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Abstract Vaccination has been used as strategy to eradicate the spread of COVID-19.

But imperfect vaccine has been reported to induce backward bifurcation and hysteresis in

mathematical models of disease transmission. Backward bifurcation is a phenomenon whereby a

stable endemic equilibrium exists contemporaneously with a stable disease-free equilibrium when

the basic reproduction number is less than 1. This situation can cause difficulty in controlling an

epidemic because the basic reproduction is no longer the only means of eradicating the disease.

In this paper, we propose a mathematical model for the transmission of disease which includes

imperfect vaccination. We show that our model is capable of capturing backward bifurcation

under certain conditions. By using parameters that are relevant to COVID-19 transmission

in Malaysia, our numerical analysis shows that low vaccine efficacy can trigger backward

bifurcation.
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1 Introduction

The basic reproduction number (R0) has long been used as the key indicator to determine whether a

disease will persist (i.e., becomes endemic) or not. In bifurcation theory, this typical role of the basic

reproduction number is depicted via the so-called forward bifurcation phenomena. It is a type of local

bifurcation in which the system transits from a single stable fixed point to double non-negative fixed

points, in which one is stable and the other is not stable. In mathematical epidemiology, the bifurcation

parameter is considered to the value of R0. In this setting, a single, stable disease-free equilibrium

(DFE) persists when R0< 1. When R0> 1, the disease-free equilibrium (DFE) becomes unstable,

while a stable branch of endemic equilibrium emerges. Another type of bifurcation phenomena that

has been observed in mathematical models of epidemic is the backward bifurcation. While in a

forward bifurcation there is no likelihood of an endemic state when R0< 1, endemic equilibrium can

exist for a system which exhibits a backward bifurcation when R0< 1. In such systems, there is a large
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jump in the force of infection when R0 reaches slightly above one that making R0 less than one alone

would not be sufficient to eradicate the disease. To eradicate the disease, there is need to reduce R0

to a value where endemic equilibrium does not exist and the DFE is globally asymptotically stable.

Imperfect vaccine is known to be one of the causes of backward bifurcation as stated in standard

Kermack–McKendrick type of models of disease transmission as given by Fred [1], Christopher [2],

Abba [3] and Elamin [4].

Covid-19 vaccines are the most important strategy towards ending the COVID-19 pandemic and to

date, 66.9% of the world population have received at least one dose of a COVID-19 vaccine as stated

in Hannah et al. [5]. Nevertheless, the administered vaccines have different efficacy’s levels. COVID-

19 vaccines authorised by WHO are mostly effective at reducing the risk of developing serious illness

and death but does not provide 100% full protection WHO [6]. This means that depending on

vaccination alone for the controlling or eradicating the disease can’t give a full protection for the

population against the disease. Several mathematical models have been proposed to quantitatively

explore and predict the trends in the transmission of COVID-19 under various vaccination scenarios.

See Enahoro et al[7], Sheliei et al.[8] and Lahbib et al [9]. These studies suggest that, even with a

large-scale vaccination program, non-pharmaceutical interventions are still needed to effectively curb

the spread of the disease.

As pointed out by Abba [3], imperfection in the vaccine is one of the leading causes of backward

bifurcation in vaccination models. Low efficacy of the vaccine means that the vaccine does not give

full protection (100% protection) against infection in vaccinated individuals. We proposed, in this

paper, a COVID-19 model with imperfect vaccination which exhibits a phenomenon of backward

bifurcation when the vaccine efficacy goes below a certain threshold value. We use parameter values

that have been reported to agree with the transmission of the disease in Malaysia to examine the

tendency of backward bifurcation phenomenon [10,11,12,13]. The paper is arranged as follows:

Section 2 provides the description of the model and how it is formed, followed by its mathematical

analysis. The numerical analysis we use to validate the theoretical results are later described.

2 The Mathematical Model

We formulate a deterministic model for COVID-19 dynamic with five ordinary differential equation

in this paper. The total population is divided into five compartments representing a sub-population:

susceptible (S ), vaccinated (V), exposed (E), infected (I) and recovered (R). In this study, the total

population is assumed to be constant (N), is the natural death rate. The recruitment rate is π and

force of infection is g2 = βI where β the effective contact rate. The rate at which infected individuals

develop clinical symptoms is α, γ is the rate of recovery and death rate caused by COVID-19 is d.

It is possible that recovered individuals acquire certain level of immunological memory for a certain

duration Shakhany [12] and we assume that recovered individuals are losing immunological memory

at a rate of (1 − Ψ ) β where 0 < Ψ < 1. The vaccine coverage rate is Ω and vaccinated individuals

can die naturally with rate µ or get infected with force of infection (1 − τ)βI where τ is the vaccine

efficacy. The value of τ is between 0 and 1 with τ = 1 means perfect vaccine and τ = 0 means that the

vaccine is not effective. Here we assume that the vaccine is imperfect, that is a vaccinated individual

is not completely protected and can still become infected when they come in contact with an infected

person. We also assume that the vaccination can fail, i.e., vaccinated individual goes back to become

susceptible at the rate ξ. The flowchart of this SVEIRE model is shown in Figure 1.
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Figure 1: The Schematic Flowchart of the SVEIRE Model for COVID-19

From the flowchart above, the following system of ordinary differential equations are derived:

dS

dt
= π + ξV − βIS − (+Ω) S ,

dV

dt
= ΩS − (1 − τ)βVI − (+ξ) V,

dE

dt
= βIS + (1 −Ψ ) βIR + (1 − τ)βVI − (α + µ) E, (1)

dI

dt
= αE − (γ + µ + d) I,

dR

dt
= γI − (µ + (1 − Ψ ) βI) R,

with the initial conditions S (0) = S 0 ≥ 0,V(0) = V0 ≥ 0,E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,R(0) = R0 ≥ 0.

We assumed that all the parameters of system (1) are positive when time t > 0. In the following

subsections, we discussed the properties of the proposed model.

2.1 Basic Properties

The following theorem guarantees the non-negativity of the solutions to system (1).

Theorem 1 Given the initial conditions S (0) = S 0 ≥ 0, V(0) = V0 ≥ 0,E(0) = E0 ≥ 0, I(0) =

I0 ≥ 0,R(0) = R0 ≥ 0, the solution of system (1), namely S (t),V(t),E(t), I(t), and R(t) remains in the

non-negative region for all t > 0.
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Proof A non-negative initial condition implies the followings:

dS

dt

∣

∣

∣

∣

∣

S=0, V≥0,E≥0,I≥0,R≥0

= π+ξV > 0,

dV

dt

∣

∣

∣

∣

∣

S>0, V=0,E≥0,I≥0,R≥0

=ΩS > 0,

dE

dt

∣

∣

∣

∣

∣

S>0, V≥0,E=0,I≥0,R≥0

= βIS + (1−Ψ ) βIR+ (1−τ)βVI≥0,

dI

dt

∣

∣

∣

∣

∣

S>0, V≥0,E≥0,I=0,R≥0

=αE≥0,

dR

dt

∣

∣

∣

∣

∣

S>0, V≥0,E≥0,,I≥0,R=0

= γI≥0.

The conditions above guarantees the non-negativity of the rate of change of the state variables,

S(t), V(t), E(t), I(t), and R(t) at the boundary of R5
+. Thus, the vector fields are pointing inward from

the boundary planes. Therefore, the solution of system (1) will always be non-negative for all time t

> 0 �

Next, we establish the boundness the solutions of system (1) via the following theorem.

Theorem 2 The solution of system (1) is strictly contained in the bounded region

D =

{

( S ,V,E, I,R) ∈ R5: S+V + E+ I + R ≤
π

µ

}

.

Proof Summing both sides of system (1) give

d (S + V + E + I + R)

dt
=

dN

dt
≤ π − N − dI.

If there is no death from COVID-19, then the equation above becomes
dN

dt
≤ π−µN,which solves as

0 ≤ N ≤
π

µ
+ N(0)e−µt,

where N (0) is the initial value of the total population, assumed to be non-negative. Therefore, if S (0),

V(0), E(0), I(0), and R(0) are inside of D, then S (t), V(t), E(t), I(t), and R(t) will stay within D as t→

∞. Likewise, if the initial condition starts outside of D, then the solution will approach D as t→ ∞.

That completes the prove of the theorem �

3 Equilibrium Points and Their Dynamics

In this section, we look at types of equilibrium points of system (1), which are the disease-free

equilibrium, abbreviated as (DFE) and the endemic equilibrium, abbreviated as (EE). To analyze

the dynamics of the equilibrium points, we start by computing the effective reproduction number,

using the next generation matrix method described in Driessche and Watmough [15] on system (1).
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The matrix form by the new infection terms, F, and that of the matrix of the transition terms, V̂ are

given by

F=
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.

where f1=βIS + (1 − Ψ ) βIR + (1 − τ)βVI, f2= 0 are the vector for new infection rate and

v1= (α + µ) E, v2= −αE + (γ + µ + d) I are the vector for new transition rate

Differentiating f1 with respect to E and with respect to I and substitute the values of S and V at

the disease free equilibrium, we get

∂ f1

∂E
= 0,

∂ f1

∂I
= βS + (1 − τ)βV.

At E0,

∂ f1

∂I
= βS 0+(1 − τ) βV0 = β

π(µ + ξ)

µ(µ + ξ +Ω)
+(1 − τ) β

πΩ

µ(µ + ξ + Ω)
= βπ

(

(µ + ξ)

µ(µ + ξ + Ω)
+

(1 − τ)Ω

µ(µ + ξ +Ω)

)

∂ f1

∂I
=
βπ(µ + ξ + Ω − τΩ)

µ(µ + ξ + ω)

Differentiating f2 with respect to E and with respect to I we get

∂ f2

∂E
= 0,

∂ f2

∂I
= 0

F =























0
βπ(µ + ξ + Ω − τΩ)

µ(µ + ξ +Ω)

0 0























, V̂ =

(

α + µ 0

−α γ + µ + d

)

.

The next generation matrix is G = FV̂−1. Thus, the basic reproduction number Rvac = ρ(FV̂−1)(ρ (·)

denotes the spectral radius), is given by

Rvac=
βαπ(µ + ξ + Ω − τΩ)

µ(α + µ)(γ + µ + d)(µ + ξ + Ω)
. (2)

3.1 The Disease-Free Equilibrium Point

We obtained the disease-free equilibrium (DFE) point, E0, of system (1) by setting the right-hand side

of the equation to zero and let E = I = R = 0. Then, solving for S and V at this state gives:

E0 =

(

π(µ + ξ)

µ(µ+ ξ +Ω)
,

πΩ

µ(µ + ξ + Ω)
, 0, 0, 0

)

.

Using Routh-Hurwitz criteria Altahir [14], we proposed the following theorem:
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Theorem 3 The DFE point is locally asymptotically stable if Rvac< 1 and unstable if Rvac > 1.

Proof The prove of the local stability of disease-free equilibrium is obtained by first computing the

Jacobian matrix of the system (1) at the DFEP E0. The first three eigenvalues of the Jacobian matrix

at the DFEP are λ1= −(µ+Ω), λ2 = −µ, λ3= −(µ+ξ+Ω) while the other two eigenvalues λ4 and λ5 are

the solutions of the quadratic equation F0λ
2 + F1λ + F2 = 0, where F0 = 1,F1 = 2µ+α + γ + d and

F2 = (α + µ)(γ + µ + d) (1 − Rvac). Applying Routh-Hurwitz criteria [16,17,18,19] on this quadratic

equation shows that λ4 and λ5 have negative real parts. Since all the eigenvalues are either negative or

they have negative real parts, it shows that the DFE point is locally asymptotically stable when Rvac<

1 and unstable when Rvac > 1. �

Theorem 3 reveals a threshold that decides whether COVID-19 may be removed from the

population if the bifurcation at Rvac = 1 is a global forward bifurcation. In this scenario, there

will always be free disease condition when Rvac < 1. Due to the significance of Rvac in determining

epidemic condition, it will be good to know howRvac behave with respect to change in each parameter

in (2). In particular

•
dRvac

dβ
=
Rvac

β
> 0 shows that if the contact rate is reduced, there will reduction in Rvac linearly.

•
dRvac

dα
=
µRvac

α(α + µ)
> 0 shows that increasing the treatment rate for exposed individual will

reduce Rvac linearly.

•
dRvac

dγ
= −

Rvac

(γ + µ + d)
< 0 shows that stepping up the treatment rate of infected individual will

course an increase in the chance of eradicating COVID-19 in the population.

•
dRvac

dτ
= −

ΩRvac

(µ + ξ +Ω − τΩ)
< 0 shows that increasing the vaccine efficacy will reduce Rvac and

therefore increase the chance of eradicating COVID-19 in the population.

•
dRvac

dΩ
= −

τ(µ + ξ)Rvac

(µ+ ξ +Ω)(µ + ξ + Ω − τΩ)
< 0 shows that increasing the vaccine coverage rate

will reduce Rvac and therefore increase the chance of eradicating COVID-19 in the population.

However, in previous mathematical models of infectious disease with imperfect vaccine, backward

bifurcation and hysteresis have been reported to occur. Under these situations, for certain initial

conditions it is possible that disease will persist even when Rvac < 1. To investigate this situation

further requires a careful study of the endemic equilibrium points.

3.2 Endemic Equilibrium Point

The endemic equilibrium point (EEP) is given as

E∗ =

(

S ∗ =
π
[

(1 − τ)βI∗ + (µ + ξ)
]

A1I∗2 + A2 I∗ + A3

, V∗ =
Ωπ

A1I∗2 + A2 I∗ + A3

,

I∗= I∗, E∗ =
(γ + µ + d)I∗

α
, R∗ =

γI∗

µ + (1 − ψ)βI∗

)

,
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where

A1 = (1 − τ)β2,A2 = (β(µ + ξ) + ( µ + Ω)(1 − τ)β) ,A3 = µ (µ + ξ + Ω) .

If we substitute the values of S ∗, V∗, E∗ and R∗ into Eqs. (1), insert the values of A1,A2 and A3 and

simplify, then I∗ is gotten from the positive roots of the cubic polynomial:

f (I) = m1I3 + m2I2 +m3I + m4,

where

m1 = (1 − τ)β3 (1 − ψ) ((α + µ) (γ + µ + d) − αγ) ,

m2 = −αβ
3π (1 − ψ) (1 − τ) − γ (1 − ψ)αβ2 ((µ + ξ) − ( µ + Ω) (1 − τ))

+ (α + µ) (γ + µ + d)
(

µ (1 − τ) β2 + (1 − ψ)β2 ( µ +Ω) (1 − τ) + (1 − ψ) β2 (µ + ξ)
)

,

m3 = −αβ
2π (1 − τ)µ − (1 − ψ)αβ2π (µ + ξ) − γ (1 − ψ)αβµ (µ + ξ + Ω) − (1 − τ)αβ2

Ωπ (1 − ψ)

+ (βµ (µ + ξ) + µ (1 − τ) β ( µ + Ω)) (α + µ) (γ + µ + d)

+ (1 − ψ)βµ (α + µ) (γ + µ + d) (µ + ξ +Ω) ,

m4 = µ
2(µ + ξ + Ω)(α + µ)(γ + µ + d) (1 − Rvac) .

The Theorem below proves that there exists at least one endemic equilibrium.

Theorem 4 When Rvac > 1, there exists at least one endemic equilibrium point in System (1).

Proof It is clear from the expression m1 that m1 > 0. Meanwhile from the expression of m4, if Rvac

> 1, m4 < 0. Because m1 > 0, as I → ∞, f (I) → ∞ and as I → −∞, f (I) → −∞. When Rvac=

1, m4 = 0 and zero is a root. Therefore, when Rvac > 1 and m4 < 0, the polynomial will be shifted

downward to give at least one positive root �

To show the possibility of backward bifurcation or hysteresis occurring, we need to show that

there is a possibility of the existence of another positive equilibrium point when Rvac < 1. Using

Descarte’s rule of sign [ 19, 20 ] the number of possible positive roots of f is summarized in Table 1.

Table 1: Number of Possible Positive Roots According to Descarte’s Rule

Cases m1 m2 m3 m4 Rvac Sign Changes
Total Possibility

of Positive Roots

1 + − − − Rvac > 1 1 1

2 + + − − Rvac > 1 1 1

3 + + + − Rvac > 1 1 1

4 + − + − Rvac > 1 3 3,1

5 + − − + Rvac < 1 2 2,0

6 + + − + Rvac < 1 2 2,0

7 + − + + Rvac < 1 2 2,0

8 + + + + Rvac < 1 0 0



Rwat Solomon Isa and 1Noor Atinah Ahmad / MATEMATIKA 39:1 (2023) 87–99 94

From Table 1, we can deduce the following:

1. A unique endemic equilibrium when Rvac >1 which satisfies case 1–3.

2. One or three endemics equilibrium when Rvac > 1 and case 4 is satisfied.

3. Two endemic equilibria when Rvac< 1 and this satisfies cases 5–7.

4. There is no endemic equilibrium when Rvac <1 which satisfies case 8.

Hence, the results above suggest the possibility of backward bifurcation or hysteresis when either

m2 or m3 is negative.

4 Direction of Bifurcation at Rvac = 1

From the results in Table 1, we hypothesize three possible scenarios depending on the signs of m2, m3

and m4:

1. Global forward bifurcation (m2 and m3 are both positive):

This phenomenon is the most common bifurcation phenomenon found in many standard

mathematical models of disease transmission. It is characterized by a transcritical bifurcation

where the locally asymptotically stable DFE changes its stability from stable to unstable at

Rvac = 1, and a unique positive locally stable endemic equilibrium which only exists when Rvac

> 1 (see Figure 2(a)). From epidemiological perspective, a small endemic state will result when

Rvac increases slightly above 1, in other words, the endemic level at equilibrium is a continuous

function of Rvac. Thus, the requirement that Rvac < 1 is not only necessary but also sufficient

for the disease elimination.

2. Backward bifurcation at Rvac = 1 (when either m2 > 0 and m3 < 0 or m2,m3 < 0):

In this situation, endemic equilibrium can exist when Rvac < 1. More specifically, a bi-stability

region exists for 0 < R(c)
vac < Rvac < 1. This happen when a stable endemic equilibrium exists

simultaneously with a stable DFE (see Figure 2(b)). As Rvac increases slightly above 1, a big

jump in the number of infectives is observed, creating a hysteresis loop. From epidemiological

perspective, once Rvac crosses unity, it is no longer sufficient to reduce Rvac to below unity to

eradicate the disease. A disease-free state can only be achieved if the value of Rvac is reduced

further to below some critical value R(c)
vac.

3. Forward bifurcation with hysteresis (when m2 < 0 and m3 > 0):

This situation occurs when a forward bifurcation at Rvac = 1 is combined with a hysteresis loop.

AsRvac increases above 1, a bi-stability region is observed for 1 < Rvac < R
(c2)
vac , for some critical

value R(c2)
vac . When Rvac increases slightly above R(c2)

vac , a big jump in the number of infectives

is observed, creating a hysteresis loop. In this case, there are two bi-stability regions; the first

extends from a critical value R(c1)
vac (0 < R(c1)

vac < 1) to Rvac = 1 while the second extends from

Rvac = 1 to Rvac = R
(c2)
vac . In the first bi-stability region, a stable endemic equilibrium co-exists

with a stable DFE while in the second bi-stability region, a stable endemic equilibrium co-exists

with another stable endemic equilibrium (see Figure 2(c)).
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(a) (b)

(c)

Figure 2: Three Types of Possible Bifurcation from the SVEIRE Model in (1): (a) Shows a Forward

Bifurcation when m2 and m3 are both positive. (b) Shows a Backward Bifurcation when either m2 > 0

and m3 < 0 or m2,m3 < 0. (c ) Shows a Forward Bifurcation with Hysteresis when m2 < 0 and m3 > 0

5 Numerical Results

To investigate the possible bifurcation phenomenon in the transmission of COVID-19 cases in

Malaysia using numerical experiments, parameter values that have been reported to agree with the

Malaysian data were used. A list of these values and their description are given in Table 2. In the

following subsections, we present the numerical results based on the parameter values in Table 2.

5.1 Signs of m2 and m3

From the previous section, we saw that the type of bifurcation is mostly determined by the signs of

m2 and m3. To investigate the bifurcation phenomenon of the SVEIRE model that is triggered by

imperfect vaccine, we use the values of the parameter in Table 2 to analyze the signs of m2 and m3 as

a function of τ which is the vaccine efficacy.
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Table 2: The Parameters and Baseline Values of the Covid-19 Model with Imperfect Vaccine

Parameter Description Value Source

π
Recruitment rate of the

susceptible human 0.158

Estimated to be 5 times the

percentage of daily tests positive

(3.16% on 28 June 2022 [5])

ξ Rate of vaccine failure 0.01 Assumed

µ Natural death rate 5.3 per 1000 [10]

Ω The vaccine coverage rate 0.83 [5]

ψ
Rate of immunological

memory loss
0.011 [7]

β
Effective contact rate of

susceptible
0.0578

Estimated based on R0 = 1.04 (28

June 2022) [7]

α
The rate of development of

clinical symptoms
1/6.5 [14]

γ
Recovery rate of infected

individuals
1/18 [15]

d COVID-19 induced death rate 0.14 [5]

We observe from Figure 3(a) that the values of m2, computed using the values of the parameters

in Table 2 and for 0 < τ < 1 are strictly positive. Therefore, we can rule out the possibility of forward

bifurcation with hysteresis. Based on Figure 3(b), it shows that m3 changes sign when τ ≈ 0.9, which

suggests a transition from global forward bifurcation (m3 > 0) to a backward bifurcation (m3 < 0)

as vaccine efficacy reduces to below 90%. Hence, these results provide evidence of the possibility of

backward bifurcation (and hysteresis) as vaccine efficacy decreases.

(a) (b)

Figure 3: (a) The Values of m2, (b) The Values of m3, as Functions of τ (0 < τ < 1).

5.2 Bifurcation Diagrams for Different Values of τ

Here we plot the bifurcation diagrams for the values of τ as it crosses the critical value of 0.9. We see

from Figure 4 that as the vaccine efficacy τ reduces from 0.95 to 0.9, the bifurcation scenario switches



Rwat Solomon Isa and 1Noor Atinah Ahmad / MATEMATIKA 39:1 (2023) 87–99 97

from a forward bifurcation to a backward bifurcation as expected in the previous analysis. Reducing

τ further has the effect of reducing the critical value R(c)
vac. In other words, as vaccine efficacy reduces,

elimination of COVID-19 will become harder and harder. The situation becomes much worse when

τ decreases to 0.821 and less (i.e. less than 82% efficacy) because as can be seen in Figure 4 (e) and

(f), a return to disease-free state is longer possible.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Bifurcation Diagrams for Six Different Efficacy Levels: (a) τ = 0.95. (b) τ = 0.91.

(c) τ = 0.88(d) τ = 0.85. (e) τ = 0.821. (f) τ = 0.8

6 Conclusion

We presented, in this paper, a mathematical model of COVID-19 transmission with imperfect

vaccination using deterministic approach. The mathematical analysis of the model suggests three

different types of bifurcation phenomenon; (1) global forward (2) backward and (3) forward with

hysteresis. Using parameter values associated with the Malaysian COVID-19 situation, we showed

how vaccine efficacy can trigger backward bifurcation in the Malaysian situation. A backward

bifurcation will make it a lot harder to control COVID-19 because a critical value of the R0 which is

much less than 1 is needed to achieve disease-free state.
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The basic reproduction number R0 (R-Naught) (often defined as the ratio β/γ), is one of the

main indicators used by the Ministry of Health Malaysia to measure transmissibility of the disease in

Malaysia. This is due to the typical believe that theR0 is necessary and sufficient to determine the fate

of an epidemic. However, imperfect vaccination creates the possibility of a backward bifurcation as

shown in this paper. Therefore, controlling R0 (i.e. controlling contact rate and recovery rate) alone

is no longer sufficient to control the transmission of COVID-19.
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