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Abstract Extended cubic B-spline collocation method is formulated to solve the Benjamin-Bona-Mahony equation

without linearization. The Besse relaxation scheme is applied on the nonlinear terms and therefore transforms the equation

into a system of two linear equations. The time derivative is discretized using Forward Difference Approximation whereas

the spatial dimension is approximated using extended cubic B-spline function. Applying the von-Neumann stability

analysis, the proposed technique are shown unconditionally stable. Two numerical examples are presented and the results

are compared with the exact solutions and recent methods.
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1 Introduction

The Benjamin-Bona-Mahony equation (BBME), also known as the regularized long-wave equation, of the form

ut + ux + εuux − µuxxt = 0, (1)

with initial condition

u (x, 0) = f (x) , a ≤ x ≤ b, (2)

and the boundary conditions

u (a, t) = u (b, t) = 0, 0 ≤ t ≤ T, (3)

where t is time, x is the space, u is the wave amplitude, f (x) is a localized disturbance inside the interval [a, b] , and T, ε,

and µ are positive constants.

Peregrine [1-2] first derived the BBME for modelling the propagation of unidirectional weakly nonlinear and weakly

dispersive water waves. Benjamin et al. [3] then introduced the BBME as a regularized version of the Korteweg-de Vries

equation for shallow water waves. This equation models the nonlinear dispersive waves that arise in the surface waves

of long wavelengths in liquids, magnetohydrodynamic waves in plasma, longitudinal dispersive waves in elastic rods,

rotating flow down a tube, and pressure waves in liquid-gas bubble mixtures [3].

The BBME has been solved numerically by various methods based on finite difference, finite element, Petrov-

Galerkin finite element, Fourier pseudo-spectral, collocation methods, and many other methods [4-5]. Lately, the B-spline

collocation method with quadratic B-spline [4], cubic B-spline (CB) [6-8], cubic trigonometric B-spline (CTB) [9-11], and

extended cubic B-spline (ECB) [12-16] have been formulated successfully on some differential equations with accurate

results and high efficiency. There are several techniques used to handle the nonlinear term in the BBME namely Taylor

series expansion [17], quasilinearization [18] and Adomian polynomials [19]. This article aims to solve the BBME using

the Besse ECB collocation method without linearizing the algebraic system. This approach was chosen to minimize the

cost of evaluating the nonlinear term.

BBME is one type of nonlinear partial differential equations. In order to solve this equation, the BBME is separated

into two equations. The Besse relaxation scheme replaced the nonlinear term of the equation by its average value. Forward

difference approximation is used to discretize the time derivative and ECB collocation method replace the spatial terms.

The stability of the proposed scheme was analyzed using von-Neumann method. Lastly, the results were compared with

the exact solution and other methods.
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2 Extended Cubic B-spline

The ECB basis function is a piecewise polynomial function of degree 4 with C2 continuity, as shown in Equation (4). This

function is extended from the CB basis function. Figure 1 shows the plot of the basis function where x is variable and

λ ∈ R. ECB possesses the same properties as the CB basis function for −8 ≤ λ ≤ 1 [12].
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1
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Figure 1: Extended Cubic B-spline Basis Function of Degree 4

The ECB function can be arbitrarily generated by taking a linear combination of the ECB basis,

U (x, t) =

n−1
∑

i=−3

Ci (t) E4,i (x), x ∈ [x0, xn] , (5)

where Ci(t) are time dependent unknowns. The ECB function, U (x, t) , and its derivatives with respect to x can be

simplified as follows [12] for i = 0, 1, 2, . . . , n :
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3 Besse Extended Cubic B-spline Collocation Method

Let (xi, t j) be the grid points discretizing region ∆ = [a, b] × [0,T ] where xi = a + ih, i = 0, 1, . . . ., n, n ∈ Z+,

and t j = jk, j = 0, 1, . . . , N, N ∈ Z+. The terms h and k denote the space and time step size, respectively. The Besse
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relaxation scheme [20] is applied on the temporal dimension to avoid linearizing the nonlinear systems. Firstly, the BBME

is replaced with a system of two equations [21]

V = U,

Ut + Ux + εVUx = 0.

The time derivative term is discretized by the forward difference approach resulting in the following coupled system:































V
j+ 1

2

i
+ V

j− 1
2

i

2
= U

j

i
,

U
j+1

i
−U

j

i

k
− µ

(Uxx)
j+1

i
− (Uxx)

j

i

k
+

(Ux)
j+1

i
+ (Ux)

j

i

2
+

(εVUx )
j+1

i
+ (εVUx )

j

i

2
= 0

(7)

where ti+ 1
2
= t j +

k
2

and V
j+ 1

2

i
is an approximation of V at the point

(

xi, t j+ 1
2

)

. The ECB function from Equation (5) is then

presumed to be the solutions for the system in Equation (7). That is, the terms U
j

i
in Equation (7) are substituted with

Equation (5) and Equation (6) and simplified into
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Equation (8) is a system of linear equations of order (n + 1) with (n + 3) unknowns. The two boundary conditions from

Equation (3) are added into the system to make it square ensuring a unique solution. The system is solved recursively for

C
j

i
, j = 0, 1, 2, . . . , m − 1 and C

j

i
are substituted back in Equation (5) as the approximate solution for the BBME.

4 Von-Neumann Stability Analysis

In this section, we present the stability of the Besse ECB approximation using the von-Neumann method. The growth of

error in a single Fourier mode is considered as

C
j

i
= ζ jeιηih (9)

where ι is the complex number and η is the mode number. Equation (9) is substituted into Equation (8) to obtain
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Dividing both sides of Equation (10) by ζ jeιη(i−2)h and simplifying the terms lead to
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By using Euler’s equation, Equation (11) can be written as
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5 Initial State

In order to kick-start the calculation, the unknowns at j = 0, C0
, needs to be predetermined. Hence, the initial condition

from Equation (2) is treated similarly as the previous section where the term u is substituted by the ECB function in

Equation (5):
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This system is solved for C0 using least square method.

6 Numerical Experiments

Two problems were solved by the Besse ECB collocation method. The accuracy of the method would be measured by

using the absolute error, infinite-norm, and two-norm, whose formulas are detailed as follows, respectively:

Absolute Error = |Ui − ui| ,

L∞ = ‖Ui − ui‖∞ = maxn−1
i=1 |Ui − ui| ,

L2 = ‖Ui − ui‖ 2 =

√

√

√

h

n−1
∑

i=1

|Ui − ui|
2.

The terms u and U denote the exact and approximate solutions, respectively. The numerical experiments were carried out

using Mathematica 11.3. The analytical solution of the single solitary wave BBME is given by

u (x, t) = 3csech2

[√

εc

4µ (1 + εc)
(x − (1 + εc) t − xo)

]

,
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representing a single solitary wave of amplitude 3c where (1 + εc) is the wave velocity and

√

εc

4µ (1 + εc)
is the width of

the wave pulse. The following initial condition was used on both problems:

U (x, 0) = 3csech2

[√

εc

4µ (1 + εc)
(x − xo)

]

.

6.1 Problem 1

Equation (1) was solved by the ECB collocation method using the following values: x ∈ [−40, 60], t ∈ [0, 20] , ε =

2, µ = 1, x0 = 0, c = 0.1, λ = −0.003879, h = 0.125, and k = 0.1 [21]. The exact solution is displayed in Figure 2 and

the approximate solutions at t = 20 are plotted together with the respective exact solution in Figure 3. Table 1 compares

the analytical and approximate solutions, while Table 2 shows the comparison of norms between the results generated

by the proposed Besse ECB collocation method with those of CB, CTB, and Besse CB collocation methods [9, 21] at

t = 20. From the tables, the approximate solution agrees with the exact solution with reasonable errors and Besse ECB

collocation method generated more accurate results than the other methods. Table 3 displays the comparison of norms

error with different space and time step sizes at t = 20. When k = 0.125 the accuracy of the errors increases as value of h

decreases. But the accuracy of the errors decreases as value of h and k decreases. We can conclude that, the accuracy will

be affected when we use too small value of k.

Figure 2: The Exact Solution for Problem 1

Figure 3: The Exact and Approximate Solutions for Problem 1 at t = 20 with h = 0.125, k = 0.1, and λ = −0.003879
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Table 1: Comparison between the Exact and Approximate Solutions

for Problem 1 at t = 20 with h = 0.125, k = 0.1, and λ = −0.003879

x U(x, t) u(x, t) Absolute Error

−30 3.198765 × 10−10 1.108007 × 10−7 1.104808 × 10−7

−20 1.896628 × 10−8 4.075516 × 10−8 2.178888 × 10−8

−10 1.124556 × 10−6 1.163362 × 10−6 3.880578 × 10−8

0 6.667046 × 10−5 6.381200 × 10−5 2.858461 × 10−6

10 3.927576 × 10−3 3.944548 × 10−3 1.697250 × 10−5

20 1.640573 × 10−1 1.640329 × 10−1 2.435410 × 10−5

30 8.779135 × 10−2 8.776815 × 10−2 2.319719 × 10−5

40 1.742279 × 10−3 1.739641 × 10−3 2.637974 × 10−6

50 2.946867 × 10−5 2.940728 × 10−5 6.138126 × 10−8

L∞-norm 2.435746 × 10−5

L2-norm 8.830497 × 10−5

Table 2: Comparison of Norms of Results Generated by Besse ECB, CB [9], CTB [9] and Besse CB [21]

Collocation Methods for Problem 1 at t = 20 with h = 0.125, k = 0.1, and λ = −0.003879

Collocation Method L∞-norm L2-norm

Besse ECB 2.435746 × 10−5 8.830497 × 10−5

Besse CBS [21] 2.632789 × 10−4 6.537858 × 10−4

CB [9] 2.567974× 10−4 6.202924× 10−4

CTB [9] 6.529259× 10−4 1.890132× 10−3

Table 3: Comparison of Norms Error with Different Space and Time

Step Sizes for Problem 1 at t = 20 and λ = −0.003879

k h L∞-norm L2-norm

0.125 9.754177 × 10−5 2.810605 × 10−4

0.125 0.1 9.118558 × 10−5 2.509043 × 10−4

0.05 8.509371 × 10−5 2.171473 × 10−4

0.125 2.435746 × 10−5 8.830497 × 10−5

0.1 0.1 4.224126 × 10−5 1.194515 × 10−4

0.05 6.608743 × 10−5 1.687267 × 10−4

0.125 1.844198 × 10−4 4.583457 × 10−4

0.05 0.1 2.023971 × 10−4 4.966866 × 10−4

0.05 2.262652 × 10−4 5.487074 × 10−4
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6.2 Problem 2

Equation (1) was solved by the ECB collocation method using the following values: x ∈ [−40, 60], t ∈ [0, 20], ε =

1, µ = 1, x0 = 0, c = 0.1, λ = −0.002624, h = 0.125 and k = 0.1 [21]. The exact solution is displayed in Figure 4 and

the approximate solutions at t = 20 are plotted together with the respective exact solution in Figure 5. Table 4 compares

the analytical and approximate solutions, while Table 5 shows the comparison of norms between the results generated by

the proposed Besse ECB collocation method with those of CB, CTB, and Besse CB collocation methods [9, 21] at t = 20.

From the tables, the approximate solution agrees with the exact solution with reasonable errors and Besse CBS collocation

method generated more accurate results than the other methods. Similar to Problem 1, Table 6 shows the comparison of

norms error with different space and time step sizes at t = 20. Using the same argument, the accuracy will be affected

when we use too small value of k.

Figure 4: The Exact Solution for Problem 2

Figure 5: The Exact and Approximate Solutions for Problem 2 at t = 20 with h = 0.125, k = 0.1, and λ = −0.002624
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Table 4: Comparison between Exact and Approximate Solutions for

at t = 20 with h = 0.125, k = 0.1, and λ = −0.002624

x U(x, t) u(x, t) Absolute Error

−30 1.862327 × 10−7 7.625434 × 10−6 7.439201 × 10−6

−20 3.797524 × 10−6 5.102140 × 10−6 1.304616 × 10−6

−10 7.742735 × 10−5 7.748605 × 10−5 5.870608 × 10−8

0 1.574909 × 10−3 1.574547 × 10−3 3.613120 × 10−7

10 3.053834 × 10−2 3.053744 × 10−2 8.967256 × 10−7

20 2.742989 × 10−1 2.742965 × 10−1 2.376183 × 10−6

30 9.058729 × 10−2 9.058379 × 10−2 3.500554 × 10−6

40 5.228378 × 10−3 5.227063 × 10−3 1.315754 × 10−6

50 2.585485 × 10−4 2.584637 × 10−4 8.480421 × 10−8

L∞-norm 1.266780 × 10−5

L2-norm 3.313883 × 10−5

Table 5: Comparison of Norms of Results Generated by Besse ECB, CB [9], CTB [9], and Besse CB [21]

Collocation Methods for Problem 2 at t = 20 with h = 0.125, k = 0.1, and λ = −0.002624

Collocation Method L∞-norm L2-norm

Besse ECB 1.266780 × 10−5 3.313883 × 10−5

Besse CBS [21] 9.610112 × 10−5 2.521466 × 10−4

CB [9] 9.607819× 10−5 2.472435× 10−4

CTB [9] 4.546975× 10−4 1.578019× 10−3

Table 6: Comparison of Norms Error with Different Space and Time

Step Sizes for Problem 2 at t = 20 and λ = −0.002624

k h L∞-norm L2-norm

0.125 4.373310 × 10−5 1.199783 × 10−4

0.125 0.1 3.728655 × 10−5 1.068436 × 10−4

0.05 2.973689 × 10−5 9.134967 × 10−5

0.125 1.266780 × 10−5 3.313883 × 10−5

0.1 0.1 1.268449 × 10−5 3.794381 × 10−5

0.05 1.524244 × 10−5 4.472656 × 10−5

0.125 5.876552 × 10−5 1.617571 × 10−4

0.05 0.1 6.523481 × 10−5 1.752378 × 10−4

0.05 7.384749 × 10−5 1.940618 × 10−4
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7 Conclusion

The solitary wave solution of the BBME has been numerically approximated for two problems using the proposed Besse

ECB collocation method. For both problems, the approximate solution agrees with the exact solution with reasonable

errors and Besse ECB collocation method generated more accurate results than CB [9], CTB [9], and Besse CB [21]

collocation methods. This approach improves the accuracy of Besse CB collocation method by incorporating ECB in

place of CB. The proposed scheme was proved to be unconditionally stable. Since the errors do not overgrow for both

problems, we conclude that Besse ECB collocation method can be used to solve the BBME. However, the error trends

were affected when the time steps are too small. More investigation could be carried out to clarify this issue.
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