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Abstract In this paper, linear and nonlinear fourth-order Fractional Integro Differential

Equations (FIDEs) with boundary value problems are solved by Laplace Transform with
Modified Variational Iteration Method (LT-MVIM). A new technique based on the VIM is

introduced to remove the random choice of initial guess by setting a specific rule depends
on unknown parameters. These parameters contributed to the increase in the number of

terms of the polynomial approximation and its degree, which, in turn, accelerates the con-
vergence and increases the accuracy from one iteration compared to the standard method,
where the initial approximation is still randomly chosen. Moreover, the standard method

requires an infinite number of iterations, which need massive calculations in each iteration.
Some examples are given in order to show the accuracy of the solutions obtained by the

proposed method. Furthermore, comparisons are made between the solutions obtained
by the proposed method and Laplace Transform Variational Iteration Method (LT-VIM)

based on the exact solutions, revealing that the LT-MVIM contributes to accelerating the
convergence of approximate solution to the exact solution by reducing the computational

work to obtain the approximate solution using one iteration. Whereas, LT-VIM needs
more iterations to obtain a suitable approximate solution, which results in an increase in

the computational workload.

Keywords Variational iteration method; Laplace transform; nonlinear boundary value
problems; Fourth-order fractional integro differential equations (FIDEs).

Mathematics Subject Classification 46N60, 92B99.

1 Introduction

In recent years, several studies have focused on fractional differential equations (FDEs) due to
their versatile applications in many fields. One basic example is the isochronous problem, where
fractional calculus has been used, and it shows its usefulness in solving some types of integral
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equations [1]. Furthermore, the hydrogeology application known as the fractional advection-
dispersion equation which shows the fundamental connection between fractional derivatives
and the stable distributions [2]. Moreover, most of FDEs have no exact solutions because
they are difficult to be modelled and what is more to be solved. Therefore, analytical and
numerical methods are used to obtain approximate solutions to these equations, such as Homo-
topy Perturbation Method (HPM) [3], Variational Iteration Method (VIM) [4], and Adomian
decomposition method (ADM) [5] are used to obtain approximate solutions to these equations.

FIDEs are one of the important classes of FDEs. Physical and chemical processes such as
elasticity, electric drives, circuits systems and heat transfer are modeled by these classes [6, 7].
Analytical methods were used to obtain approximate solutions for this type of equation such
as HPM [8], VIM [9], and homotopy analysis method (HAM) [10]. Among the above, VIM is
chosen for this study because of its versatility in solving fractional problems.

Different from derivative of integer order, there are various definitions associated with the
fractional derivatives. These definitions are commonly not equivalent to each other. The two
most applied are Riemann-Liouville and Caputo derivative. One of the main advantages of
Caputo fractional derivative is that it allows integer order initial and boundary conditions to
be included in the formulation of the problems, which have a clear physical interpretation.

In this paper, we will find the approximate solution of fourth-order FIDEs as following:

Dα
∗
u(t) = f(t) + γu(t) +

∫ t

0

[g(x)u(x) + h(x)F (u(x))]dx, 0 ≤ t ≤ b, 3 < α ≤ 4, (1)

with boundary conditions:

u(0) = γ0, u′′(0) = γ2, (2)

u(b) = β0, u′′(b) = β2, (3)

where Dα
∗
u(t) is fractional derivative in the caputo sense, whereby γ0, γ2, β0, β2 and γ are real

constant, and F (u(x)) is any nonlinear continuous function, and g and h can be determined by
Taylor polynomials. Many mathematical of real-life problems usually formulation of physical
phenomena involving this equations such as diffusion processes, rheology and damping laws.
Furthermore, The activity of interacting inhibitory and excitatory neurons can be described by
a system of integro-differential equations.

The VIM was first introduced by He in 1998 [11], and was further developed in 1999 [12]
and 2007 [13]. Many authors were also interested in the VIM in order to deal with linear
and non-linear equations generated in solving engineering and science problems [14]. The
free choice of initial approximation is one of the advantages of VIM [15]. Furthermore, the
iterations are convergent to the exact solution very rapidly [16]. In addition, it can be applied
on nonlinear terms directly without any restrictive assumption. The main points of VIM are
the identification of the Lagrange multiplier, the construction of correct function and selection
of the initial approximation. Recently, the VIM was extended to the FDE, but the outcome was
not very successful because of the difficulty to identify Lagrange Multiplier, which has later been
identified as one of the drawbacks of applying this method. Therefore, in order to avoid this
disadvantage, the authors use Laplace transform to identify the Lagrange Multiplier. Another
disadvantage of the VIM is that it repeats computations, which consumes time and effort that
most authors clearly want to avoid [17]. For this reason, with the objective to improvise the
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existing method, the Laplace transform (LT) is combined with the VIM to solve boundary value
problems for fourth-order fractional integro differential equations so that the identification of
the Lagrange multiplier can be easily selected. Then the LT-VIM is modified into LT-MVIM
by setting a specific rule for choosing the initial approximation, which removes the random
selection of the initial approximation and reduces the size of computational work to obtain
the approximate solution using one iteration. Furthermore, LT-MVIM greatly accelerates the
convergence of the solution.

2 Basic Definitions

In this section, important definitions are given that help in this paper.

Definition 1 For Re(r) > 0, the gamma function is:

Γ(r) =

∫
∞

0

ur−1e−udu. (4)

Definition 2 For α > 0, the Caputo fractional derivatives can be written as:

Dα
∗
f(x) =

1

Γ(n − α)

∫ x

0

(x − τ )n−α−1f (n)(τ )dτ, (5)

for n − 1 < α ≤ n, n ∈ N, x > 0, f(x) ∈ Cn
−1.

Definition 3 The Laplace transform for fractional derivatives defined by the Caputo derivative
can be written as:

L [Dα
∗
f(t)] = sαF (s) −

m−1∑
k=0

sα−k−1f (k)(0), m − 1 < α ≤ m, (6)

where L [∗] is Laplace transform

Definition 4 If L {G1(t)} = g1(v) and L {G2(t)} = g2(v) then:

L {G1(t) ∗ G2(t)} = L {G1(t)} ∗ L {G2(t)},

= g1(v) ∗ g2(v), (7)

where G1(t) ∗ G2(t) is called the convolution of G1(t) and G2(t) and it is defined as [18]:

G1(t) ∗ G2(t) =

∫ t

0

G1(t − x)G2(t)dx =

∫ t

0

G1(t)G2(t − x)dx. (8)
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3 Laplace Transform Variational Iteration Method (LT-VIM)

The basic principle of VIM to solve Equation (1) is to construct the following correction func-
tion:

un+1 = un +

∫ t

0

λ(ξ)(Dα
∗
u(ξ) − f(ξ) − γũ(ξ) −

∫ ξ

0

[g(x)ũ(x) + h(x)F (ũ(x))]dx)dξ,

n = 1, 2, 3..., (9)

where λ is a general Lagrange multiplier. Applying the Laplace transform to both sides of
Equation (9), we get:

L [un+1] = L [un] + L [

∫ t

0

λ(t − ξ)(Dα
∗
u(ξ) − f(ξ) − γũ(ξ)

−

∫ ξ

0

[g(x)ũ(x) + h(x)F (ũ(x))]dx)dξ], (10)

The convolution method was applied to Equation (10) instead of, we obtain:

L [un+1] = L [un] + L [λ(t) ∗ (Dα
∗
u(t)− f(t) − γũ(t)−

∫ t

0

[g(x)ũ(x) + h(x)F (ũ(x))]dx)],

= L [un] + L [λ(t)][L (Dα
∗
u(t)− f(t) − γũ(t)

−

∫ t

0

[g(x)ũ(x) + h(x)F (ũ(x))]dx]. (11)

Take the variation with respect un(t) to get the optimal value of λ(ξ) as:

δ

δun

L [un+1] =
δ

δun

L [un] +
δ

δun

L [λ(t)][(sα
L [un] −

3∑
k=0

sα−k−1u(k)(0) + L (−f(t)− γũ(t)

−

∫ t

0

[g(x)ũ(x) + h(x)F (ũ(x))]dx)), (12)

where L [Dα
∗
u(t)] = sαL [un] −

∑3
k=0 sα−k−1u(k)(0), 3 < α ≤ 4.

Hence upon applying the variation, this simplifies to

L [δun+1] = L [δun] + sα
L [λ(t)][L (δun)]. (13)

The right hand side of Equation (13) should be set to zero because the extremum condition
of un+1 requires that δun+1 = 0 . Then we obtain:

L [λ(t)] =
−1

sα
. (14)

Substituting (14) into function (11), we obtain:

L [un+1] = L [un] +
−1

sα
[L (Dα

∗
u(t)− f(t) − γũ(t) −

∫ t

0

[g(x)ũ(x) + h(x)F (ũ(x))]dx)]. (15)
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Taking the inverse Laplace of Equation (15) we get:

un+1 = un + L
−1[

−1

sα
[L (Dα

∗
u(t)− f(t) − γu(t)−

∫ t

0

[g(x)u(x) + h(x)F (u(x))]dx)]],(16)

= γ0 + γ1t +
γ2t

2

2
+

γ3t
3

6
+ L

−1[
−1

sα
L (−f(t) − γun(t)

−

∫ t

0

[g(x)un(x) + h(x)F (un(x))]dx). (17)

The initial approximation can be chosen which satisfies the initial conditions (2) as:

u0 = γ0 + γ1t +
γ2t

2

2
+

γ3t
3

6
, (18)

where γ1 = u′(0) and γ3 = u′′′(0).
The first order approximation can be presented as:

u1 = γ0 + γ1t +
γ2t

2

2
+

γ3t
3

6
+ L

−1[
−1

sα
L (−f(t)− γu0(t)

−

∫ t

0

[g(x)u0(x) + h(x)F (u0(x))]dx). (19)

4 Laplace Transform with Modified Variational Iteration Method

(LT-MVIM)

The initial approximation plays an important role in approximate analytical methods. The
researchers are still actively trying to find an appropriate initial approximation in increasing
the accuracy of approximate solution. The choice of initial approximation in LT-VIM depends
on the initial conditions, however, there is a drawback when the initial condition is equal to zero.
In the current study, a rule is proposed to adjust the selection of the initial approximation that
satisfies the boundary conditions to obtain high accuracy approximate solutions. This method
starts with selecting the initial approximation in a power series form as:

z(t) =
n∑

i=0

Ait
i, (20)

where Ai are unknown parameters to be determined by system of algebraic equations. In this
study, only linear trial function is used , (i.e. for n = 1). As a result Equation (20) becomes:

z(t) = A0 + A1t. (21)

To illustrate the main idea of LT-MVIM, the researchers depend on the same LT-VIM algorithm,
but unlike of LT-VIM, the LT-MVIM method exploits the freedom of LT-VIM, by replacing
initial approximation for an arbitrary linear trial function z(t) by substituting the Equation
(21) into Equation (16) to obtain the first-order approximation as:

u1 = γ0 + γ1t +
γ2t

2

2
+

γ3t
3

6
+ L

−1[
−1

sα
L (−f(t) − γ(A0 + A1t)

−

∫ t

0

[g(x)(A0 + A1x) + h(x)F (A0 + A1x)]dx). (22)
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The approximate solution (22) can be expressed as:

u1 = u(t, γ1, γ3, A0, A1). (23)

To determine the values of γ1, γ3, A0 and A1, an algebraic system will be formed: to find the
first and the second equation, Equation (22) is required to satisfy the boundary conditions
(3). In finding the total parameter values, we require the addition of two algebraic equa-
tions generated by using boundary condition. We should combine the following two equations
u(t1, γ1, γ3, A0, A1) = u(t2, γ1, γ3, A0, A1) = 0, where the residual is defined, by substituting
Equation (22) into Equation (1), to obtain

Dα
∗
u(t, γ1, γ3, A0, A1) = f(t) + γu(t, γ1, γ3, A0, A1) +

∫ t

0

[g(x)u(t, γ1, γ3, A0, A1)

+ h(x)F (u(t, γ1, γ3, A0, A1))]dx, (24)

where 0 ≤ t1, t2 ≤ b.

5 Numerical Examples

In this section, a linear and nonlinear examples of fourth order FIDEs will be solved by the
standard LT-VIM and the MLT-VIM. The results will be compared with the exact solution to
show the efficiency of the proposed method.

Example 1 Let the fourth order FIDEs as following [20]:

Dα
∗
u(t) = t(1 + et) + 3et + u(t)−

∫ t

0

u(x)dx, (25)

with the boundary conditions:

u(0) = 1, u(1) = 1 + e, u′′(0) = 2, u′′(1) = 3e (26)

When α = 4, the exact solution is u(t) = 1 + tet.

LT-VIM
According to LT-VIM, the iteration formula (16) for Equation (25) can be expressed as:

un+1 = un + L
−1[

−1

sα
[L (Dα

∗
u(t) = t(1 + et) + 3et + u(t) −

∫ t

0

u(x)dx)]]. (27)

Let et ∼ 1+ t + t2

2
to avoid complexity in integration, and suppose that the initial approximate

solution is in the form u0 = u(0) + u′(0)t + u′′(0)t2 + u′′′(0)t3, let u′(0) = β0 and u′′′(0) = β1,
also applying u(0) = 1 and u′′(0) = 2, this in turn gives the approximate solution for α = 4:

u(t) = 1 + β0t + t2 + 1/6β1t
3 −

1

10080
t4(β1t

4 − 2β1t
3 + 6 t3 + 28β0t

2 − 98 t2

− 84β0t − 336 t − 1680). (28)
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Using u(1) = 1 + e and u′′(1) = 3e into Equation (28) to obtain the values of β0 and β1 as:

β0 = 0.9815547028, β1 = 3.131018652. (29)

Substituting Equation (29) into Equation (28), the approximate solution using one iteration is:

u(t) = 1 + 0.9815547028 t + t2 + 0.5218364420 t3 −
1

10080
t4(3.131018652 t4

− 0.262037304 t3 − 70.51646832 t2 − 418.4505950 t − 1680). (30)

LT-MVIM
Applying the LT-MVIM to obtain the an approximate solution for Equation (25), let z[t] =
A0+A1t as the initial approximation, where we define β0 = u′(0) and β1 = u′′′(0), also applying
u(0) = 1 and u′′(0) = 2, this in turn gives the approximate solution for α = 4:

u(t) = 1 + β0t + t2 + 1/6β1t
3 + tα(9

t3

Γ (4 + α)
+ 8

t4

Γ (5 + α)
+

A0 (2 + α) (1 + α)

Γ (3 + α)

+
(−tA1 − A0 (2 + α) + A1 (2 + α) + 5 t + 5α + 10) t

Γ (3 + α)
+ 3

(1 + α) (2 + α)

Γ (3 + α)
). (31)

To determine the values of β0, β1, A0, and A1, let t = 0.45 and t = 0.48 for residual error
cancellation, and when we satisfy the boundary conditions u(1) = 1+e and u′′(1) = 3e. Table 1
illustrates the values of β0, β1, A0, and A1, for different values of α, which are randomly selected
between 3 and 4.

Table 1: Values of β0, β1, A0, and A1 for different values of α of Example 1

α = 3.2 α = 3.4 α = 3.6 α = 3.8 α = 4

β0 1.112728247 1.109723458 1.083962214 1.044864418 .9995736204
β1 -.5582745325 .4974874727 1.456401505 2.306335439 3.043255978
A0 .643230186 .642391858 .634645563 .622846100 .609201707
A1 2.260193805 2.259840370 2.257147249 2.252345493 2.245955936

Substitute the values in the Table 1 into Equation (31), for α = 4 we get:

u(t) = 1 + 0.9995736204 t + t2 + 0.5072093297 t3 + t4(
t3

560
+

t4

5040
+ 0.1503834045

+
(2.754044064 t + 39.82052538) t

720
). (32)

Figures 1(a) and (b) show the approximate solutions obtained by LT-MVIM and LT-VIM
respectively, are compared with the exact solutions. As we see the LT-MVIM gives an approxi-
mate solution agreement with the exact solution better than the approximate solution obtained
by LT-VIM. It is clear that the advantage of the LT-MVIM over the LT-VIM is through the
reduction amount of computational work to obtain the first order approximate solution which
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Table 2: Compare absolute error between LT-VIM and LT-MVIM on [0,1] of Example 1 .

t=0 t=0.2 t=0.4 t=0.6 t=0.8 t=1

LT-VIM 0 1.822E-3 4.945E-3 6.531E-3 5.747E-3 0
LT-MVIM 0 3.692E-5 3.521E-5 2.911E-5 5.833E-5 0

(a) Comparison between the exact solution
and LT-VIM.

(b) Comparison between the exact solution
and LT-MVIM.

Figure 1: Comparison between LT-MVIM and LT-VIM when α = 4 of Example 1.

greatly accelerates the convergence of the solution. The difference between the accuracy of the
solutions from both methods LT-VIM and LT-MVIM can be better observed through Table 2
which represents the absolute error for the LT-MVIM and the standard LT-VIM when α = 4.
Fig. 2(a) shows the approximate solutions obtained by LT-MVIM with different values of α.
It can be noted that all approximate solutions are compatible with each other, which is a good
indicator to portray the quality of the approximate solutions obtained by LT-MVIM. The ac-
curacy can be better observed through Fig. 2(b) which shows the absolute error for LT-MVIM
when α is not an integer with the exact solution when α is an integer. We can note that all
the curves in the figure have the same behavior and satisfy the boundary.

Example 2 Let fourth-order FIDEs as following [20]:

Dα
∗
u(t) = 1 +

∫ t

0

e−xu2(x)dx, (33)

with the boundary conditions:

u(0) = 1, u′′(0) = 1, u(1) = e, u′′(1) = e. (34)

When α = 4, the exact solution is u(t) = et.
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(a) Approximate solution by LT-MVIM
for different values of α.

(b) Absolute error of LT-MVIM for
different values of α.

Figure 2: Approximate solution and absolute error of LT-MVIM for different values of α of
Example 1.

The LT-VIM
Applying the LT-VIM method to obtain an approximate solution for Equation (25), we get:

u(t) = 1 + 1.000536540 t + 1/2 t2 + 0.1660788254 t3 +
1

311351040
(t427.80283365 t9

+ 181.6779066 t8 + 857.4019321 t7 + 2574.927197 t6 + 5151.672784 t5 + 15389.51494 t4

+ 61776.0356 t3 + 432896.0341 t2 + 2594592 t + 12972960). (35)

The LT-MVIM
Applying the LT-MVIM method to obtain an approximate solution for Equation (25), we get:

u(t) = 1 + 0.9999846397 t + 1/2 t2 + 0.1666558342 t3 + t4(1/24

+ 0.00005416673790 t5 + 0.007982871264 t + 0.002149086182 t2

− 0.0001540921317 t3 − 0.00005734506744 t4). (36)

Table 3: Compare absolute error between LT-VIM and LT-MVIM on [0,1] of Example 1 .

t=0 t=0.2 t=0.4 t=0.6 t=0.8 t=1

LT-VIM 0 1.026E-4 1.949E-4 1.763E-4 7.491E-5 0
LT-MVIM 0 3.226E-6 1.108E-5 1.563E-5 8.815E-6 0

Figures 3(a) and 3(b) show a good compatibility between the approximate solutions obtained
by LT-VIM and LT-MVIM with the exact solution, in which it is difficult to notice which is more
accurate. In order to better observe the difference between the accuracy of the solutions from
both methods LT-VIM and LT-MVIM, it is recommended to look at Table 3, which represents
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the absolute error for the LT-MVIM and the standard LT-VIM when α = 4. It is noted that
the LT-MVIM gives absolute error less than LT-VIM, which indicates the success of the trail
function in improving the approximate solutions obtained by LT-VIM. The exact solution of
Equation (33) is not known when α is not an integer, but it can be noted from Fig. 4(a) the
approximate solutions obtained by LT-MVIM are applicable to each other with different values
of α. The accuracy can be better observed through Fig. 4(b) which shows the absolute error
for LT-MVIM when α = 3.2, 3.4, 3.6 and 3.8. It can be observed that all the curves in the figure
have the same behavior and satisfy the boundary conditions, which are good indicators of the
quality of the approximate solutions obtained by LT-MVIM.

(a) Comparison between the exact
solution and LT-MVIM.

(b) Comparison between the exact
solution and LT-VIM

Figure 3: Comparison between LT-MVIM and LT-VIM when α = 4 of Example 2.

6 Conclusion

The main objective of the present study is to obtain the analytical approximate solutions
for linear and nonlinear fourth-order FIDEs with boundary value problems by applying LT-
MVIM which is a modification of the LT-VIM. The analytical results obtained by the LT-MVIM
showed the accelerating convergence to the exact solution by replacing the initial approximation
with a linear trial function, taking into account that the linear trial function contributed to
accelerating the convergence of the approximate solution to the exact solution by reducing the
computational work to obtain the approximate solution using one iteration. The proposed
method proved its efficiency in all the examples in comparison with the LT-VIM. In future
work, it is possible to introduce the concept of the trial function to other existing numerical
and analytical methods, so that it might become a rule or standard that can be dependent on
to make the methods more convenient.
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(a) Approximate solution by LT-MVIM
for different values of α.

(b) Absolute error of LT-MVIM
for different values of α.

Figure 4: Approximate solution and absolute error of LT-MVIM for different values of α of
Example 2.
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