distribution where µ0 is the null vector, i.e., µ0 = (0, 0)′ and the covariance
matrix is

Σ =
(

1 ρ
ρ 1

)
.

Here, ρ is the correlation coefficient between the two quality characteristics. The in-
control ARL values (denoted as ARL0) considered are 200 and 500. Here, ARL is de-
fined as the average number of points that must be plotted on the control chart before
an out-of-control signal is observed. Shifts in the process mean that are of the form
µ = (δ, 0)′ for p = 2 are considered. Shifts of these forms are investigated for distances
of λ = 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4 and 5 from the target mean of µ0 = 0. The
values of δ for µ = (δ, 0)′ are chosen to give the above distances. Note that shifts in the
process mean of other forms such as µ = (δ, δ)′, (0, δ)′, (−δ,−δ)′, (0,−δ)′ or (−δ, 0)′ can also
be considered by selecting the appropriate values of to δ give the specified distances.

The UCLs of the Hotelling control chart based on equation (13) are selected to be 10.6
and 12.43 from the chi-square tables with 2 degrees of freedom so that the ARL0 values
are 200 and 500 respectively. Using computer simulation, the limits, i.e., h, of the various
MEWMA schemes for r = 0.05, 0.1, 0.2 and 0.3 are determined to give these two ARL0

values. For the EWMA control chart schemes, very small smoothing constants, i.e., β are
selected so that shifts of small magnitude can be detected quickly. The values of β that
are considered in the simulation study are β = 0.00007, 0.0001, 0.0005, 0.001 and 0.0015.
The EWMA control chart factor, L, in equation (5) which controls the width of the upper
control limit is then determined using computer simulation for each of the above values of
β to give the desired ARL0 values of 200 and 500.

Tables 1 and 2 give the ARL results for the various control chart schemes based on ARL0

values of 200 and 500 respectively. Note that as shown in Tables 1 and 2, the choice of the
value of a smoothing constant for the EWMA chart, β, can be made to give approximately
similar ARL profiles to a particular MEWMA control chart scheme. It is clearly seen that
for both the MEWMA and EWMA control chart schemes, smaller values of r and β will
make the two control charts more sensitive to shifts of small magnitude while larger values
of these two smoothing constants are desirable for the detection of shifts of big magnitude.
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From the results in both the tables, it is obvious that the Hotelling control chart is the
least sensitive for small to moderate shifts, i.e., for distances in the range 0.1 ≤ λ ≤ 2.
The EWMA chart with β = 0.00007 has the best overall performance for all sizes of shifts.
However, as noted earlier, the sensitivity of the EWMA chart to small shifts can be further
improved by choosing a value of β smaller than 0.00007. On the whole, the results of the
EWMA control chart schemes are comparable to that of the MEWMA.

6 Conclusions

Computer simulations are used to study the performances of the various EWMA control
chart schemes in comparison with the MEWMA schemes and the Hotelling chart. The
results show that the performances of the EWMA and MEWMA charts are comparable
with one another and are both more sensitive than the Hotelling chart. Thus, the proposed
extension is yet another significant contribution to the literature of EWMA control charts.
The proposed approach of transforming the multivariate T 2

f statistic into a univariate skalar
which follows a standard normal distribution is deemed as an important contribution as
it also enables the monitoring of multivariate observations to be performed using other
univariate control charts such as the CUSUM or the moving average charts.
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