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Abstract The common setup problem for chip mounters in a Surface Mount Technology (SMT)

line is to group different device models, each of them consisting of different components, into

minimum number of clusters where each cluster has a maximum component size. This type of

setup problem is classified as a clustering problem with feature weight constraints which cannot

be fulfilled by traditional data clustering. In this study, we introduce some vital modifications on

standard k-means algorithm such that it can incorporate feature weight constraints adapted from

cluster size constraints. We also propose a modification to the elbow method to determine the

number of clusters of the clustering problem with feature weight constraints. The results show

that the proposed algorithm (modified k-means with feature weight constraints) is able to fulfill the

feature weight constraints and solve the common setup problem. The results verify the proposed

algorithm has superior performance over standard k-means algorithm in clustering problem with

feature weight constraints. For the common setup problem on a given data set, the analysis shows

that 1000 runs of the proposed algorithm implemented using MATLAB is able to obtain at least

one valid clustering result within a reasonable run time.

Keywords Clustering; Modified k-means Algorithm; Feature Weight Constraints; Elbow

Method; Production Line Optimisation
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1 Introduction

Surface Mount Technology (SMT) is a method for producing electronic circuits in which the

components are mounted or placed directly onto the surface of printed circuit boards (PCBs) or

substrates [1]. PCB is a substrate of epoxy glass, clad metal, or other material upon which a pattern

of conductive traces is formed to interconnect components [1]. Examples of components include

resistors, capacitors, and IC chips. An electronic device soldered to a PCB is called surface mount

device. SMT components usually require less space which allows components to be mounted more

compactly onto the PCB. Hence, newer devices have more functions, perform faster and are more
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portable at the same time. An SMT process called chip mounting mounts or places components

directly onto the surface of PCB before soldering process. The machine used in chip mounting process

is known as chip mounter.

1.1 Common Setup Problem

Different types of device models consist of different types and different numbers of components and

have different configurations. A simple illustration in Figure 1(a) shows the differences in both types

and configurations of components in 3 different device models. Note that C1 to C7 are components.

Device model A consists of components C1, C2 and C3, device model B consists of C4, C5, C6 and

C7 and device model C consists of C3, C4, C6 and C7. If we want to produce device model B after

device model A, we need to change the setup of chip mounters. This process is called conversion.

The time taken for a conversion is an average of 30 mins. The conversion time is significant if the

number of conversions is high and thus reduces the productivity.

It makes more sense to group device models that share more common components. In Figure 1(a),

device models B and C use 3 same components (C4, C6 and C7). Thus, it is better to group device

model B and C in the same sub-setup as they are more “similar” to one another compared to device

model A. Then, the common setup for device models B and C has 5 components (C3, C4, C5, C6

and C7). Hence, the common setup problem is to group those similar device models together into a

common setup, which is a clustering problem.

Two chip mounters are used in a production line as shown in Figure 1(b). Thus, one common

setup consists of two sub-setups (feeder tables). Each feeder table has 34 component vacancies and

each component takes 1 or 2 component vacancies (or component size) as illustrated in Figure 2.

Hence, we know that the common setup problem is a clustering problem with some constraints.

Given n distinct device models with m distinct components where each component takes 1 or

2 component vacancies, we need to partition n device models into minimum k disjoint sub-setups

without violating the maximum number of component vacancies in each sub-setup. Then pair up the

sub-setups into groups of two to obtain an optimal list of the ceiling dk/2e common setups for the

production line of chip mounting.

Figure 1: (a) Example of Device Models (b) Plan View of Chip Mounter Production Line

2 Cluster Analysis

Cluster analysis is defined as grouping of similar objects [2], a sub-field in data mining that specializes

in techniques for finding similar groups in a large database [3], or an effort to classify similar objects
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Figure 2: Table Filled with Components

in the same groups [4]. Clustering groups data objects together based on the information found in

the objects themselves which describe the data objects and their relationship [5]. The objective of

a clustering method is to construct high quality clusters with high degree of intra-cluster similarity

and low degree of inter-cluster similarity [4]. In other words, a good clustering result will have the

members in same cluster have high degree of similarity to one another and low degree of similarity

with the members of other clusters.

The similarity between two objects is normally quantified with a distance measure in clustering

[6]. There are numerous kinds of distance measures, and the results of clustering algorithms may

depend on the distance measure used. The distance between points x and y is denoted as d (x, y)

where x = (x1, x2, · · · , xm) and y = (y1, y2, · · · , ym) are two points in dimension m. The common

distance measures used in clustering algorithms are Euclidean, squared Euclidean, Manhattan and

Minkowski.

A cluster is normally represented by a central point called centroid [5]. The objects within the

cluster is closer (more similar) to its centroid than the centroids of other clusters. The centroid, µ j is

defined as the average of all points (or objects) in the cluster, C j as follows [5][7]:

µ j =
1
∣

∣

∣C j

∣

∣

∣

∑

xi∈C j

xi. (1)

Cluster analysis is an important analysis tool in many fields such as big data clustering [8], document

clustering [9], image segmentation [10] [11] and information retrieval [12]. The major clustering

methods can be generally classified into five categories: partitioning, hierarchical, grid-based, model-

based and density-based [13][14].

2.1 k-means Clustering

One of the most well-known partitional clustering methods is k−means due to its simplicity in [4][7].

The ability of k−means method to cluster huge data quickly and efficiently made it a very popular

clustering method. However, k−means algorithm is very sensitive to initial centroids. Due to random

initialization of the initial centroids, k−means does not guarantee a unique clustering result [15].

When random initialization of centroids is used, different runs of k−means will give different sum

of squared error (SSE) values [5]. When random initial centroids close to the optimum solution,



Xian Xiang Wong et al. / MATEMATIKA 38:3 (2022) 195–208 198

k−means has high possibility to find out the optimum clustering result. Otherwise, it often led

to poor clustering results [16]. Thus, despite of the efficiency of k−means it often produces a

suboptimal clustering result that is only a local minimum instead of global minimum, mainly due to

the randomness in its initialization [17]. One commonly used technique used to address the problem

of choosing initial centroids is to perform multiple runs, each with different set of randomly chosen

initial centroids, then choose the clustering result with the least SSE.

Another challenge is to determine the number of clusters, k [18]. This is because k−means requires

a predefined k value but it is not always known. Elbow method is an unsupervised cluster evaluation

measure that helps determine the k value. The elbow method is a visual method that involves plotting

a line chart of the SSE values against the number of clusters. If the line chart resembles an arm, then

the “elbow” (the point of inflection of the curve) is a good indication that the underlying model fits

best at the point [5][18].

2.2 Common Setup Problem as a Clustering Problem with Constraint

The common setup problem is a clustering problem which involves constraints on cluster’s total

feature weight. Feature weights refer to the weights of the objects being clustered. In standard k-

means, all features have the same weight and there are no constraints on feature weight. To our

knowledge, there is no study of k−means algorithm that can incorporate feature weights and constraint

on size for each cluster. Therefore, this study proposes a modification to the standard k−means

algorithm where it can incorporate the feature weight constraints for each cluster.

3 Methodology

Given n objects (device models) with m features (components) where each component takes either 1

or 2 feature weights (component vacancies), we need to partition n objects into minimum k disjoint

clusters (sub-setups) without violating feature weight constraints (maximum number of component

vacancies) in each cluster. Then pair up the clusters into groups of two to obtain an optimal list of
⌈

k
2

⌉

common setups for the chip mounting production line.

3.1 Problem Formulation

We define the mathematical terms formally. Let F = { f1, f2, · · · , fm} be a given data set of m

features. Let the feature weight vector be w = (w1, w2, · · · , wm) ∈ Rm where w j is the feature

weight of f j, ∀ j ∈ {1, 2, · · · , m}. Let X = {x1, x2, · · · , xn} be a given set of n objects where xi =

(xi1, xi2, · · · , xim) ∈ Rm such that ∀ i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , m}, the feature value,

xi j =

{

1, if xi consists of f j

0, otherwise
.

In a clustering problem, the objective of a clustering algorithm is to find k clusters, C= {C1, C2, · · ·, Ck}

where 1≤k≤n.

Next, we define some mathematical operations that will be used in the algorithms formally. We

define the vector addition, ‘+’ for Rm component-wise, using the addition defined on R. If

xa= (xa1, xa2, · · ·, xam) ∈Rm and xb= (xb1, xb2, · · ·, xbm) ∈Rm, then

xa+xb= (xa1+xb1, xa2+xb2, · · ·, xam+xbm) ∈Rm.
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We define the scalar multiplication for Rm component-wise. If xa= (xa1, xa2, · · ·, xam) ∈Rm and λ∈R,

then

λxa= (λxa1, λxa2, · · ·, λxam) ∈Rm.

We define the inclusion disjunction, ‘∨’ for Rm component-wise, using the inclusion

disjunction defined on R. If xa= (xa1, xa2, · · ·, xam) and xb= (xb1, xb2, · · ·, xbm) ∈Rm, then

xa∨xb= (xa1∨xb1, xa2∨xb2, · · ·, xam∨xbm) ∈Rm, where (xac∨xbc) ∈ {0, 1} , ∀c∈ {1, 2, · · ·, m}. Note that

n
∨

i=1

xi=x1∨x2∨· · ·∨xn.

We define the dot product, ‘·’ for Rm; i.e., if w= (w1, w2, · · ·, wm) ∈Rm and xi= (xi1, xi2, · · ·, xim)∈Rm,

then

w·xi=w1xi1+w2xi2+· · ·+wmxim=

m
∑

a=1

waxia∈R.

Lastly, the feature weight of each cluster C j is defined as

wt
(

C j

)

=w·



















∨

xi∈C j

xi



















,

such that 1≤ j≤k. In the data clustering with feature weight constraints, the feature weight constraints,

ω j is available for each cluster C j such that 1≤ j≤k. Therefore, a feature weight constrained data

clustering algorithm must satisfy an extra constraint:

wt
(

C j

)

≤ω j, ∀ j∈ {1, 2, · · ·, k} .

3.2 Modified k−means with Feature Weight Constraints

A modified k−means algorithm is proposed here for data clustering with feature weight constraints.

The standard k−means algorithms is as shown in Figure 3.

Figure 3: Standard k-means Flow Chart
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The proposed solution method can be categorized into 4 steps which are Initialization step,

Assignment step, Update step and Validation step as shown in Figure 4.

The modified k−means algorithm is adapted from the standard k−means algorithm with two

changes. The Assignment step is modified to handle feature weight constraints [7]. Validation step is

added to handle the situation of clustering results with outliers. We introduce two objective functions

for modified k−means with feature weight constraints. In the common setup problem, we know that

the fewer component vacancies used, the lesser the work needed to install component reels in the chip

mounter. Thus, the first objective function is to minimize the total feature weight (which is the total

number of component vacancies used),

z1 =

k
∑

j=1

wt
(

C j

)

. (2)

We may obtain outliers (objects failed to be assigned into any cluster) after the modified k−means

algorithm terminates. Thus, we introduce penalty value, ρ into the SSE for each outlier found in the

clustering result to get

z2 =



















k
∑

j=1

∑

xi∈C j

d
(

xi, µ j

)



















+
∣

∣

∣Cq

∣

∣

∣ ρ (3)

where
∣

∣

∣Cq

∣

∣

∣ is the number of outliers (outlier cluster size) and each ρ added increases z2 value

significantly (ρ � z). Thus, our second objective function (or validation criterion) is z2 < ρ to

ensure the clustering result has no outliers.

Figure 4: Modified k−means with Feature Weight Constraints Flow Chart

3.2.1 Initialization Step

Define the value of k and randomly generate initial centroids µ
(1)

j
of cluster C j.
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3.2.2 Assignment Step

Assign each object to the closest centroid only if the feature weight of the cluster does not reach its

maximum capacity, wt
(

C
(t)

j

)

≤ ω j. However, a situation may arise where an object is not able to be

assigned into any clusters as all clusters have reached their maximum feature weights. Then the object

is assigned to the outlier cluster, C
(t)
q (while implementing, we can simply set q = −1 or q > k). The

outlier cluster is used to record the outliers, which acts as an indicator for invalid clustering result.

While implementing the assignment step, this can be easily achieved by sorting the values of

square Euclidean distance, d
(

xi, µ
(t)

j

)

in ascending order for all i∈ {1, 2, · · ·, n} , j∈ {1, 2, · · ·, k} and

iterating through the sorted array until it finds a cluster which satisfies the feature weight constraints,

wt
(

C
(t)

j
∪ {xi}

)

=w·













































∨

xp∈C
(t)
j

xp























∨xi























≤ω j.

In this case, we use merge sort algorithm [19] to sort d
(

xi, µ
(t)

j

)

in ascending order. As per the standard

k−means algorithm, each object is assigned to only one cluster in each iteration.

Suppose we have k centroids and n objects. Thus, we will have k × n squared Euclidean distances

between object i and centroid j, d
(

xi, µ
(t)

j

)

where i∈ {1, 2, · · ·, n} , j∈ {1, 2, · · ·, k}. Using merge sort

algorithm, we sort the list of distances, d
(

xi, µ
(t)

j

)

in ascending order. Then we assign all objects to

the nearest cluster provided the feature weight constraint must be satisfied. We start to assign from

the least d
(

xi, µ
(t)

j

)

value. For each assignation, we have several cases:

Case 1: The object i is not in any cluster yet.

Case 1.1 The object i fulfills the feature weight constraint, ω j.

This means wt
(

C
(t)

j
∪ {xi}

)

=w·

((

∨

xp∈C
(t)
j

xp

)

∨xi

)

≤ω j is satisfied. Object i is assigned to

cluster j. The object i does not fulfill the feature weight constraint, ω j, which means

wt
(

C
(t)

j
∪ {xi}

)

=w·

((

∨

xp∈C
(t)
j

xp

)

∨xi

)

≤ω j is not satisfied. Then the object i will not be assigned

into cluster j. If object i fails to be assigned to any cluster, we will assign object i to outlier

cluster, C
(t)
q .

Case 1.2: The object i is in one of the clusters.

Since the object i is in one of the clusters and we know that each object only can be in exactly one

cluster. Thus, the object i will not be assigned into cluster j.

After all assignations, there are 3 possible situations:

Situation 1: The outlier cluster is empty, and each cluster has at least one object.

• The clustering result is valid. This is the ideal situation and we will record this result.

Situation 2: The outlier cluster is empty, but there exists at least one empty cluster.

• The clustering result is valid. We may record this result, but we should use lower k value.

Situation 3: The outlier cluster is nonempty.

• The clustering result is invalid. This means that all k clusters have reached their maximum

feature weights. We will not record this result as we do not want to have any outliers.
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3.2.3 Update Step

Recompute the centroids of each cluster:

µ
(t+1)

j
=

1
∣

∣

∣

∣

C
(t)

j

∣

∣

∣

∣

∑

xi∈C
(t)
j

xi.

3.2.4 Validation Step

After the convergence of algorithm, there are 3 possible situations:

• Situation 1: The outlier cluster is empty, and each cluster has at least one object.

• Situation 2: The outlier cluster is empty, but there exists at least one empty cluster.

• Situation 3: The outlier cluster is nonempty.

In validation step, we record the results for Situation 1 and 2 only.

While implementing this algorithm, we compute z2 (SSE with penalty value) from equation (3) and

use the validation criterion as z2<ρ. This means that if at least one outlier is found in the outlier

cluster, z2 value will surely exceed the validation criterion.

3.3 Determine the Best Clustering Result

Since this modified k−means uses random initialization of initial centroids, the clustering result for

each run is different. Thus, we perform multiple runs, each with a different set of randomly chosen

initial centroids. Then we choose the clustering result with the lowest total feature weight, z1 which

fulfills the validation criterion z2 <ρ.

As per standard k−means, modified k−means requires a predefined k value during execution.

Thus, we introduce a modification to the elbow method to determine the number of clusters (k value)

of the clustering problem with feature weight constants. The modification is in terms of adding a

penalty value ρ, which serves as an upper limit for z2.

The steps of the modified elbow method are as follows:

i. Set penalty value ρ.

ii. For each k where 1 ≤ k ≤ n, perform multiple runs of the modified algorithm and record the

least z2 value.

iii. Plot the line chart of z2 values against k values.

iv. Plot a horizontal benchmark, z2 = ρ on the line chart.

v. Then the first k value below the benchmark will be the least k value which does not produce

outliers.
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4 Application, Result and Analysis

4.1 Solving the SMT Common Setup Problem

The data set of the common setup problem as follows:

i. A list of 44 distinct device models with total of 123 distinct components.

ii. The component size of the 123 components.

iii. The maximum number of component vacancies in each sub-setup is 34.

4.1.1 Formulating the SMT Common Setup Problem

We know that n = 44 and m = 123. Then we formulate the data of SMT common setup problem into

mathematical form. Thus, we have:

• the data set of 44 objects is denoted as X= {x1, x2, · · ·, x44}.

• the data set of 123 features is denoted as F= { f1, f2, · · ·, f123}.

• the feature weight constraints of cluster C j is ω j= 34, ∀ j∈ {1, 2, · · ·, k}.

• the feature weight vector respect to data set F is denoted as w= (w1, w2, · · ·, w123).

Then we need to find a list of k clusters which are C= {C1, C2, · · ·, Ck}.

4.1.2 Determine k Value Using Modified Elbow Method

We perform modified elbow method to determine the number of clusters, k. For this data set, we

set the penalty value ρ = 999, which is determined by the pre-knowledge of the range of z2 values

of valid clustering results. We perform modified k−means with feature weight constraints for 1000

times to obtain the least z2 values for each k where k ∈ {1, 2, · · · , 10}. The least z2 and the number

of outliers for each number of clusters, k is shown in Table 1. From the modified elbow method plot

shown in Figure 5, we know that the recommended k value is 6.

Table 1: The z2 Values and The Number of Outliers

Based on Different k Values

Number of
z2

Number of

clusters, k outliers

1 33016.636 33

2 15147.928 15

3 8187.963 8

4 4192.012 4

5 2194.012 2

6 203.638 0

7 155.667 0

8 127.833 0

9 101.545 0

10 87.617 0
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Figure 5: Modified Elbow Method for k ∈ {1, 2, · · · , 10}

4.1.3 Results

We implement our proposed algorithm using MATLAB on the data set. By setting k = 6, we obtain a

valid clustering result with 6 clusters (sub-setups) as shown in Table 2. All clusters satisfy the feature

weight constraint:

wt
(

C j

)

≤34 =ω j, ∀ j∈ {1, 2, 3, 4, 5, 6} .

By pairing up all clusters into groups of 2, we obtain
⌈

k
2

⌉

=
⌈

6
2

⌉

= 3 common setups for chip mounting.

Thus, this shows that modified k−means with feature weight constraints can solve the common setup

problem.

4.2 Analysis

4.2.1 Performance Analysis of Modified k−means Algorithm

We evaluate and analyse the performance of the modified k−means algorithm against the standard

k−means algorithm using the data set of the common setup problem. Both algorithms were

implemented using MATLAB with k = 6. The clustering results of these two algorithms are

summarized in Table 3.

From Table 3, the clustering result of k−means violates the feature weight constraint of cluster 1,

ω1 (78 > 34). Thus, standard k−means fails to cluster the data set of common setup problem, which

means it fails to solve the clustering problem with feature weight constraints. In the case of modified

k−means, the clustering results fulfils all the feature weight constraints. Thus, the modified k−means

algorithm can cluster the data set of common setup problem. Therefore, this result verifies the superior

performance of the proposed algorithm over the standard k−means in dealing with clustering problem

with feature weight constraints.
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Table 2: The Clustering Result of Common Setup in 6 Sub-setups

Cluster 1 2 3 4 5 6

Cluster Size 2 16 6 8 2 10

Feature
22 31 34 33 24 32

Weight

D26 D01 D10 D23 D42 D11

D41 D02 D20 D24 D43 D12

D03 D21 D25 D13

D04 D22 D32 D14

D05 D28 D38 D15

D06 D29 D39 D16

D07 D40 D30

Device Model D08 D44 D31

D09 D33

D17 D34

D18

D19

D27

D35

D36

D37

Table 3: Comparison of Clustering Results

Cluster Feature weight Final feature weight

index, j constraints, ω j Standard k−means Standard k−means

1 34 78 22

2 34 15 31

3 34 22 34

4 34 24 33

5 34 23 24

6 34 17 32

4.2.2 Run Time Analysis of Modified k−means with Feature Weight Constraints

While implementing modified k−means algorithm with feature weight constraints, we might obtain

an invalid clustering result if we do not perform sufficient number of runs. Thus, we will always

perform multiple runs of the algorithm and choose the best among the valid clustering results. We

know that the higher the number of runs, the higher the chances to obtain the best valid clustering

result. However, the cost of the large number of runs might be expensive (longer run time). Hence,

we need to find a balance between number of runs and run time and still be able to obtain a valid

clustering result.
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Using the same data set with k = 6, we perform different number of runs of the algorithm and

obtain the run time, number of valid clustering results and the least total feature weight (total feature

weight of the best valid clustering result), as shown in Table 4. We choose the number of runs to be

1, 100, 1000 and 10,000 based on preliminary experimentation.

Table 4: Comparison of Different Number of Runs

Number of runs 1 100 1000 10000

Run Time (s) 0.008266 0. 739307 5.326081 55.176309

Number of valid clustering results 0 2 22 133

Least total feature weigh N/A 183 176 176

The results from Table 4 are not unique. When we perform 10000 runs of the algorithm, only 133

out of 10000 clustering results are valid. Thus, the percentage of the valid results is approximately

1.33%. The least total feature weight obtained is 176. However, the run time for 10000 runs is 55.2

seconds which is not practical. Thus, we should use fewer runs while still obtaining valid clustering

solution. In this case, it is reasonable to choose the number of runs as 1000.

5 Conclusion

The common setup problem in SMT line is a clustering problem with feature weight constraints that

cannot be solved by implementing traditional data clustering method. In this study, we introduce

modifications on the k−means algorithm to incorporate feature weight constraints. The Assignment

step is adapted and modified from the Assignment step of the k−means algorithm with cluster size

constraints to account for the feature weight constraints of each cluster. In the Validation step, we add

penalty value to SSE for each outlier found in the outlier cluster. If at least one outlier is found in the

outlier cluster, SSE will surely exceed the validation criterion, thus only the clustering results without

outliers will be recorded. We also modified the elbow method with penalty value to determine the

number of clusters.

The results verify that the proposed algorithm has superior performance over standard k−means

algorithm in clustering problem with feature weight constraints. For the common setup problem,

the analysis shows that 1000 runs of the proposed algorithm implemented using MATLAB is able

to obtain at least one valid clustering result within a reasonable run time. By using the proposed

algorithm, a minimum of 3 common setups (or 6 sub-setups) were obtained.

One limitation of this study is that the initial centroids are randomly generated (as per standard

k−means). Hence, future studies could explore methods that are able to find better initial centroids.

Future studies could also include more constraints such as for each common setup, one of the two sub-

setups must only consist of components with size 1. Besides that, one may explore other clustering

methods to incorporate feature weight constraints.
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